OVER DE

BEVRUCHTING DER BLOEMEN

In het Kempisch gedeelte van Vlaanderen.
GENT, DRUKKERIJ VICTOR VAN DOOSSELAERE.
OVER DE
BEVRUCHTING der BLOEMEN
IN HET
KEMPISCH GEDEELTE VAN VLAANDEREN

DOOR

J. MAC LEOD
Hoogleeraar in de plantenkunde aan de Hoogeschool te Gent,
Voorzitter van het kruidkundig genootschap Dodonaea,
Corresponderend lid van de Nederlandsche dierkundige vereeniging,
van de Nederlandsche botanische vereeniging,
v van het «Botanische Verein der Provinz Brandenburg»,
v van het genootschap ter bevordering der natuur-, genees- en heelkunde te Amsterdam.

MET 125 FIGUREN

(Résumé en langue française à la fin du travail)

LIBRARY
NEW YORK
BOTANICAL
GARDEN
GENT
J. VUYLSTEKE, UITGEVER
Koestraat, 15
1894
AAN MEVROUW

EMMA à BECKETT

te Melbourne

wordt dit boek als een blijk van hoogachting opgedragen.

De Schrijver.
OVER DE BEVRUCHTING DER BLOEMEN IN HET KEMPISCH GEDEELE VAN VLAANDEREN,

DOOR

J. Mac Leod.

(MET TALRIJKE FIGUREN)

De volgende geleerden verleenden ons, met de meeste welwillendheid, hunne hooggeschatte medewerking tot het bepalen der insecten, die wij in Vlaanderen verzameld hebben:

Dr. Majoor von Heyden, te Bockenheim bij Frankfort a/Mein, gelastte zich met de bepaling onzer Coleopteren;

Dr. Schmiedeknecht, te Blankenburg am Schwarzatal, met de bepaling onzer Dipteren en Hymenopteren.

Wij vervullen een aangename plicht, met aan die heeren onzen hartelijken dank te betuigen.
VOORBERICHT.

Deze verhandeling bevat de voornaamste resultaten onzer onderzoekingen over de bevruchting der bloemen in het Kempisch gedeelte van Oost- en West Vlaanderen, namelijk: 1° de lijst der bezoekers (der stuifmeeloverbrengende insecten) van talrijke planten van het genoemd gebied; 2° de beschrijving van een aantal bloemconstructies, die tot nog toe niet of niet volkomen onderzocht werden; en 3° enkele aanwijzingen over de streek waar wij onze waarnemingen gedaan hebben, en eenige algemene beschouwingen over de waargenomen feiten, vooral uit het oogpunt der bloemengeografie.

Daarenboven hebben wij getracht van ons werk eene handleiding te maken voor de beoefenaren der plantenkunde, die zich in onze streken met de bloemenbiologie wenschen bezig te houden: te dien einde hebben wij de beschrijving gegeven van het bestuivings-mechanisme van vele soorten, die reeds door andere plantenkundigen bestudeerd werden, waarbij wij de geraadpleegde bronnen telkens geciteerd hebben. De figuren werden, zooveel mogelijk, naar de natuur geteekend.

In onze inleiding geven wij een kort overzicht van de geschiedenis der bloemenbiologie, en eenige algemene beschouwingen over den hedendaagschen staat dier wetenschap.

Mochten onze lezers daardoor de belangrijkheid inzien die dit gedeelte der plantenkunde thans verworven heeft, niet alleen in zuiver wetenschappelijk opzicht, maar ook wat land- en tuinbouw betreft.
Inleiding. (1)

Tot op 't einde der XVIIe eeuw was onze kennis van de sexualiteit der planten zeer onvolkomen. In 't jaar 1691 verscheen een mededeling van Rudolph Jacob Camerarius, hoogleraar aan de hoogeschool te Tübingen, waarin de resultaten der eerste wetenschappelijke proefnemingen over dit onderwerp beschreven werden. Camerarius had waargenomen, dat een vrouwelijke moerbezieboom eens vruchten gedragen had, ofschoon er geen enkele mannelijke boom in de nabijheid stond, maar dat die vruchten slechts ledige, holle zaden bevatten, die hij met onbevruchte vogeleieren vergeleek. Naar aanleiding van die waarneming werd door Camerarius de eerste proef genomen met een andere tweehuizige plant, namelijk met het Bingelkruid (Mercurialis annua): op 't einde van Mei nam hij twee in 't wild groeiende vrouwelijke exemplaren, plantte ze in potten over, en zonderde ze van alle andere af. De planten gedijden voortreffelijk, de vruchten zwollen aan, maar toen zij half rijp waren verdroogden zij, en er werd geen enkel goed, kiembaar zaad voortgebracht. De mededeling over deze feiten is gedateerd van 28 December 1691.

Op 25 Augustus 1694 werd door denzelfden geleerde een brief over het geslacht der planten, »de Sexu plantarum epistola», gezonden aan Valentin, hoogleraar aan de hoogeschool te Giessen. In dit merkwaardig opstel, het beste dat tot dan toe over dit vraagstuk geschreven was, geeft Came-

(1) Het eerste gedeelte dezer inleiding is grootendeels ontleend aan J. Sachs, Geschichte der Botanik, München, 1875.
RARIGUS een volledige beschrijving van de deelen der bloem, van de helmknoppen met hun stuifmeel, van de bevruchte en de niet bevruchte zaadknoppen, alsook van de bijzonderheden, welke de dubbele bloemen vertonen, en waaruit hij met groot doorzicht de rol der helmknoppen afleidt. Hij beschrijft eenige door hem genomen castratie-proeven, o. a. met Ricinus, waar hij de mannelijke bloemen voor het opengaan der helmknoppen wegnam en zoo in plaats van kiembare zaden, slechts ledige blazen verkreeg, en met Maïs, waar hij de reeds afhangende stempels van twee kolven afsneed, en daardoor bij de beide kolven een volslagen onvruchtbaarheid waarnemen kon. Hij verwijst naar zijne vroegere mededelingen over Morus en Mercurialis, en voegt erbij dat hij hetzelfde resultaat met Spinazieplanten verkreeg.

Uit die onderzoekingen wordt nu de volgende conclusie getrokken: » In het plantenrijk heeft geen vermenigvuldiging door zaden plaats,..... indien de antheren niet voor-eerst de in het zaad bevatte jonge plant voorbereid hebben.« Men mag dus de helmknoppen beschouwen als mannelijke organen, waarin het zaad, in den vorm van subtiel poeder, voortgebracht en verzameld wordt, om daaruit later ontlast te worden. Op gelijke wijze wordt het vruchtbeginsel met zijn stijl voor het vrouwelijk orgaan erkend.

Camerarius dacht dat de tweeslachtige bloemen zichzelf bevruchten, en dit vond hij zeer zonderling. Die verbazing geeft ons een hoogen dunk van zijn scherpzinnigheid: want het is eerst veel later dat men ontdekt heeft dat bij een groot aantal tweeslachtige bloemen het stuifmeel van de eene bloem naar de andere overgebracht wordt.

De merkwaardige ontdekkingen van Camerarius werden door de geleerden van zijn tijd niet onthaald zooals zij het verdienden. Door sommigen werden de verkregen resultaten blindelings en zonder critiek aangenomen; door anderen
werden zij eenvoudig geloochend, door anderen nog verkeerd begrepen. Er waren ook plantenkundigen, die trachtten de ontdekkingen van Camerarius voor de hunne te doen doorgaan: dit was onder anderen het geval met den Engelschman Patrick Blair, die in 1720 den inhoud van het werk van Camerarius onder zijn eigen naam publiceerde. Weinigen werden er gevonden, die het vraagstuk juist begrepen, en die, door nieuwe onderzoekingen, de oplossing ervan trachten te bevorderen.

De beroemde en anders zoo verdienstelijke Tournefort handelt, in zijne Institutiones rei herbariae, in 't jaar 1700, over de physiologische rol der verschillende deelen der bloem, klaarblijkelijk zonder met de geschriften van Camerarius bekend te zijn. Hij blijft immers de zonderlinge meening van Malpighi toegedaan, dat de bloembladen uit den bloemsteel voedsel zouden opnemen en, evenals ingewanden, dit voedsel zouden verteren en aan de groeiende vrucht leveren, terwijl de bestanddeelen van het sap, welke voor de voeding ongeschikt zijn, door de meeldraden naar de helmknoppen gevoerd en daarin verzameld, eindelijk, als uitwerpselen (stuifmeel!) naar buiten ontlast worden.

Die ongelukkige theorie werd twintig jaar later nog, in 1720 dus, door Pontedera aangenomen. Deze schrijver liet daarenboven den honig door het vruchtbeginsel inzuigen om de zaden tot ontwikkeling te brengen, en hij beschouwde de mannelijke exemplaren der tweehuizige planten als een overtollig toevoegsel.

Het ware nutteloos bij deze en andere wonderlijke theorieën langer stil te staan: de schrijvers, die de meening van Camerarius door nieuwe onderzoekingen hebben bevestigd, zijn meer onze aandacht waardig.

De eerste proeven met tweeslachtige bloemen schijnen door Bradley (New improvements in gardening, 1717) genomen
te zijn: twaalf Tulpen werden op een afgelegen plaats in zijn tuin geplant, en van haar helmknoppen beroofd zoodra de bloemen opengingen. Het resultaat was, dat deze Tulpen geen zaad droegen, terwijl vier honderd andere Tulpen, op een andere plaats in denzelfden tuin, zeer vruchtbaar waren.

Door James Logan, gouverneur van Pensylvanie, werden, in 1739, de volgende proefnemingen met Maïsplanten beschreven: de kolven der planten, die van haar mannelijke bloemen beroofd werden, bleven onbevrucht, uitgenomen een enkele, die gekeerd was tegen de zijde van waar de wind stuifmeel van andere planten had kunnen aanvoeren. Eene kolf, die geheel met mousseline omgeven werd voor dat de stempels geslachtsrijp waren, bracht slechts ledige zaadhuiden voort. Kolven, die ten deele van haar stempels beroofd werden, brachten juist zooveel goede zaden voort als er stempels overgebleven waren.

In 1751 werden door Müller, voor de eerste maal, positieve waarnemingen over de tusschenkomst van insecten bij het overbrengen van het stuifmeel medegedeeld. Genoemde schrijver plantte twaalf Tulpen, op afstanden van zes tot zeven ellen van elkander, en zoodra de bloemen opengingen werden zij van haar meeldraden beroofd: hij dacht hierdoor de bevruchting volkomen verhinderd te hebben. Eenige dagen later zag hij echter bijen, die op een ander tulpenbed de bloemen bezochten, haar lichaam met stuifmeel bepoederden, en daarna naar de ontmande tulpen heenvlogen. Toen zij zich weder verwijderd hadden, constateerde Müller dat zij stuifmeel op de stempels achtergelaten hadden. Het gevolg daarvan was, dat de ontmande bloemen goed zaad droegen.

In datzelfde jaar 1751 publiceerde Gleditsch, bestuurder van den botanischen tuin te Berlijn, een proefneming over kunstmatige bevruchting bij Chamaerops humilis. Van deze palmsoort bevond zich in genoemden plantentuin een vrouwelijke bloem, die met de hand beroofd werd, scheppen vol stuifmeel in de stempels achterliet en deze dan weer aan een ander exemplaar van de plant toevoegde. Toen zij zich verder verwijderd hadden, kon Müller een sterke bevruchting constateren. De bloemen bleven onbevrucht, als zij niet eerst stuifmeel hadden ontvangen, van welk voorwerp zij ook had kunnen komen.
lijk exemplaar, dat ongeveer tachtig jaar oud kon zijn, en dat nooit te voren kiembare zaden had gedragen. Daar te Berlijn geen mannelijk exemplaar voorhanden was, werd stuifmeel uit den tuin van Caspar Bose, te Leipzig, ontboden.

De reis van Leipzig naar Berlijn duurde negen dagen, en intusschen was de vrouwelijke boom bijna uitgebloeid, terwijl het stuifmeel onderweg grootendeels uit de helmknoppen gevallen was. Toch werd de ontporen proefneming ten uitvoer gebracht: het uitgevallen stuifmeel werd over de vrouwelijke bloemen uitgestrooid, en de reeds beschimmelde mannelijke bloeiwijze werd vastgemaakt boven een vrouwelijke tak, die in zijn bloei bij de andere ten achteren was. In den volgenden winter werden rijpe vruchten verkregen, en de zaden kiemden in het voorjaar.

Na de onderzoekingen van Camerarius en van de andere hoogergenoemde natuurvorschers kon de sexualiteit der planten niet langer geloochend worden. Linnaeus, die in het midden der vorige eeuw op de studie der botanie een overwegenden invloed oefende, had de kennis van het geslacht der planten onder de botanici gepopulariseerd, vooral door zijne classificatie, waarin de geslachtswerktuigen der bloemen geheel op den voorgrond traden.

Nu moest een ander vraagstuk opgelost worden; er moest proefondervindelijk bepaald worden welk aandeel het mannelijk en het vrouwelijk element aan de vorming der jonge plant hebben. Dit kon gedaan worden door stuifmeel en zaadknoppen van twee verschillende plantensoorten te vereenigen: indien een dergelijke vereeniging mogelijk bleek, zou men ook kunnen nagaan welke eigenschappen de voortgebrachte plant aan het stuifmeel, en welke eigenschappen zij aan den zaadknop ontleent.

Volgens een mededeling van Bradley had een bloemist te
Londen (1), reeds voor 1719, een bastaard tusschen *Dianthus caryophyllus* en *D. barbatus* kunstmatig verkregen. De eerste echter, die dit vraagstuk methodisch en wetenschappelijk bestudeerde, was Koelreuter (geboren te Sulz am Neckar, 1733 ; — overleden te Carlsruhe, 1806). De resultaten zijner onderzoekingen werden uitgegeven in vier deelen, in 1761, 1763, 1764 en 1766. In de eerste plaats werd door Koelreuter bepaald, hoeveel stuifmeel er noodig is om een vruchtbeginsel volkomen te bevruchten: te dien einde telde hij hoeveel stuifmeelkorrels in eene bloem voorhanden waren, en hoeveel korrels op een stempel moesten gebracht worden om een volledige bevruchting te bewerken. Hij vond b. v. in eene bloem van *Hibiscus venetianus* 4863 stuifmeelkorrels, terwijl 50-60 korrels voldoende waren om de meer dan 30 zaadknoppen te bevruchten. Hij onderzocht insgelijks of, bij diepgesleten, veeldeelige stempels, de bestuiving van een enkelen stempeltak voldoende was om al de hokjes van het vruchtbeginsel te bevruchten: het resultaat was bevestigend (2).

Hij vestigde in 't bijzonder zijn aandacht op de wijze, waarop het stuifmeel uit de helmknoppen op den stempel gebracht wordt, en hij erkende, welke gewichtige rol de insecten daarbij spelen. Bij *Epilobium* ontdekte hij de dichogamie (ongelijkijdige geslachtsrijpheid der ♀ en der ♂ deelen van een en dezelfde bloem). Hij onderzocht de verschillende reeds bekende gevallen waarin meelraden, ten gevolge van prikkelingen, bewegingen volbrengen; hij ontdekte de prikkelbaarheid der stempellobben bij *Martynia proboscidea* en *Bignonia radicans*, en hij bracht al die feiten in verband met de bevruchting.

(1) Zie Sachs, loc. cit., blz. 439.
(2) Zie Sachs, loc. cit., blz. 441.
Maar het is vooral door zijne proeven over de bastaardvorming dat Koelreuter zich verdienstelijk heeft gemaakt. De eerste bastaard, dien hij door kruising van *Nicotiana paniculata* met *N. rustica* verkreeg, bracht onmachtig stuifmeel voort, maar kort daarna verkreeg hij met dezelfde planten bastaarden, die kiembare zaden droegen. In 1763 en 1766 beschreef hij een lange reeks nieuwe bastaarden uit de geslachten *Nicotiana*, *Kedmia*, *Dianthus*, *Mathiola*, *Hyoscyamus*, *Verbascum*. Hij bewees dat, wanneer de stempel eener plant gelijktijdig bestoven wordt met stuifmeel van dezelfde plantensoort en van een andere soort, het eigen stuifmeel alleen werkzaam is; daardoor werd verklaard waarom, in den natuurstaat, zoo weinig bastaarden voorkomen. De theoretische waarde van Koelreuter's onderzoekingen kan niet te hoog geschat worden (1) : door zijne proefnemingen werd bewezen dat de kenmerken der beide ouders in de nakomelingen *gemengd* worden, waardoor nieuw en helder licht werd geworpen op de natuur der bevruchting. Door Koelreuter werd de meening uitgesproken, dat de bevruchting *eene vermenging is van twee vloeistoffen*: eene mannelijke vloeistof, die aan den stuifmeelkorrel kleeft, en eene vrouwelijke vloeistof, die op den stempel ligt. De vermenging van beide stoffen heeft op den stempel plaats, en het mengsel wordt door den stempel ingezogen, en door den stijl naar de onbevruchte zaadknoppen gevoerd (2). Ondanks haar gebreken stond deze theorie verre boven de verschillende meeningen, welke te dien tijde over de bevruchting heerschten.

Ongelukkig druischten de resultaten van Koelreuter's onderzoekingen tegen een aantal dwaalbegrippen in, die

(1) Zie Sachs, loc. cit., blz. 446.
in de toenmalige wetenschap ingeworteld waren. Linnaeus en de talrijke plantenkundigen zijner school waren de leer van de standvastigheid der soorten toegedaan: volgens die leer stond iedere plantensoort — en ook iedere diersoort — op zich zelf; de kenmerken van iedere soort waren constant, en werden onveranderd van de eene generatie op de andere overgeërfd. Daarenboven was iedere plantensoort als het ware de materieele uitdrukking van een idée van den Schepper. Het ligt voor de hand dat Koelreuter's bastaardplanten, — die het midden hielden tusschen reeds bestaande soorten, — in de classificatie zonder plaats, — die men naar goedvinden kon doen ontstaan, en slechts moeilijk als voorstellingen van vooraf bepaalde ideeën kon doen gelden, bij zijn tijdgenooten alles behalve welkom waren. — Door Koelreuter werd aangetoond, dat alleen nauwverwante soorten aan bastaarden het aanzijn kunnen geven, en dit strookte evenmin met de, alleszins onbepaalde, denkbeelden van de Linnaeansche school over bastaarden. — Koelreuter's proefnemingen leverden ook een ernstig bewijs tegen de evolutieleer, een theorie volgens dewelke de kiem van ieder levend wezen al de kiemen zijner successieve nakomelingen, in elkander gesloten (geëmboiteerd), in zich bevat; en in 't midden der vorige eeuw werd de evolutieleer door de meeste plantenkundigen aangenomen. Het moet ons, om al die redenen, geenszins verwonderen dat Koelreuter's geschriften eerst na vele jaren den weerklank hebben gevonden dien zij waardig waren.

Van een andere zijde nog ondervond Koelreuter veel tegenkanting. De nieuwheden, waarmede hij voor den dag kwam, vielen waarschijnlijk niet in den smaak van de tuiners, want in 1786, na den dood van zijn beschermster, de markgravin Carolina van Baden, werd hij door de vijandige gezindheid der hoveniers gedwongen zijn betrekking, als
inspecteur van den plantentuin te Carlsruhe, te laten varen. En nochtans heeft Koelreuter aan de tuinbouwkunde onschatbare diensten bewezen: door zijne kunstmatige bevruchtingen heeft hij voor die nijverheid nieuwe wegen geopend, die thans meer dan ooit bewandeld worden.

Gedurende de tweede helft der XVIIIe eeuw volgden de meeste plantenkundigen de Linnaeansche richting: planten verzamelen, beschrijven en rangschikken, dat was de hoofdzak, terwijl de plantenphysiologie schier geheel verwaarloosd werd. Het gebied, door Camerarius en door Koelreuter ontgonnen, bleef daarom gedurende nagenoeg dertig jaar braak liggen, tot het eindelijk opnieuw betreden werd door Christian Konrad Sprengel.

Camerarius had bewezen, dat de planten van geslachtswerktuigen voorzien zijn; door Koelreuter werd aangetoond, dat ook planten van onderscheiden soort sexueel kunnen vereenigd worden, en vruchtbare bastaarden voortbrengen; Sprengel heeft ontdekt, dat een bepaalde vorm van kruising in de natuur algemeen voorkomt, nl. de kruising van verschillende bloemen van hetzelfde individu of van verschillende individuen derzelfde soort onderling. In zijn werk: «Das neu entdeckte Geheimniss der Natur in Bau und Befruchtung der Blumen» (Berlin, 1793, blz. 43) drukt hij zich uit als volgt: «Daar zeer vele eenslachtige en waarschijnlijk ten minste even zoovele tweeslachtige bloemen dichogaam zijn, zoo schijnt de Natuur niet gewild te hebben, dat eenige bloem door haar eigen stuifmeel zou bevrucht worden» (1). Dit was slechts een der merkwaardigste resultaten van Sprengel’s onderzoekingen; nog gewichtiger misschien was de stelling, dat de geheele constructie en al de

(1) Geciteerd naar Sachs, loc. cit, blz. 448-449.
eigenschappen eener bloem alleen kunnen begrepen worden door haar betrekkingen met de insecten die haar bezoeken en haar bevruchten. Dit was de eerste poging, om het ontstaan van de vormen der bewerkteurde wezens te verklaren door bepaalde betrekkingen met hunne omgeving.

Het is recht boeiend in Sprengel's boek te lezen, op welke wijze kleine bijzonderheden in den bouw der bloemen, die schijnbaar geheel onbeduidend waren, bij dien vernuftigen man gedachten hebben opgewekt, waaruit zulke breedgevleugelde resultaten zouden voortspruiten: (1) Toen ik in den zomer van 1787, zoo schrijft Sprengel, de bloem van Geranium sylvaticum aandachtig onderzocht, bevond ik dat het onderste gedeelte van haar kroonbladen aan de binnenzijde en aan de beide randen van fijne, ruwe haren voorzien was. Daar ik overtuigd was, dat de wijze Schepper der Natuur niet een enkel haartje voortgebracht heeft zonder een bepaald doel, begon ik erover na te denken, waartoe die haartjes wel mochten dienen. En ik kwam weldra op de volgende gedachte: aangenomen dat de vijf honigdruppeltjes, welke door evenveel klieren afgescheiden worden, bestemd zijn om bepaalde insecten tot voedsel te verstrekken, zoo moest men het ook niet onwaarschijnlijk achten, dat maatregelen genomen waren om te verhinderen, dat die vloeistof door den regen bedorven werd, en dat de haartjes hier met dit doel aangebracht waren. Daar de bloem rechtop staat en tamelijk groot is, moeten er waterdruppels invallen telkens het regent. Er kunnen echter geen regendruppels tot de honigdruppels doordringen en zich daarmede vermengen, daar zij tegengehouden worden door de haren, welke zich boven de honigdruppels bevinden, evenals bij den mensch een zweetdruppel, die van het voorhoofd afdruipt, door de wenkbrau-

(1) J. Sachs, loc. cit., blz. 449.
wen en de wimpers tegengehouden en verhinderd wordt in het oog te vloeien. Een insect wordt daarentegen door deze haren geenszins verhinderd, de honigdruppels te bereiken. Daarna onderzocht ik andere bloemen, en ik bevond dat verscheidene van haar iets in haar structuur hadden, dat scheen te dienen om hetzelfde doel te bereiken. Hoe langer ik deze onderzoeking voortzette, des te duidelijker werd het mij, dat de bloemen, welke honig bevatten, derwijze ingericht zijn, dat insecten die vloeistof zeer gemakkelijk kunnen bereiken, terwijl zij door den regen niet kan bedorven worden ». — Het volgend jaar onderzocht Sprengel de bloemen van *Myosotis palustris*, en hij kwam op de gedachte dat de gele ring, die den ingang der kroonbuis omgeeft en op zulke vriendelijke wijze tegen den blauwen kroonzoom afsteekt, kon dienen om de insecten den weg naar den honig te wijzen. Door het onderzoek van andere bloemen bevond hij dat gekleurde vlekken en strepen en andere figuren in 't bijzonder voorkomen aan den ingang der honigbehouders, of naar de honigbehouders wijzen, en aldus werd hij in zijne meening, dat die kleurschakeeringen honigwijzers of honigmerken zijn, bevestigd. Nog een stap verder, en Sprengel werd tot de meening gebracht dat de kleur der geheele bloem dient om de insecten aan te lokken, evenals de honigmerken dienen om hun de plaats van den honig te wijzen, wanneer zij zich op de bloem nedergezet hebben. Later ontdekte hij dat de bloemen van *Iris* en van vele andere soorten alleen door de tusschenkomst van insecten kunnen bevrucht worden, en hij besloot daaruit dat de afscheiding van honig in de bloemen, de beschutting van den honig tegen regen, en de fraaie kleuren der bloemkroon inrichtingen zijn die voor de bloem nuttig zijn, daar zij haar bevruchting door insecten mogelijk maken. In den zomer van 1790 bevond Sprengel dat bij *Epilobium angustifolium* de stempel eerst opengaat nadat de helm-
knoppen hun stuifmeel ontlust hebben (1), waaruit volgt dat oudere bloemen bevrucht worden met stuifmeel, dat door hommels en bijen uit jongere bloemen aangebracht wordt. Daarna werd bij Nigella arvensis hetzelfde, en bij de gewone wolfsmelk (Euphorbia) het tegenovergesteld verschijnsel (2) waargenomen.

Deze ontdekkingen zijn de grondslagen van Sprengel’s bloementheorie. In zijn werk wordt de constructie van verschillende honderden bloemensoorten besproken; voor iedere soort geeft hij de beschrijving der honigklieren, der honigbehouders, der honigdeksels, der inrichtingen waardoor de insecten den honig kunnen ontdekken; de onmogelijkheid der spontane zelfbestuiving wordt aangetoond, en eindelijk worden, in vele gevallen, rechtstreeksche waarnemingen over de bevruchting van bloemen door insecten beschreven (3). Er wordt aangetoond dat bij sommige bloemen inrichtingen voorkomen, waardoor de stuifmeeloverbrengende bezoekers gekrenkt en dood gemarteld worden.

« Alle bloemen, zoo schrijft hij verder, die geen eigenlijke kroon hebben, of die, in de plaats daarvan, niet voorzien zijn van een in ’t oog springenden kelk, zijn van honig verstoken, en worden op eene mechanische wijze bevrucht. Bij haar wordt het stuifmeel door den wind uit de helmknoppen op den stempel gebracht, ofwel de geheele plant wordt door den wind heen en weer geschud, waardoor het stuifmeel uit de helmknoppen valt en op de stempels terechtkomt (4). Zulke bloemen brengen steeds veel stuifmeel voort, en dit stuifmeel is zeer beweeglijk, terwijl het bij de honigbloemen daarentegen weinig beweeglijk is ».

(1) De bloem is dus proterandrisch.
(2) De bloem is hier proterogynisch.
(3) Zie de uitvoerige recensie over Sprengel’s werk, door P. Knuth, in het Botanisch Jaarboek, V, 1893.
(4) Zie Sachs, loc. cit., blz. 453.
Sprengel's standpunt was een teleologisch standpunt, waarbij alles, tot in de kleinste bijzonderheden, een doel moest hebben, en door de rechtstreeksche tusschenkomst van den Alwijze moest verklaard worden. Hij had erkend dat de tusschenkomst van insecten meestal tot kruisbestuivering aanleiding geeft, en ofschoon hij met Hemerocallis fulva eene proef genomen had, waaruit gebleken was dat deze plant, met haar eigen pollen bestoven, onvruchtbaar blijft, toch erkende hij niet waarom de tusschenkomst van insecten voor de plant nuttig is, en hij kon daarom van de waargenomen verschijnselen geen andere verklaring geven, dan dat de Natuur niet schijnt te willen dat enige bloem door haar eigen stuifmeel bevrucht wordt.

Het zou nog vele jaren duren, alvorens het werk van Sprengel met een bevredigend antwoord op de opengelaten vraag zou bekroond worden. Door die leemte in Sprengel's bloementheorie wordt gedeeltelijk verklaard, waarom zijn meesterwerk door de meeste zijner tijdgenooten versmaad werd. Maar daarenboven bestond te dien tijde weinig belangstelling voor dergelijke physiologische en biologische studiën: de droge systematiek had schier de geheele botanische wetenschap in zich opgeslorpt. De wonderbare betrekkingen tusschen bloemen en insecten, door Sprengel ontdekt, strookten geenszins met de leer der standvastigheid der soorten, die de grondslag was der toenmalige beschrijvende plantenkunde, en die ontdekking wekte daarom veeleer tegenzin dan belangstelling op (1).

En niet alleen werd het boek bijna volkomen doodgezwegen, maar den schrijver werden bittere teleurstellingen be-rokkend. Sprengel was rector te Spandau, en daar hij zich met zooveel iever op de studie der plantenkunde toelegde, dat

(1) Zie Sachs, loc. cit., blz. 454.
hij zijn ambtsplichten en zelfs de zondagspreek wel eens verzuimde, werd hij van zijn ambt ontszet. Daarna leefde hij in afzondering en ellende te Berlijn, waar de geleerden hem vermeden; hij werd gedwongen door privaatlessen in zijn onderhoud te voorzien. 's Zondags hield hij botanische wandelingen, waaraan eenieder tegen 2-3 Groschen per uur kon deelnemen. Voor het tweede deel van zijn werk kon hij geen uitgever vinden, en van het eerste deel, dat alleen het licht heeft gezien, kreeg hij niet eens een present-exemplaar! Eindelijk werd hij geheel ontmoedigd: hij liet de plantenkunde varen, en legde zich op taaiestudie toe. Hij overleed in 1816, op zes-en-zestigjarigen ouderdom (1).

Gedurende meer dan een halve eeuw bleven de merkwaardige resultaten van Sprengel's onderzoekingen bijna geheel onopgemerkt (2). Intusschen werden echter, op een onafhan-
kelijke wijze, proeven genomen en bouwstoffen bijeengebracht, die geroepen waren om eenmaal helder licht op de bloemen-theorie te werpen.

In 1799, weinige jaren dus na het verschijnen van Spren-gel's werk, publiceerde de Engelschman Andrew Knight een verslag van een reeks proeven, die hij met de erwten genomen had (On account of some experiments on the fecundation of vegetables. — Philos. Transact. Pt. II, blz. 195-204; 1799): daarin wordt een vergelijking gemaakt tusschen de uitkomsten van zelf- en kruisbevruchting bij de genoemde plant, en de wet uitgesproken, dat geen enkele plant zich zelf bevrucht gedurende een onbepaald aantal generatiën.

In 1837 gaf Herbert (1) een werk over Amaryllidaceeën en over kruisingen van planten in het licht, waarin hij onder andere zegt: « Ik ben geneigd te meenen, dat ik voordeel heb getrokken uit het bevruchten der bloem, van welke ik zaad wenschte te verkrijgen, met het stuifmeel van een ander individu van dezelfde varietéit, of ten minste met dat eener andere bloem, liever dan met haar eigen stuifmeel. » Niemand kwam echter op het denkbeeld, de wet van Knight en de meening van Herbert in verband te brengen met Spren-gel's bloemen-theorie.

Nog veel belangrijker waren de ontdekkingen van Carl Friedrich Gärtner.

Gärtner werd geboren in 1772; hij was de zoon van den beroemden plantenkundige Joseph Gärtner. Hij studeerde achtereenvolgens te Stuttgart, te Iena en te Göttingen, en vestigde zich daarna te Calw, alwaar hij het beroep van arts oefende. Hij overleed in 1850.

(1) Herbert, Amaryllidaceæ, preceded by an attempt to arrange the monocotyledonous orders, and followed by a treatise of crossbred vegetables, and supplement. London 1837.

Gärtner’s werken zijn vooral gekenschetst door de buitengewone nauwkeurigheid, waarmede tallooze proeven en waarnemingen gedurende lange jaren voortgezet werden. Al de omstandigheden, die op de geslachtelijke voortplanting der zaadplanten eenigen invloed kunnen oefenen, worden er zorgvuldig onderzocht. Meer dan negen duizend kruisingen werden door Gärtner uitgevoerd; daarbij werden al de oorzaken, waardoor de resultaten der proeven kunnen vervalscht worden, bestudeerd, en eindelijk werd van de geheele literatuur een critisch overzicht gegeven.

Gärtner’s boek over de werking van eigen stuifmeel bevat een volledige physiologie en biologie der bloemen: de verschijnselen die zich gedurende den bloei voordoen en die voor

(2) GAERTNER, Versuche und Beobachtungen über die Bastarderzeugung im Pflanzenreich. — Stuttgart, Hering en Cie, 1849.
de bevruchting belangrijk zijn, de wijze waarop de kelk en de kroon zich gedragen, de honigafscheiding, het open-
gaan der helmknoppen, de eigen warmte der bloemen, de
physiologie van den stamper, de prikkelbaarheid en de bewe-
gingen der bloemdeelen worden in ’t bijzonder onderzocht.
Gärtner levert het definitief en ontegensprekelijk bewijs dat
de medewerking van het stuifmeel onontbeerlijk is tot de
vorming van kiembare zaden, en hij weerlegt op zegevierende
wijze de bedenkingen die men van verschillende zijden, ook
nog in het begin dezer eeuw, tegen de sexualiteit der planten
had geopperd.

In zijn werk over bastaardvorming (1849) maakt Gärtner
de voorwaarden bekend waarin bastaarden kunnen ontstaan;
hij bespreekt den invloed dien het stuifmeel op de vrouwel-
lijke organen oefent, en de rol der bastaardvorming bij het
ontstaan van nieuwe varieteiten (1). Hij heeft ook in een
aantal gevallen de uitkomsten van zelf- en kruisbevruchting
vergeleken. Bij Lobelia fulgens b. v. heeft hij bevonden,
that de bloemen van sommige exemplaren geheel onvruchtbaar
 zijn wanneer zij met stuifmeel derzelfde plant bestoven wor-
den, terwijl zij daarentegen met stuifmeel van een andere
plant goed zaad voortbrengen (2). Een resultaat van gelijken
aard werd verkregen met Verbascum nigrum, met Fuchsia,
en men een vijftal Passiflora soorten. De planten van het
laatstgenoemd geslacht werden zelfvruchtbaar ten gevolge
van geringe veranderingen in de levensvoorwaarden, b. v. in
de temperatuur.

(1) In 1865 heeft Nageli de voornaamste uitkomsten der onderzoekingen
van Koelreuter, Herbert en Gärtner in een zeker aantal weten samengevat. Zie verder.

(2) Dit was niet het geval met de exemplaren derzelfde soort met dewelke
Darwin proeven genomen heeft.
Ongelukkig heeft GÄRTNER de merkwaardige ontdekkingen van KONRAD SPRENGEL niet naar waarde geschat; hij heeft niet begrepen dat zijne talrijke onderzoekingen over honigafscheiding, over de prikkelbaarheid der voortplantingsorganen en over andere biologische eigenschappen der bloemen, alsook over de uitkomsten van zelf- en kruisbevruchting, in een innig verband stonden met Sprengel's waarnemingen over de bestuiving der bloemen door insecten.

SPRENGEL had waargenomen dat de bloemen over 't algemeen met stuifmeel van andere bloemen en niet met haar eigen stuifmeel bevrucht worden; hij had bevonden dat zelfbevruchting in vele gevallen (b. v. door dichogamie) verhinderd wordt, en hij had de meening uitgesproken dat de kleuren, de geuren en de honig der meeste bloemen dienen om stuifmeel-overbrengende insecten aan te lokken, terwijl andere bloemen van dergelijke lokmiddelen verstoken zijn, en door den wind bestoven worden. KNIGHT, HERBERT en GÄRTNER hadden ontdekt dat, bij een aantal planten, kunstmatige kruisbestuiving boven zelfbestuiving de voorkeur verdient. Aan DARWIN was de eer voorbehouden, al die feitenreeksen onder een enkel gezichtspunt te vereenigen.

De eerste mededelingen van DARWIN over dit thema verschenen in 1857 en in 1858 (1); daarin werd door proeven betoogd dat, bij Papilionaceëen, de hulp van insecten, of de kunstmatige nabootsing daarvan, noodzakelijk is tot volledige vruchtbaarheid, en dat, in den natuurstaat, kruising van onderscheidene planten op groote schaal door insecten bewerk-

stelligd wordt. Maar het was eerst in 1859, in Darwin's groot werk over het ontstaan der soorten (1) dat de wet van Knight tot den rang eener algemene natuurwet verheven werd, en met de theorie der natuurkeus in verband werd gebracht. En daardoor werd de waarde van Sprengel's werk voor de eerste maal in een helder daglicht geplaatst.

"Het spreekt van zelf, — zoo schrijft Darwin in zijn hooger vermeld werk, — dat bij dieren en planten met gescheidene sexen twee individuen altijd moeten paren om jongen voort te brengen, met uitzondering evenwel van het zonderlinge en nog niet goed te begrijpen geval van parthenogenesis. Doch bij hermaphroditen is het volstrekt niet noodzakelijk dat twee individuen te zamen paren. De nieuwste onderzoekingen hebben... bewezen dat eene menigte echte hermaphroditen paren (b. v. Slakken, enz. enz.). Doch bovendien zijn er vele hermaphroditen onder de dieren, welke zekerlijk niet gewoonlijk paren, en verre de meeste planten zijn hermaphroditen. Waarom, mag men vragen, zou men in dit laatste geval moeten vooronderstellen dat twee individuen ooit te zamen komen ter voortplanting? — Met andere woorden, bestaat er eenige reden om aan te nemen dat bij hermaphrodite planten, en ook bij hermaphrodite dieren, welke niet gewoonlijk paren, in sommige gevallen een echte paring tusschen twee individuen plaats heeft? — Eenige algemene beschouwingen zullen het antwoord op die vraag geven. Eene menigte feiten... bewijzen 1° dat zoowel bij dieren als bij planten eene kruising tusschen verschillende rassen, of tusschen individuen van hetzelfde ras, maar van een verschillend onderras, kracht en vruchtbaarheid aan de jongen geeft; — 2° dat eene kruising tusschen naverwante wezens... de kracht en de vruchtbaarheid doet afnemen. Dit alles doet mij nu gelooven dat het eene algemene natuurwet is...

"dat geen enkel bewerktuig wezen zich zelf bevrucht gedurende eene eeuwigheid van generatiën, maar dat eene kruising

(1) Darwin, het ontstaan der soorten door natuurlijke teeltkeus, vertaald door Dr T. C. Winkler, naar de laatste Engelsche uitgaaf herzien door Dr Hartogh Heys van Zouteveen. Arnhem-Nijmegen, E. en M. Cohen.
met een ander individu nu en dan — misschien met zeer lange
tusschenpoozen — volstrekt gevorderd wordt».

Als wij gelooven dat dit eene wet der natuur is, kunnen wij,
dunkt mij, eene menigte feiten verklaren, die, uit een ander oogpunt
beschouwd, volkomen onverklaarbaar zijn. Zie hier eenigen: bij
eene menigte bloemen zijn de voorplantingsorganen bloatgesteld aan
de ruwheid van het weder; dit is nadeelig, want het is voor de
bevruchting eener bloem zeer ongunstig als zij aan vochtigheid is bloat-
gesteld. Maar als eene kruising nu en dan vereischt wordt, dan zal
die bloatstelling, ondanks de gevaren die zij oplevert, voldoende
verklaard worden, want alleen door dat middel is de toetreding van
het stuifmeel van een ander individu mogelijk. — Vele bloemen, aan
den anderen kant, hebben hare werktuigen ter bevruchting nauw
omsloten door andere deelen der bloem, zooals in de groote familie
der Papilionaceeën, en men zou geneigd zijn te meenen, dat in der-
gelijke gevallen kruising (paring tusschen verschillende individuen)
onmogelijk is. Maar de bijen dringen in die bloemen om nectar te
zoeken, en het bezoek der bijen is zoo noodzakelijk voor de vlinder-
bloemigen dat de vruchtbareheid grootelijks vermindert, indien dat
bezoek wordt verhinderd. Nu is het nauwelijks mogelijk dat de bijen
vrijelijk van bloem tot bloem zouden vliegen, en niet het stuifmeel
de eene bloem tevens naar de andere overbrengen.... Evenwel
moeten wij niet vooronderstellen dat de bijen op die wijze eene
menigte bastaarden tusschen verschillende soorten zullen doen ont-
staan...., want als het eigen stuifmeel der plant en dat van een
andere soort op den stempel gebracht wordt..., dan oefent het eerst-
genoemde zulk een overwegenden invloed uit, dat het onvoorwaar-
delijk en volkomen de uitwerking van het vreemde stuifmeel ver-
nietigt, zooals door GÄRTNER is bewezen.

Bij sommige soorten springen de meeldraden van eene bloem plot-
seling naar den stamper, en het schijnt ons toe alsof dit volstrekt
moet dienen om eene zelfbevruchting te doen plaats hebben. Maar
door KoELREUTER is bewezen dat de aanraking van insecten veelal
noodig is om te maken dat de meeldraden uitspringen. Dat is het
geval met Berberis. En juist van dit plantengeslacht, hetwelk eene
bijzondere neiging tot zelfbevruchting schijnt te bezitten, is het alge-
meen bekend dat, als naverwante vormen of verscheidenheden dicht
bij elkander staan, het bijna onmogelijk is zuivere zaailingen te ver-
krijgen: zoo sterk kruisen zij zich vrijwillig. — In vele andere gevallen vindt men bijzondere inrichtingen, zooals de werken van C. C. SPRENGEL en mine eigene waarnemingen bewijzen, welke den stempel volkomen beveiligen voor het ontvangen van stuifmeel uit dezelfde bloem: men ziet dat of de helmknopjes barsten eer de stempel gereed is, of dat de stempel gereed is voor het stuifmeel derzelfde bloem. Zulke planten gedragen zich alsof ze van gescheiden sexen waren en moeten gevolgdelijk gekruist worden.... Hoe eenvoudig is de verklaring dier feiten uit het oogpunt dat nu en dan eene kruising met een verschillend individu nuttig of noodig is!

Indien verschillende varieteiten van kool (en ook van radijs, uien en dergelijke planten) dicht bij elkander staan, en er zaad van genomen en uitgezaaid wordt, zullen, naar ik bevonden heb, eene menigte zaailingen kruislingen worden. Echter wordt de stamper van elke bloem omringd, niet alleen door hare eigene zes meeldraden, maar ook door die van vele andere bloemen derzelfde plant. Hoe komt het dus dat er zoooveel kruislingen onder de zaailingen zijn? Ik vermoed dat zuinks moet bewijzen dat het stuifmeel van eene verschillende verscheidenheid een overwegenden invloed op den stempel eener bloem heeft, groter dan die van het eigene stuifmeel, en dat ook dit een gevolg is van de algemene wet, dat het goed is voor de verschillende individuen eener soort zich onderling te kruisen. (Indien verschillende soorten gekruist worden is het juist anders om; zie hooger, blz. 177, regel 25).

Door al deze beschouwingen en door de menigte bijzondere feiten die ik verzameld heb, ben ik overtuigd geworden dat zoowel in het planten- als in het dierenrijk eene kruising met een verschillend individu eene natuurwet is. Ik weet dat er vele gevallen zijn waarop die wet moeielijk is toe te passen; doch ik ben bezig die te onderzoeken en zoo mogelijk op te klaren. Wij mogen dus ten besluite aannemen: 1° dat bij vele bewerktuigde wezens eene kruising tussen twee individuen noodzakelijk is voor elke geboorte; 2° dat bij andere wezens het kruisen misschien slechts met lange tusschenpuozen geschiedt; en 3° dat bij geen enkel schepsel eene zelfbevruchting op den duur denkbaar is."

De beschouwingen en gevolgtrekkingen van DARWIN, die wij hier hebben aangehaald, stonden in een nauw verband
met de groote biologische vraagstukken die te dien tijde aller belangstelling boeiden (zie verder); en het boek, waarin zij uiteengezet werden, verwekte een groote beweging in het gemoed der natuurkundigen. Aldus werd veler aandacht op Sprengel's bloementheorie en op de wet van Knight gevestigd, en een aantal plantenkundigen begonnen zich met de bevruchting der bloemen bezig te houden.

Darwin zelf publiceerde achtereenvolgens verschillende werken, waarin de resultaten zijner talrijke waarnemingen en proeven werden bekend gemaakt. In zijn werk over de bevruchting der Orchideeën (1) wordt betoogd, dat bij de meeste soorten der Engelsche flora, en bij alle uitheemsche soorten die hij de gelegenheid had te onderzoeken, de bloemen tot in hare kleinste bijzonderheden aangepast zijn tot insectenbezoek, zoodanig dat de bezoekende insecten het stuifmeel onvermijdelijk van de eene bloem naar de andere moeten overbrengen. Slechts bij enkele soorten grijpt zelfbestuiving regelmatig plaats, maar ook in deze gevallen is de mogelijkheid der kruisbevruchting niet uitgesloten, zoodat men daaruit geen ernstig argument tegen de wet van Knight-Darwin (blz. 176, regel 31 en volgende) kan afleiden.

Eenige jaren later (2) werd door Darwin eene lijst uitgegeven van insecten, die op de bloemen van een aantal inheemsche (Engelsche) Orchideeën aangetroffen waren: door deze rechtstreeksche waarnemingen werd zijne zienswijze omtrent de rol der insecten volkomen bevestigd.

Daarenboven werden door Darwin een groot aantal cultuurproeven genomen, ten einde de gevolgen van de kruising van

(1) Darwin, On the various contrivances by which british and foreign orchids are fertilised by insects. London, 1862.
twee verschillende planten van dezelfde varieteit en de gevolgen van lang voortgezette zelfbevruchting met elkander te vergelijken. Deze proefnemingen werden met verbazend geduld en onovertroffen nauwkeurigheid gedurende elf jaren voortgezet. Daarbij werd de volgende methode gevolgd: de planten die tot de proeven bestemd waren, werden gekweekt in denzelfden pot, of in potten van dezelfde grootte, of vlak bij elkander in den vollen grond; insecten werden zorgvuldig buitengesloten. Sommige bloemen werden bevrucht met stuifmeel van dezelfde bloem, en andere bloemen van dezelfde plant met stuifmeel van een andere, maar naburige plant. (Bij vele dezer proeven brachten de gekruiste bloemen veel meer zaden voort dan die, welke met haar eigen stuifmeel waren bevrucht.) De aldus uit zelfbevruchting en kruising verkregen zaden liet men nu in hetzelfde glazen vat op nat zand kieimen; en als de zaden waren gekiend werden zij paarsgewijze aan de tegenovergestelde kanten van denzelfden kleinen pot geplant. Er werden ook andere handelwijzen toegepast, maar in elk der gevallen werden alle voorzorgen genomen om de beide partijen planten gelijkelijk te begunstigen. De groei der planten, uit gekruiste en zelfbevruchte zaden ontstaan, werd zorgvuldig nagegaan van de ontkieming tot de rijpheid, bij ruim duizend exemplaren, tot zeven-en-vijftig soorten, twee-en-vijftig geslachten en dertig families behorende; en het verschil in haar groei en in het weerstand bieden aan ongunstige omstandigheden, was in de meeste gevallen duidelijk en sterk uitgesproken, en daardoor werden, over 't algemeen, de goede gevolgen van de kruising en de slechte gevolgen van de zelfbevruchting bewezen. Het is van belang dat de beide partijen kiemplantjes op de tegenovergestelde zijden van denzelfden pot worden uitgeplant, zoodat zij tegen elkander kunnen strijden; want als zij afzonderlijk worden geplant is er dikwijls slechts weinig verschil in hun groei.
Darwin verhaalt ons zelf welke omstandigheid aanleiding heeft gegeven tot de hooger beschreven onderzoekingen. Ten einde sommige punten betreffende de erfelijkheid op de helderen, werden in zijn tuin twee groote bedden van *Linaria vulgaris* gekweekt: de eene partij was uit gekruiste, de de andere uit zelfbevruchte zaden ontstaan. Totzijne verbazing waren de volgroeide kruisbevruchte planten veel grooter en krachtiger dan de zelfbevruchte. De wilde planten, die de zaailingen hadden geleverd, waren ongetwijfeld gedurende al de vorige generatiën gekruist geweest, want het is bekend dat bijen (hommels) de bloemen van *Linaria* onophoudend bezoeken en stuifmeel van de eene naar de andere brengen, terwijl de plant daarentegen zeer weinig zaad draagt wanneer insecten buitengesloten worden. Het lag nu voor de hand de verschillen tusschen de beide partijen toe te schrijven aan het verschil in de wijze van bevruchting, maar het kwam Darwin geheel onmogelijk voor dat zulk een verwonderlijk verschil van *een enkele* bevruchting zou afhangen, en hij schreef dit verschil toe aan onvolkomen rijpheid, of aan eenige andere, toevalige en onverklaarbare oorzaak. Het volgend jaar werd eene proef van denzelfden aard genomen met *Dianthus caryophyllus*, eene plant die bijna geheel onvruchtbaar is wanneer insectenbezoek uitgesloten wordt: evenals in het eerste geval waren de zelfbevruchte (1) planten minder hoog en minder krachtig dan de kruisbevruchte. Deze volkomen overeenstemming tusschen de beide resultaten kon moeilijk door een toevalige oorzaak verklaard worden.

Nu werden proeven genomen met twee plantensoorten,

(1) Eene *kruisbevruchte* plant is eene door kruising ontstane plant; eene *zelfbevruchte* plant is gesproten uit eene bloem, die met haar eigen stuifmeel bevrucht werd.
die bij toeval in de broeikas in bloei stonden, nl. *Mimulus luteus* en *Ipomaea purpurea*. Deze beide soorten zijn, ook zonder de medehulp van insecten, volkomen vruchtbaar. Van ieder soort werden sommige bloemen met stuifmeel van zelfde bloem bevrucht, en andere bloemen van dezelfde plant werden met stuifmeel van een andere plant dezelfde soort bestoven. De zaailingen werden op de bovenbeschreven wijze behandeld. Bij de beide soorten waren de uit kruisbevruchting ontstane planten hooger dan hare zelfbevruchte tegenstanders; zij bloeiden vroeger en brachten een groter aantal zaaddoozen voort.

Na die eerste resultaten besloot Darwin proeven te nemen met een aantal verschillende plantensoorten, en die onderzoekingen werden gedurende elf jaren voortgezet, zooals hooger vermeld werd.

Het is vrij moeilijk van den inhoud van Darwin's werk over de gevolgen van zelfbevruchting en kruising een beknopt overzicht te geven, want in dit boek is alles gewichtig: in ieder paragraaf, schier op iedere bladzijde worden belangrijke feiten beschreven, of diep doordachte gevolgtrekkingen uiteengezet, en telkens men het boek herleest wordt men getroffen door een of ander scherpzinnig denkbeeld, of door eene vernuistige proefneming, waaraan men te voren minder aandacht geschonken had.

Door Darwin's onderzoekingen werden, in de eerste plaats, de goede gevolgen van de kruising van twee verschillende planten van dezelfde varieteit, en de slechte gevolgen van lang voortgezette zelfbevruchting bewezen. Maar de verschillen in de levenskracht en in de vruchtbaarheid, tusschen zelf- en kruisbevruchte planten, waren niet bij alle soorten even duidelijk en even sterk uitgesproken.

Bij *Ipomoea purpurea* b. v. bedroeg de hoogte der eerste kruisbevruchte planten gemiddeld 86 duim, de hoogte der zelfbevruchte
tegenstanders bedroeg gemiddeld slechts 65-66 duim; de verhouding was dus als 100 : 76. Er was eveneens een duidelijk verschil in de vruchtbaarheid: 5 kruisbevruchte planten droegen 121 zaaddozen; 5 zelfbevruchte planten droegen slechts 84 doozen; de verhouding was dus als 100 : 69.

Er werden nu een zeker aantal bloemen van kruisbevruchte planten wederom gekruist, en een zeker aantal bloemen van zelfbevruchte planten wederom met haar eigen stuifmeel bevrucht. Aldus werden twee partijen zaden verkregen die, _gedurende twee generatiën_, respectievelijk door kruisbevruchting en door zelfbevruchting ontstaan waren. Deze zaden werden op dezelfde wijze als de eerstemaal behandeld, en de hoogte der voortgebrachte planten werd uitgemeten. De gemiddelde verhouding was:

hoogte der kruisbevruchte : hoogte der zelfbevruchte = 100 : 79.

De proef werd gedurende verscheidene achtereenvolgende generaties voortgezet. Wij laten hier de resultaten volgen:

3e _generatie_ : kruisbevruchte : zelfbevruchte = 100 : 68

4e " " : " : " = 100 : 86
5e " " : " : " = 100 : 75
6e " " : " : " = 100 : 72
7e " " : " : " = 100 : 81
8e " " : " : " = 100 : 85
9e " " : " : " = 100 : 79
10e " " : " : " = 100 : 54

Bij _Ipomoea purpurea_ was het gemiddeld verschil tusschen de beide partijen, de tien generatiën samengenomen, als 100 : 77, dus zeer duidelijk.

(In al deze proefnemingen waren de kruisbevruchte planten ontstaan door de bevruchting van bloemen met stuifmeel van een andere plant. Er werden ook vergelijkingen gemaakt tusschen planten, die door zelfbevruchting verkregen waren, en andere, welke door kruising van onderscheiden bloemen _derzelfde plant_ ontstaan waren. In dit geval was het verschil tusschen de beide partijen gering; de zelfbevruchte planten waren echter iets krachtiger dan de kruisbevruchte, hetgeen zeer verwonderlijk is).

Bij _Beta vulgaris_ was de verhouding, in den vollen grond, als 100 : 99; — in bloempotten, als 100 : 87.

Het verschil tusschen zelf- en kruisbevruchte planten was dus
zeer gering, althans in den open grond. Dit kan verklaard worden door de omstandigheid dat een aantal zelfbevruchte zaden te gronde waren gegaan, waardoor de overgebleven zelfbevruchte planten meer ruimte hadden om zich te ontwikkelen dan hare kruisbevruchte tegenstanders.

Bij Viscaria oculata was de verhouding, wat de hoogte der planten betreft, als 100 : 97; — wat het getal der voortgebrachte zaaddoozen betreft, als 100 : 77; — wat het gewicht der voortgebrachte zaden betreft stonden de kruisbevruchte bloemen tot de zelfbevruchte bloemen in de verhouding 100 : 38 en 100 : 58.

Bij VandelUa nummularifolia was de verhouding tusschen de beide partijen als 100 : 99; in eene tweede proefneming als 100 : 94. Van den anderen kant brachten de kruisbevruchte planten, in de tweede proefneming, minder zaaddoozen en minder zaden voort dan de zelfbevruchte.

Bij Pisum sativum doet zich een bijzonder geval voor. Deze plant is volkomen vruchtbaar wanneer zij met haar eigen stuifmeel bestoven wordt, maar de bloemen zijn niettemin tot kruisbestuiving aangepast. In onze streken (Engeland, Noord-Duitschland, België) worden zij echter schier nooit door insecten bezocht (*), waaruit volgt dat wanneer verschillende varieteiten dicht bij elkander staan, geen kruising plaats heeft en iedere varieteit zuiver blijft. Darwin heeft bevonden dat bij deze plant, kruising tusschen planten van dezelfde varieteit niet de goede gevolgen heeft die men bij de meeste plantensoorten constateert: de zelfbevruchte planten waren hooger dan de kruisbevruchte, in de verhouding 115 : 100. Dit verschijnsel wordt verklaard door de omstandigheid, dat ieder erwten-varieteit zich gedurende een lange reeks van successieve generatiën door zelfbevruchting voortgeplant heeft, en dat de levensomstandigheden voor iedere generatie nagenoeg dezelfde gebleven zijn. Een geval van gelijken aard, doch minder sterk uitgesproken, heeft zich voorgedaan bij Ipomoea (zie hoogër, 6e generatie; bijzonderheden over dit geval bij Darwin, loc. cit., 1876, blz. 36 en 47); ook bij sommige exemplaren van Mimulus en van Nicotiana is de zelfvruchtbareheid groter geworden dan zij oorspronkelijk was (zie Darwin, loc. cit., blz. 385).

(*) Daarenboven gaan de helmknoppen zeer vroeg open, en de bestuiving heeft reeds in den knop plaats.
De tweede plaats werden de bloemen van een zeker aantal soorten bevrucht met stuifmeel van een andere variëteit, of van eene versche plant, d. w. z. van een niet verwante plant, waarvan de ouders gedurende meerdere generatiën in een anderen tuin, en dus onder andere levensomstandigheden gegroeid waren. De gevolgen van dergelijke kruisingen waren bijna altijd zeer goed, wat hoogte, gewicht en vruchtbaarheid der nakomelingen betreft, maar hier doen zich eveneens quantitatieve verschillen tusschen de soorten voor.

Bij Ipomoea purpurea b. v. werden eenige bloemen der negende gekruiste generatie (zie hooger) bevrucht met stuifmeel van andere planten die tot dezelfde generatie behoorden, en dus met de eerstgenoemde verwant waren, daar zij uit dezelfde standouders gesproten waren; aldus werd de 10e gekruiste generatie verkregen. Andere bloemen derzelfde moederplanten (9e generatie) werden bevrucht met stuifmeel van andere exemplaren van dezelfde variëteit, die echter in een anderen tuin (te Colchester) gegroeid waren, zoodat hier tusschen de gekruiste individuën geen verwantschap bestond: aldus werden zaailingen verkregen, die wij de Colchester-generatie zullen noemen. De beide partijen werden nu op de gewone wijze in gelijke voorwaarden geplaatst: wanneer de planten volgroeid waren werden zij uitgemeten, en er werd bevonden dat de Colchester-generatie veel krachtiger was dan de 10e gekruiste generatie, in de verhouding 100 : 78 wat de gemiddelde hoogte betrof, en 100 : 51 wat de vruchtbaarheid betrof. De beide partijen waren door kruisbevruchting voortgebracht: de oorzaak van het verschil moet dus gezocht worden in de mate van verwantschap der ouders. — Uit deze belangrijke proef blijkt dat planten, die in zekere mate met elkander verwant waren, en die gedurende negen achtereenvolgende generatiën gekruist waren en dan met stuifmeel eener versche (niet verwante) plant bevrucht werden, zaailingen voortbrachten, welke de tiende gekruiste generatie nagenoeg in dezelfde mate overtroffen, als deze tiende gekruiste generatie zelf de tiende zelfbevruchte generatie overtrof (zie hooger, blz. 183).

Bij Dianthus caryophyllus was de verhouding tusschen de 4e zelfbevruchte generatie en de zaailingen, door kruising van de 3e zelfbevruchte generatie met eene versche plant verkregen, wat de
hoogte betreft, als $81:100$, wat de vruchtbaarheid betreft als $33:100$.

Naar aanleiding van de verkregen resultaten werd door Darwin de meening uitgesproken dat de goede gevolgen der kruisbevruchting moeten toegeschreven worden, niet aan de bloote kruising van twee individuen, maar aan verschillen in de constitutie der gekruiste planten. Daardoor worden de goede gevolgen eener kruising met eene

versche plant of met eene verschillende varieteit verklaard. Daardoor wordt eveneens het zonderlinge feit verklaard dat bij *Ipomoea*, een kruising tusschen exemplaren der zevende zelfbevruchte generatie volstrekt geen goede gevolgen had, en hetgeen hooger over de erwt medegedeeld werd stemt hiermede overeen.

Ook in den natuurstaat zullen de verschillende varieteiten en de verschillende exemplaren van een en dezelfde soort schier altijd, door hunne constitutie, in meerdere of mindere mate verschillen: er kan nauwelijks aan getwijfeld worden of die verschillen hangen grootendeels — zooniet (zie Darwin, blz. 254) uitsluitend — af van de verschillen in de voorwaarden waarin hunne ouders en voorouders geleeft hebben. En dergelijke verschillen in de levensomstandigheden doen zich altijd voor, ofschoon die omstandigheden, in den natuurstaat, dikwijls *in schijn* dezelfde zijn.

Planten, die voor de eerste maal gekweekt worden, al is het ook in haar eigen vaderland, moeten onvermijdelijk aan diep veranderde levensvoorwaarden blootgesteld worden. Door het uitroeien van andere planten op den grond die voor haar bestemd is houdt de mededinging met vreemde soorten geheel of gedeeltelijk op. Versche zaden worden dikwijls aangebracht uit afgelegen tuinen, waar de ouderplanten onder verschillende omstandigheden geleeft hebben. Gekweekte planten worden dikwijls, evenals de planten in den natuurstaat, gekruist, en aldus worden hare constitutionele eigenschappen gekruist. Van den anderen kant, zoolang individuen eener soort in denzelfden tuin gekweekt worden, zullen zij oogenschijnlijk in meer eentonige en gelijkblijvende voorwaarden leven als planten in den natuurstaat. De zaden die gelijktijdig in een tuin uitgezaaid worden, zijn doorgaans in hetzelfde seizoen en op dezelfde plaats rijp geworden, en in dit opzicht zijn zij zeer verschillend van
de zaden, welke door de hand der natuur uitgestrooid worden. Sommige uitheemsche planten blijven in haar nieuw vaderland van insectenbezoek verstoken, en worden bijgevolg niet gekruist; dit is een zeer belangrijke oorzaak waarom de individuen uniformiteit in hunne constitutie verkrijgen (Darwin, loc. cit. blz. 256.)

In Darwin's proefnemingen nu werden alle mogelijke maatregelen genomen om de zelfbevruchte en de gekruiste planten van ieder generatie in dezelfde voorwaarden te plaatsen. Wat de gekruiste planten betreft, hare stamouders waren ongetwijfeld door hunne constitutie eeuwig verschillend, en hare eigenschappen werden in de successieve generatiën op de meest verschillende wijzen gemengd; de verschillen werden aldus in sommige gevallen groter, in de meeste gevallen kleiner, en somwijlen door terugslag weder verlevendigd. Wat de zelfbevruchte planten betreft, deze gewichtige oorzaak van constitutioneel verschijnsel werd bij haar volkomen uitgesloten, en de sexuele elementen van een en dezelfde bloem werden ontwikkeld in voorwaarden, die zoo gelijk waren als men zich kan voorstellen (Darwin, loc. cit. blz. 256-257).

De goede gevolgen van kruisbevruchting en de slechte gevolgen van zelfbevruchting waren ook, in sommige gevallen, bij de verschillende individuen van een en dezelfde soort verschillend. (Zie Darwin, loc. cit. blz. 347 en volgende.)

Bij Mimulus luteus werden, in de 3° en 4° generatie, onder de kruisbevruchte evenals onder de zelfbevruchte planten, krachtige individuën voortgebracht; hunne bloemen waren groot, wit met karmijn. Deze varieté had in al de volgende zelfbevruchte generatiën de overhand, en hare eigenschappen bleken erfelijk te zijn, maar zij verdween uit de kruisbevruchte generatiën, ongetwijfeld wijd hare kenmerken door successieve kruisingen uitgeveegd werden. De zelfbevruchte planten nu, die tot deze varieté behoorden, waren niet alleen krachtiger, maar ook vruchtbaarder dan de gekruiste (ofschoon het omgekeerde met de vroegere generatiën het geval was). Er dient echter opgemerkt dat zaailingen der
genoemde varieteit, die met eene versche plant gekruist werden, veel krachtiger werden dan de zelfbevruchte exemplaren der overeenkomstige generatie.

In de 6e zelfbevruchte generatie van Ipomaea werd een enkele plant voortgebracht, welke door Darwin Hero genoemd werd, en welke een weinig hooger groeide dan hare kruisbevruchte tegenstanders. De zelfbevruchte nakomelingen van Hero waren krachtiger dan de overeenkomstige zelfbevruchte nakomelingen van andere individuën derzelfde cultuur.

Bij Nicotiana deden zich aanzienlijke verschillen voor tusschen de verschillende individuën, wat de zelfvruchtbaarheid betreft. Reseda odorata en R. lutea eindelijk vertoonden individuele verschillen van gelijken aard.

Uit de aangehaalde feiten mag besloten worden dat er soms verscheidenheden ontstaan, bij dewelke zelfbevruchting — onder overigens gelijke omstandigheden — betere gevolgen heeft dan kruisbevruchting. Dit staat in verband met het feit dat sommige plantensoorten, in den natuurstaat, zich zelve regelmatig bevruchten (Ophrys apifera, Leersia oryzoides) (1).

Ook bij de erwt (zie hooger), bij Primula veris en bij P. Sinensis werden verschijnselen waargenomen, die de vermoeding doen ontstaan dat zelfbevruchting in zekere opzichten voordeelig is. Maar de goede gevolgen der zelfbevruchting staan in den regel verre beneden de goede gevolgen eener kruising met een ander individu of met eene versche plant.

In het Xe hoofdstuk geeft Darwin eene lijst van planten, die, wanneer insectenbezoek uitgesloten wordt, onvruchtbare blijven, of minder dan half zooveel zaden voortbrengen als wanneer insectenbezoek toegelaten wordt, en eene tweede lijst van planten die zonder de medehulp van insecten volkomen

(1) Dit zijn de twee voorbeelden, door Darwin (loc. cit. blz. 351) aangehaald. Illecebrum verticillatum, Myrmecodia- en Unona-soorten kunnen daarbij gevoegd worden.
vruchtbaar zijn, of meer dan half zooveel zaden voortbrengen als wanneer zij door insecten bezocht worden. De eerste lijst bevat 66 soorten, de tweede lijst 60, dus nagenoeg hetzelfde getal, maar er dient echter opgemerkt dat vele der vermelde planten een of andere bijzondere inrichting tot bevruchting vertoonen, en het is bekend dat voor zulke bloemen de medehulp der insecten doorgaans onontbeerlijk is.

In hetzelfde hoofdstuk worden de resultaten der hooger beschreven proefnemingen met Sprengel's bloementheorie in verband gebracht (loc. cit. blz. 372). Indien wij aannemen dat kruisbevruchting goede gevolgen en zelfbevruchting minder goede of slechte gevolgen heeft, kunnen wij verklaren waarom bij zoovele planten zelfbevruchting verhinderd wordt (scheiding der geslachten, dichogamie, heterostyle, mechanische inrichtingen; — en misschien ook: onvermogen van het stuifmeel der bloem op den stempel derzelfde bloem (?), overhand van vreemd stuifmeel boven het eigen stuifmeel). Wij begrijpen eveneens waarom de bloemen insecten aanlokken, en wij geven ons rekenschap van het hooge physiologisch belang der middelen, die zij daartoe gebruiken (kleuren, honigmerken, geuren, honig). Maar wij moeten steeds indachtig zijn dat niet alleen kruisbevruchting moet bevorderd worden, maar dat het ook noodig is het voortbrengen van zaad door alle mogelijke middelen te begunstigen. En aldus begrijpen wij waarom een aantal planten een structuur vertoonen, die zelfbestuiving bevordert, als b. v. vereeniging der beide geslachten in dezelfde bloem, cleistogamie, enz. (zie verder, het beschrijvend gedeelte dezer verhandeling).

De middelen waardoor kruisbevruchting bevorderd en zelfbevruchting verhinderd wordt, en omgekeerd, vertoonen buitengewoon veel verscheidenheid, en het is belangwekkend op te merken hoezeer nauwverwante soorten, en zelfs individuen van een en dezelfde soort in dit opzicht kunnen ver-
schillen (zie talrijke voorbeelden in het beschrijvend gedeelte van dit werk). Die buitengewone verscheidenheid hangt waarschijnlijk af van de twee hoogervermelde behoeften, die, beide even belangrijk voor de instandhouding der soorten, in vele opzichten evenwel elkander tegenovergesteld zijn en van verschillende uitwendige omstandigheden afhangen. Door zelfbevruchting wordt het voortbrengen van eene groote hoeveelheid zaad verzekerd; de noodzakelijkheid of het voordeel daarvan zullen afhangen van den gemiddelden levensduur der plant, en dit zal op zijne beurt grootendeels afhangen van de mate waarin zaden en zaailingen vernietigd worden. Deze vernieling kan een gevolg zijn van de meest verschillende oorzaken, o. a. van de tegenwoordigheid van sommige dieren of van andere planten. — Van den anderen kant hangt de mogelijkheid der kruisbevruchting van verschillende oorzaken af, o. a. van de tegenwoordigheid en van het getal van bloemenbezoekende insecten in 't algemeen, en van sommige bepaalde insecten in het bijzonder, alsook van de voorkeur van sommige insecten voor bepaalde bloemen boven andere bloemen. Daarenboven zijn de voordeelen der kruisbevruchting bij de verschillende soorten niet evengroot (zie hooger). De voorwaarden zijn dus buitenge­woon ingewikkeld en veranderlijk, en het moet ons geenszins verwonderen dat nauwverwante soorten zich op een verschillende wijze gedragen. En indien wij daarbij in acht nemen dat, in sommige gevallen, zelfbevruchting voordeelig is, dan wordt het vraagstuk nog meer ingewikkeld.

Er schijnt geen nauwe overeenkomst te bestaan tusschen de meerdere of mindere volkomenheid waarmede de bloemen van iedere soort tot kruisbevruchting aangepast zijn, en de meerder of minder goede gevolgen der kruisbevruchting voor de nakomelingen. Te dien aanzien kunnen wij ons echter vergissen, want onder de middelen tot bevordering van
kruisbevruchting zijn er twee, die niet uitwendig kunnen waargenomen worden, namelijk de onvruchtbaarheid met eigen stuifmeel en het overwicht van vreemd stuifmeel boven het eigen stuifmeel. Er werd door een aantal proeven (zie hooger, blz. 182 à 184) bewezen dat de gevolgen van zelf- en kruisbevruchting met betrekking tot de vruchtbaarheid der moederplant, niet altijd hand in hand gaan met de gevolgen die waargenomen worden in betrekking tot de levenskracht en de vruchtbaarheid der nakomelingen. (Darwin, Cross and self fertilis., blz. 442-443).

Sprengel heeft ons geleerd welke belangrijke rol insecten bij de bevruchting der bloemen spelen, maar hij heeft niet geweten welke voordeelen de kruisbevruchting oplevert. Thans zijn de goede gevolgen der kruising ons bekend, maar daarmede is het geheim nog niet ontsluierd, en het zal ons verborgen blijven zoolang wij niet kunnen verklaren waarom de eitjes en het stuifmeel in zekere mate moeten verschillend zijn, en waarom die verschillen nadeelieg worden indien zij te groot zijn. (Darwin, loc. cit. blz. 455.)

Een derde groot werk van Darwin is gewijd (1) aan de proefondervindelijke studie van dimorphe (heterostyle) en trimorphe planten, en de theoretische gevolgen van die onderzoekingen waren zeer gewichtig. Sprengel had reeds opgemerkt dat bij Hottonia palustris tweeërlei bloemen voorkomen, namelijk bloemen met een langen stijl en korte meeldraden, en bloemen met een korten stijl en lange meeldraden. Later werd hetzelfde waargenomen bij een aantal andere soorten (Primula-, Linum-, Menyanthes-soorten, enz.); bij Lythrum Salicaria en bij vele Oxalis-soorten werden drie vormen ontdekt. Darwin bestudeerden de sexueële betrekkin-

(1) Darwin, the different forms of flowers on plants of the same species. London, 1877. — 2nd edition, 1880.
gen tusschen die verschillende bloemvormen; de resultaten zijn onderzoekingen kunnen wij samenvatten als volgt: bij de dimorphe ongelijkstijlige planten komen tweeeërlei individuen voor, die nagenoeg even talrijk zijn en op dezelfde plaatsen groeien. In de bloemen van den kortstijligen vorm staan de helmknoppen hooger dan de stempel, de stempeltepels zijn kort en talrijk en de stuifmeelkorels groot. In de bloemen der langstijlige exemplaren bevindt zich de stempel hooger dan de helmknoppen: de helmknoppen staan op dezelfde hoogte als de stempel in den kortstijligen vorm, en de stempel staat op dezelfde hoogte als de helmknoppen in de kortstijlige exemplaren; de stempeltepels zijn langer en de stuifmeelkorrels kleiner. Bij de trimorphe planten (Lythrum) komen drieërlei exemplaren voor: exemplaren met lange stijlen, met middelmatige stijlen en met korte stijlen, en ieder vorm heeft twee kransen van meeldraden die respectievelijk dezelfde lengte hebben als de stijlen in de twee andere vormen. De langste meeldraden brengen de grootste stuifmeelkorrels voort, de kortste meeldraden de kleinste.

Insecten die de verschillende bloemvormen beurtelings op dezelfde wijze bezoeken, zullen met dezelfde deelen van hun lichaam de organen aanraken die zich in de bloemen op dezelfde hoogte bevinden (1) en aldus zal iedere stempel stuifmeel ontvangen van meeldraden die in een andere bloem op dezelfde hoogte staan. Een dergelijke kruising, waarbij de grootte der stempeltepels en der stuifmeelkorrels evenredig is met de lengte van den stijl, werd door Darwin legitime kruising genoemd. In de dimorphe bloemen (b. v. Primula)

(1) Een hommel die b. v. eene langstijlige Primula bezoekt zal den stempel aanraken met het lichaamsdeel a en de helmknoppen met het lichaamsdeel b; indien hetzelfde insect daarna eene kortstijlige bloem bezoekt, zal het gedeelte b ditmaal den stempel en het gedeelte a de helmknoppen aanraken.
is legitieme bevruchting dus op twee wijzen mogelijk, en die beide wijzen komen in den natuurstaat regelmatig voor. Illegitieme kruising kan eveneens op twee wijzen (langstijlige bloemen bevrucht met stuifmeel van langstijlige bloemen, en korststijlige bloemen met stuifmeel van kortstijlige bloemen) plaats grijpen. In trimorphe bloemen (Lythrum) kunnen zich zes gevallen van legitieme kruising en twaalf gevallen van illegitieme kruising voordoen. DARWIN nu heeft de gevolgen der vier bevruchtingswijzen bij de heterostyle planten en der achtstijlen bevruchtingswijzen bij de trimorphe planten proefondervindelijk bestudeerd en vergeleken, en hij heeft bevonden dat, althans in de meeste gevallen, legitieme kruisbevruchting alleen aan normale en volkomen vruchtbare nakomelingen het aanzijn geeft, terwijl illegitieme kruising in meerdere of mindere mate de vruchtbaarheid der nakomelingen vermindert, of zelfs onvruchtbare individuen voortbrengt.

Door deze resultaten werd niet alleen een nieuw argument ten voordeele van de wet van KNIGHT-DARWIN geleverd; daarenboven werd de grenslijn tusschen soort en variëteit, die men te voren in de meerdere of mindere onvruchtbaarheid der bastaarden had meenen te vinden, uitgeveegd. Er werd immers bevonden dat de producten van illegitieme kruisingen bij dimorphe en bij trimorphe planten in vele opzichten overeenstemmen met de bastaarden die uit de kruising van onderscheiden soorten ontstaan, en daaruit werd besloten dat de onvruchtbaarheid van bastaarden niet moet toegeschreven worden aan verschillen in de constitutie der ouders, maar uitsluitend aan verschillen in de werking der reproductieve elementen. Ook in zijn werk over het varieeren der huisdieren en cultuurplanten (1) heeft DARWIN de gevolgen van zelf- en

kruisbevruchting, bij dieren en bij planten, besproken. Van de hoogervermelde onderzoekingen van Gärtner, van Herbert en van Darwin zelf wordt een beknopt overzicht gegeven. Daarna wijst Schr. op de voordeelen, behaald door het kruisen van verschillende variëteiten (meloenen, vruchtbomen, erwten, kool, tarwe) van eene en dezelfde soort: uit talrijke proeven (met genoemde soorten genomen) is gebleken, dat op die wijze planten (kruislingen) ontstaan die krachtiger zijn en weelderiger groeien dan de stamvormen.

Ware bastaarden, uit volkomen onderscheiden soorten gekweekt, winnen dikwijls in grootte en kracht van gestel, hoewel zij in vruchtbaarheid achteruitgaan. Daarvan zijn talloze voorbeelden bekend. Eenige uitzonderingen op den regel in het geval van zeer onvruchtbare bastaarden werden echter door Gärtner et Herbert opgemerkt, en door Max Wichura werd bevonden dat bastaardwilgen over 't algemeen teer van gestel, dwergachtig en kort van leven zijn (Darwin, loc. cit. IIe deel, blz. 124). — Gärtner heeft opgemerkt dat bij bastaarden de graad van onvruchtbaarheid niet evenredig is met de vermeerdering hunner grootte en kracht: de treffendste voorbeelden van weelderigen groei zijn waargenomen bij bastaarden, die volstrekt niet uitermate onvruchtbaar waren. Het resultaat is waarschijnlijk in alle gevallen gedeeltelijk het gevolg van de besparingen aan voedsel en levenskracht, omdat de sexueele werktuigen onvolkomen of in het geheel niet werken, maar meer in het bijzonder van de algemeene wet dat eene kruising goede gevolgen heeft. Want het verdient bijzondere aandacht dat kruislingen (zaailingen van gekruiste variëteiten), die zoo ver van onvruchtbaar zijn, dat hunne vruchtbaarheid zelfs is vermeerderd, in grootte, gehardheid en kracht van gestel over het algemeen zijn toegenomen. Het is niet weinig opmerkelijk, dat aldus een toeneming van kracht en grootte plaats heeft.
onder de tegenovergestelde verschijnselen van vermeerdering en vermindering van vruchtbaarheid.

Het is een volkomen bewezen feit, dat bastaarden zonder uitzondering met een hunner beide stamvormen, en niet zelden met een derde soort, gemakkelijker voorttellen dan met elkander: dit kan verklaard worden doordat het stuifmeel van den bastaard en waarschijnlijk ook zijn eitjes, min of meer bedorven zijn, terwijl het stuifmeel en de eitjes der beide stamvormen en van deze of gene derde soort gezond zijn. Er zijn echter eenige feiten die bewijzen dat eene kruising op zich zelve strekt tot vermeerdering of herstel der vruchtbaarheid van bastaarden (Darwin, loc. cit. blz. 124-125).

Zoo wordt b.v. door Herbert vermeld, dat hij op hetzelfde tijdstip negen bloeiende bastaard-Hippeastrum's van ingewikkelden oorsprong en van verscheidene soorten afstammende, had, en bevond dat bijna iedere bloem met het stuifmeel van een anderen bastaard aangeraakt, overvloedig zaad voortbracht, terwijl die welke met haar eigen stuifmeel werden aangeraakt, of geheel onvruchtbaar bleven, of langzaam een vrucht van geringer grootte met minder zaden vormden (Darwin, loc. cit. blz. 133). Analogie feiten werden bij Gladiolus- en Cistus-bastaarden waargenomen.

Sommige planten kunnen niet met het stuifmeel van dezelfde plant worden bevrucht, hoewel zij gemakkelijk met het stuifmeel eener andere soort of zelfs van een plant uit een ander geslacht zaden voortbrengen. In sommige gevallen werken bovendien het stuifmeel en de stempel van dezelfde plant wederkeerig verderfelijk op elkander in. (Een aantal voorbeelden, die vooral op Orchideeën betrekking hebben, worden door Darwin, loc. cit. blz. 126-130, beschreven.)

In andere gevallen zijn slechts sommige individu's van de soort met zich zelf onvruchtbaar, en die individu's zijn vruchtbaar in vereeniging met andere planten van dezelfde soort of van een andere soort. Dit is o. a. het geval met
Reseda odorata, Passiflora-soorten, Eschscholtzia californica, enz., zooals hooger reeds terloops werd vermeld.

Ten opzichte van soorten, van welke alle individuen met zich zelf onvruchtbaar zijn, mogen wij besluiten, dat die eigenschap is verkregen om werkdadig de zelfbevruchting te voorkomen. Het geval komt zeer overeen met dat der dimorphe en trimorphe planten, welke slechts volkomen kunnen bevrucht worden door planten die tot een verschillenden vorm behooren (legitieme bevruchting), en niet, gelijk in de bovenstaande gevallen, door onverschillig welk individu van dezelfde soort. Ten opzichte van soorten, die in haar natuurlijke voorwaarden leven, en bij welke slechts sommige individu’s met zich zelven onvruchtbaar zijn (b. v. Reseda lutea) is het waarschijnlijk dat deze met zich zelf onvruchtbaar zijn geworden om kruisbevruchting zeker te maken, terwijl andere individuen zelfvruchtbaar zijn gebleven om de voortplanting der soort zeker te maken. De onvruchtbaarheid met zich zelf van sommige planten hangt echter af van de voorwaarden, waaraan zij onderworpen zijn geweest (zie hooger, Passiflora).

« Het is belangwekkend in bovenstaande verschillende gevallen op te merken, welk een reeks van fijne overgangen er bestaat van planten die, als zij met haar eigen stuifmeel bevrucht worden, het volle aantal zaden geven, maar wier zaailingen dan eenigszins dwergachtig zijn, tot planten, die, als zij met zich zelf worden bevrucht, slechts weinige zaden geven — tot die welke geene zaden geven, maar wier vruchtbeginsels zich eenigszins ontwikkelen, — en, eindelijk, tot planten, bij welke het stuifmeel en de stempel van dezelfde plant als een vergif op elkander werken » (Darwin, loc. cit. blz. 135). — Daar ieder individu in eenige geringe mate van elk ander individu van dezelfde soort verschilt (ten gevolge van verschillen in de levensom-
standigheden, of van spontane variabiliteit) zijn de eitjes en de stuifmeelkorrels ongetwijfeld evenzoo bij ieder individu in eenige geringe mate verschillend, en wij moeten gelooven dat de goede gevolgen van kruisbevruchting van zulke geringe verschillen in de eitjes en het stuifmeel afhangen en, dat de slechte gevolgen van zelfbevruchting (en de zelfonvruchtbaarheid) afhangen van het ontbreken van zulke verschillen (Zie Darwin, Varieëren der huisdieren, II, blz. 136, en Cross and self fertil., blz. 443). Hierbij moet dus niet gedacht worden aan eenig geheimzinnig uitwerksel van de vereeniging van twee individuen, en men kan evenmin geloven dat de eitjes en het stuifmeel van ieder individu op eenige bijzondere wijze met betrekking tot al de andere individuen derzelfde soort verschillend zijn gemaakt. (Zie wat reeds hooger, blz. 186, regel 2 en volgende, werd gezegd.)

Door Darwin's onderzoekingen werd aan de bloemenbiologie een krachtigen stoot tot verdere ontwikkeling gegeven: sedert 1859 zijn er over dat thema ruim 2000 boeken en verhandelingen verschenen (1).

Wij zullen ons daarom, in dit historisch overzicht, tot het belangrijkste moeten beperken.

In 1863 verscheen een zeer interessante verhandeling van Hugo von Mohl (2), waarin vooral over niet-opengaande (cleistogame) bloemen gehandeld wordt. Behalve de gewone, opengaande bloemen, dragen vele plantensoorten dn. cleistogame

(1) Zie de bibliographische lijst, door D'Arcy W. Thompson, in The fertil. of flowers, by H. Müller, London, 1883, en de lijst die wij zelven uitgegeven hebben in Botanisch Jaarboek II, 1890. — (Beide lijsten zijn afzonderlijk verkrijgbaar, en bevatten respectievelijk de bibliographie tot 1883, en van 1883 tot 1889.)

bloemen, die steeds gesloten blijven, en waarin zelfbevruchting alleen mogelijk is, daar de toetreding van het stuifmeel van een andere bloem volkomen uitgesloten is. De cleistogame bloemen zijn gewoonlijk zeer klein, hare kroon is verkrompen of ontbreekt, de meeldraden zijn dikwijls minder talrijk dan in de opengaande bloemen, maar de vrucht is volkomen normaal, en er zijn zelfs gevallen bekend, waarin de cleistogame bloemen vruchtbaarder zijn dan de andere, of waarin zij alleen eene vrucht vormen. *Niet-opengaande* bloemen komen bij sommige planten te gelijker tijd als de normale bloemen voor den dag; bij andere soorten ontstaan zij voor de normale, bij andere nog na de normale bloemen. Nu eens worden zij door dezelfde takken als de opengaande bloemen gedragen, dan weer door andere, onderaardsche takken. Bij sommige soorten worden zij ieder jaar aangetroffen, bij andere slechts in sommige jaren, of in sommige tijdpersen van het leven der plant; — enz. (zie verder, Burck).

Voorbeelden van cleistogamie zijn sedert langen tijd bekend, (dit werd geschreven in 1863), en meermaalen werd dit verschijnsel als een argument tegen de sexualiteit der planten aangehaald, daar men, althans bij sommige soorten, de meeldraden der cleistogame bloemen niet had kunnen ontdekken.

In de meeste cleistogame bloemen verlaten de stuifmeelkorrels de helmknoppen niet; zij kiemen van binnen in de stuifmeelzakjes en zij drijven hunne buizen rechtstreeks in den stempel. Helmknoppen en stempel staan zoo dicht mogelijk bij elkander. Zulke bloemen zijn dus uitsluitend tot zelfbevruchting aangepast, en daaruit blijkt dat het geene *algemeene* natuurwet is dat bevruchting met vreemd stuifmeel boven zelfbevruchting begunstigd wordt. Wanneer men echter met Darwin aanneemt dat «eene kruising met een ander individu slechts nu en dan» — misschien met zeer lange
tusschenpoozen — gevorderd wordt », dan wordt door het bestaan van cleistogame bloemen geen bewijs tegen die meening opgeleverd, want de planten die cleistogame bloemen dragen, zijn ook voorzien van opengaande bloemen (1), waardoor de toetreding van vreemd stuifmeel mogelijk gemaakt wordt. Men moet echter met de cleistogame bloemen evenveel rekenschap houden als met de gevallen waarin kruisbevruchting duidelijk begunstigd wordt (b. v. bij vele Orchi-deeën). Waarom in sommige bloemen kruisbevruchting, in andere daarentegen zelfbevruchting de regel is weten wij nog niet.

In het werk van Hugo von Mohl vinden wij daarenboven eenige zeer belangwekkende morphologische beschouwingen over dimorphe bloemen, die wij hier kort willen samenvatten: Torrey en Asa Gray beschouwden de heterostylie als een overgang tot de dioecie, waarbij aangenomen werd dat bij de langstijlige exemplaren het vrouwelijk geslacht het overwicht had, terwijl bij de kortstijlige het mannelijk element daarentegen overheerschte. — Bij de planten met cleistogame bloemen zijn de opengaande bloemen normaal gevormd, van een volkomen ontwikkelde kroon voorzien en tweeslachtig: zij zijn in vele gevallen volkomen vruchtbaar, maar in andere gevallen is hare vruchtbaarheid verminderd of te niet gegaan, waardoor eene verzwakking van het vrouwelijk gedeelte der bloem aangeduid wordt; — bij de niet opengaande bloemen zijn een aantal organen, (kroon, meeldraden, enz.) zeer gereduceerd, maar die bloemen zijn steeds vruchtbaar en hermaphrodiet. Er bestaat hier dus eene neiging tot polygamie. — Bij polygame planten die te gelijker tijd tweeslachtige en mannelijke bloemen dragen zijn de

(1) Dit werd geschreven in 1863. Thans kent men planten, wier bloemen alle cleistogaam zijn (Zie verder, Burck).
meeldraden en de kroonbladen bij de mannelijke bloemen meestal niet krachtiger ontwikkeld dan bij de tweeslachtige. Wanneer daarentegen tweeslachtige en vrouwelijke bloemen bij dezelfde soort voorkomen, is de kroon der vrouwelijke bloemen meestal gereduceerd. — Naar aanleiding van die verschillende feiten mogen wij gelooven dat in de cleistogame bloemen (evenals in de langstijlige bloemen bij onge- lijkstijlige soorten) eene neiging bestaat om aan het vrouwelijk geslacht het overwicht te geven; cleistogame bloemen kunnen echter niet zuiver vrouwelijk worden, want de volkomen verdwijning der meeldraden zou volkomen onvruchtbaarheid na zich slepen.

Het komt ons voor dat die beschouwingen van Hugo von Mohl meer aandacht verdienen, dan tot nog toe het geval is geweest. Er bestaat ongetwijfeld eene zekere analogie tusschen de verschillende feitenreeksen, die von Mohl onder een enkel gezichtspunt heeft trachten te vereenigen. Daarbij dient nog gevoegd — zooals von Mohl zelf doet opmerken — dat in sommige gevallen het ontstaan van cleistogame bloemen door lage temperatuur schijnt bevorderd te worden, terwijl, van den anderen kant, sommige planten (Agurken) geneigd zijn om uitsluitend vrouwelijke bloemen te dragen wanneer zij bij lage temperatuur gekweekt worden.

Friedrich Hildebrandt heeft de bloemenbiologie met talrijke nieuwe ontdekkingen verrijkt (1). Hij heeft aangetoond dat een aantal bloemconstructies, welke Sprengel uit het oogpunt der zelfbevruchting had verklaard, als aanpassingen tot kruisbevruchting moeten beschouwd worden, en hij heeft daarenboven vele nieuwe voorbeelden van dergelijke

(1) Het volgend beknopt overzicht van Hildebrandt's onderzoeken is grootendeels ontleend aan: H. Müller, Fertilisation of flowers, 1883, blz. 11 en volgende.
aanpassingen beschreven. Hij heeft de proeven van Darwin betreffende de bevruchting van dimorphe en trimorphe planten met Primula sinensis, Pulmonaria officinalis en Oxalis-soorten herhaald, en hij heeft bevonden dat bij de genoemde planten de gevolgen van illegitieme kruising over 't algemeen beter zijn dan die van kunstmatige zelfbevruchting. Hij heeft aangetoond dat de bloemen van Corydalis cava met haar eigen stuifmeel onvruchtbaar blijven, ofschoon die bloemen tot zelfbevruchting schijnen aangepast te zijn (de helmknoppen raken niet alleen den stempel aan, maar Hildebrandt zag de stuifmeelbuizen rechtstreeks uit de helmknoppen in de stempels doordringen). Uit zijn proeven met Corydalis is daarenboven gebleken dat bloemen, die bevrucht worden met stuifmeel van andere bloemen die aan denzelfden tros groeien, slechts weinig zaden opbrengen, en dat bloemen, die bevrucht worden met stuifmeel van een ander individu alleen volkomen vruchtbaar zijn.

Hildebrandt heeft trachten te bewijzen dat, in de geheele afdeeling der Phanerogamen, kruising tusschen verschillende individuen in alle gevallen of in de meeste gevallen plaats grijpt, of ten minste mogelijk is. Hij heeft de bestuiving van zeer vele planten, o. a. van een aantal Gramineeën (1) meesterlijk beschreven.

Hildebrandt heeft de volgende rangschikking der Phanerogamen gegeven, naar de meer of minder volledige wijze waarop de zelfbevruchting verhinderd wordt (1):

 Bloemen tweeslachtig (monoclinie).

(1) Wij hebben aan die rangschikking den vorm eener dichotomische tabel gegeven.
2. Bloemen dichogaan .. 3
 " homogaan ... 4
3. Bloemen proterandrisch \ zelbevruchting doorgaans
 " proterogynisch \ onmogelijk.
4. De bloemen gaan open (chasmogame bloemen) 5
 " gaan niet open \ cleistogame bloemen \; kruis-
 bevruchting is volledig verhinderd, maar de plant draagt,
 behalve cleistogame bloemen, ook normale opengaande
 bloemen.
5. De helmknoppen raken den stempel niet aan 6
 De helmknoppen raken den stempel aan 10
6. Heterostylie (b. v. Primula officinalis)
 Trimorphisme (b. v. Lythrum salicaria)
 Homostylie (de stijlen zijn in alle bloemen evenlang) . 7
7. De wederzijdsche stand der voortplantingsorganen wordt
 gedurende den bloei verwisseld (zelbevruchting verhin-
 derd ; kruising door insecten ; (b. v. Anoda hastata).
 De stand der voortplantingsorganen blijft gedurende den
 bloei onveranderd 8
8. De medehulp van insecten is onontbeerlijk tot de bevruch-
 ting ... 9
 De medehulp van insecten is niet onontbeerlijk : zelfbe-
 vruchting is mogelijk, maar ook kruisbevruchting wordt
 door insecten bewerkstelligd.
9. Zelfbevruchting grootendeels onmogelijk, kruisbevruch-
 ting onontbeerlijk (b. v. Orchideeën).
 Zelfbevruchting in zekere mate mogelijk, maar niet
 noodzakelijk ; kruisbevruchting waarschijnlijker (b. v.
 Asclepiadeeën).
10. De bloemen zijn onvruchtbaar met haar eigen stuifmeel;
 kruisbevruchting door insecten (b. v. Corydalis cava).
 De bloemen zijn vruchtbaar met haar eigen stuifmeel,
 maar kruising door insecten is niet uitgesloten.

Evenals Hildebrandt heeft Federico Delpino (1), althans

(1) Thans hoogleeraar aan de hoogeschool te Bologna.
in vele zijner geschriften, de meening verdedigd dat de *Na-
tuur over 't algemeen een afkeer heeft van zelfbevruchting*. Hij
heeft de bevruchting van zeer vele planten, uit de meest ver-
schillende groepen, beschreven. In vele gevallen heeft hij
rechtstreeks waargenomen op welke wijze het stuifmeel van
de eene bloem naar de andere overgebracht wordt; en hij
heeft aangetoond dat niet alleen de wind en insecten, maar
ook het water, honig- of insectenzoekende vogels, en in
sommige gevallen slakken, daarbij eene rol spelen. **Delpino**
heeft daarenboven bij een aantal planten aangetoond op
welke wijze de constructie der bloem met de natuur van
haar bestuivingsmiddelen samengaat, en hij heeft zich
daarbij, meer dan de voorgaande schrijvers, met de wind-
bloemen bezig gehouden. Hij heeft bevonden dat, in vele
gevallen, het verspreidingsgebied eener plantensoort afhangt
van de verspreiding van de diersoort waardoor zij bevrucht
wordt. Eindelijk heeft Delpino de planten gerangschikt naar
de verschillende middelen waardoor zij bevrucht worden;
wij laten hier een beknopt overzicht zijner classificatie (1)
volgen:

1. *Zoogamen*: planten wier voortplantingselementen het
vermogen hebben om zich te bewegen (de meeste Crypto-
gamen).

2. *Diamesogamen*: planten die vreemde hulp behoeven om
hare voortplantingselementen bijeen te brengen.

2. De bevruchting geschiedt door het water.

3. Den wind.

4. Kleine dieren.

3. Bevruchting onder water (b.v. *Najas*).

5. Aan de oppervlakte van het water (b.v. *Val-

lisneria*).

(1) Wij hebben aan die classificatie, evenals aan die van Hildebrandt,
den vorm eener dichotomische tabel gegeven.
4. Al de Naaktzadigen worden door den wind bevrucht.

De Bedektzadigen welke door den wind bevrucht worden, worden verdeeld in vijf groepen: 1° de vorm met katjes (Corylus, enz.); — 2° de vorm met hangende bloemen (b. v. Rumex); — 3° de vorm met lange meeldraden (Gramineëën, Cyperaceën, Plantago en vele andere); — 4° de vorm met openspringende bloemen (Urtica, Parietaria, Morus); — 5° de vorm met onbeweeglijke bloemen (Vele Palmen, Triglochin, enz.)

5. De bevruchting geschiedt door slakken.

" " door vogels.

" " insecten

6. Naar gelang van de insecten die het stuifmeel overbrengen kan men de volgende groepen onderscheiden: 1° Melitto-philé bloemen (aangepast tot bevruchting door groote bijen); — 2° Micromelitto-philé bloemen (bestuiving door kleinere bijen en vele andere kleine insecten); — 3° Myi-philé bloemen (bevruchting door Dipteren); — 4° Micro-myiophilé bloemen (bevruchting door kleine Dipteren); — 5° Sapromyiophilé bloemen (bevruchting door aas-en mestvliegen); — 6° Cantharophilé bloemen (bevruchting door kevers); — 7° Psychophilé bloemen (bevruchting door dagvlinders); — 8° Sphingophilé bloemen (bevruchting door Sphingiden en Nachtvlinders).

Fritz Müller (1) heeft vele zeer interessante waarnemingen gedaan over de bevruchting van Zuid-Braziliaansche planten. Hij heeft o. a. ontdekt dat bij sommige Orchideeën het eigen stuifmeel der plant op den stempel op nadeelige of vergiftige wijze werkt, en omgekeerd dat het stuifmeel, door een verblijf op den stempel derzelfde plant, gedood wordt (zie hooger, blz. 195). Ook over de gevolgen van zelfbevruchting en kruising, over de vruchtbaarheid van bastaarden, over de bevruchting van sommige bloemen door vogels, over de bevruchting der Vijgeboomen, enz., heeft hij zeer

(1) Te Blumenau, in Zuid-Brazilië.
belangrijke mededeelingen gedaan. De onderzoekingen van Fritz Müller behoren tot de beste die wij over de bloemenbiologie bezitten, en hare waarde is des te groter daar zij grootendeels betrekking hebben op tropische planten, en tot nog toe tusschen de keerkringen, buiten Nederlandsch Indië, weinig bloemenbiologische waarnemingen werden gedaan.

Axell heeft de bestuivingsinrichtingen der planten op de volgende wijze gerangschikt:

(1) Om Anordningarna för de fanerogama Växternas Befruktning. — Stockholm, Haeggström, 1869.
A. Bloemen die alleen bevrucht worden door de medehulp van een uitwendig transport-middel (chasmogame bloemen).

I. Windbloemen: a) tweehuizig.
 b) eenhuizig.
 c) dichogaam.
 d) homogaam.

II. Insectenbloemen:
 A. Zelfbevruchting verhinderd door
 1. Eenslachtigheid der bloemen.
 2. Dichogamie.
 3. Herkogamie (d. w. z. door den wederzijdschen stand der organen).
 B. Zelfbevruchting niet verhinderd
 1. Heterostylie.
 2. Homostylie.

B. Bloemen die zich zelve bevruchten zonder de medehulp van een uitwending transport-middel (cleistogame bloemen).

* *

Onder de talrijke plantenkundigen die, sedert het verschijnen van Darwin’s werk over het ontstaan der soorten, de bloemenbiologie hebben bestudeerd, verdient HERMANN MÜLLER ongetwijfeld de eereplaats.

HEINRICH LUDWIG HERMANN MÜLLER was de zoon van den evangelischen pastoor te Mühlberg in Thüringen; hij werd aldaar geboren op 23 September 1829 (1). Hij studeerde te Halle (1847-49) en te Berlijn (1849-1852); hij hield zich eerst bezig met chemie en met geognosie, daarna met entomologie; zijn eerste verhandeling handelt over een blinden kever en andere dieren uit de spelonken van Krain (Stettin entomol. Zeitung, 1854). In 1856 werd hij leeraar te Lippstadt. Hij

(1) Hij was de broeder van FRITZ MÜLLER, die hooger reeds werd vermeld.
publiceerde in 1858 eene Flora van Lippstadt, studeerde
daarna tot 1866 in’t bijzonder de bryologie; in 1864-1866
zond hij verzamelingen van Westfaalsche bladmossen in het
licht.

In 1865 schreef hij een werkje over het onderwijs in de
natuurwetenschappen aan de Realschule te Lippstadt; dit
paedagogisch geschrift heeft in Duitschland veel opgang
gemaakt, en heeft veel bijgedragen om het wetenschappe-
lijk onderwijs, vooral in Pruisen, te verbeteren. Müller was
een model-leeraar en een paedagoog van eersten rang: hem
vooral dankt het Realgymnasium van Lippstadt zijn grooten
bloei.

In 1866 werd H. Müller bekend met Darwin’s werken: «On
the origin of species » en «On the various countrivances
by which british and foreign orchids are fertilised by
insects »; kort daarna maakte hij persoonlijke kennis met
Darwin, met Delpino en met andere beroemde biologen, en
weldra werd aan zijne werkzaamheid een nieuwe richting
gegeven: de studie der wederkeerige betrekkingen tusschen
dieren en planten werd voortaan zijn lievelingsvak.

Te dien tijde (omstreeks 1865-1866) bestond het onderwijs
in de plant- en dierkunde vooral uit droge beschrijvingen en
rangschikkingen van soorten, geslachten, familiën, enz.
Müller had opgemerkt, dat de leerlingen uit de hoogere
klassen van het gymnasiurn veel belang stelden in de chemie
en in de physica, waar zij niet alleen zelf de verschijnselen
konden waarnemen en beschrijven, maar waar zij ook den
causalen samenhang tusschen de waargenomen feiten konden
begrijpen, — terwijl zij de beschrijvingen en de rangschik-
klingen der plant- en dierkunde, als een tamelijk droge, ver-
velende bezigheid, verwaarloosden. — « Het gelukte mij (zoo
schrijft H. Müller) voor de eerste maal in den zomer
1867,..... die moeilijkheid te boven te komen ; ik had.....
met de bevruchtingsinrichtingen der Orchideeën en met het ontekte geheim der Natuur (Sprengel’s werk) kennis gemaakt; ik begon nu zelf de wederkeerige aanpassingen der inheemse bloemen en insecten te bestudeeren, en ik liet die aanpassingen door de leerlingen der hoogste klassen onderzoeken. Weldra waren zij bekend met de verschillende punten betreffende zelfbevruchting en kruising, en het was in de meeste gevallen gemakkelijk door de leerlingen zelf te laten ontdekken, welken invloed de kleuren, de geuren, de honig en de vorm der verschillende bloemdeelen op de insecten, en dus ook op de plant zelve, oefenen. Het resultaat dezer eerste poging, om ook in het natuurhistorisch onderzoek te voeren, overtrof mijn beste verwachtingen. Niet alleen voor mij zelf, maar ook voor de leerlingen der hogere klassen waren zulke botanische uren de aantrekkelijkste geworden; en ook op de botanische wandelingen en op het onderzoek in de entomologie, in de middelste klassen, had de studie der wederkeerige betrekkingen tussen bloemen en insecten den gunstigsten invloed. Aldus werd door Müller een nieuwe weg ingeslagen, dien hij voorerst als pedagoog betrad, en waarop hij later een onsterfelijken naam zou verwerven. — Müller overleed op 25 Augustus 1884, te Prad, in Tirol.

Deze biographische bijzonderheden hebben wij ontleend aan « Das Leben und Werken Dr. Hermann Müller's », door F. Ludwig (Botan. Centralblatt, 1884, Bd. XVII, blz. 393; met een portret); in dit opstel wordt eene volledige lijst — 85 nummers — van Müller's werken gegeven. — Thans willen wij Müller's bloemenbiologische onderzoekingen bespreken.

Müller heeft zich niet alleen verdienstelijk gemaakt door een zeer groot aantal waarnemingen over de constructie en
de bevruchting der bloemen zelf; hij heeft ook zijn aan-
dacht gevestigd op de bloemenbezoekende insecten, en hij
heeft aangetoond dat vele bijzonderheden in den lichaams-
bouw en in de gewoonten dezer dieren als aanpassingen tot
het bloemenbezoek moeten beschouwd worden. In zijn werk
over de alpenbloemen (1) heeft hij de bevruchting van meer
dan vier honderd soorten der Zwitsersche Alpenflora beschre-
ven, voor iedere soort de lijst der stuifmeeloverbrengende
insecten gegeven, en hoogst belangrijke vergelijkingen ge-
maakt tusschen de flora van het hooggebergte en die van het
Duitsche laagland. Daarenboven heeft HERMANN MÜLLER
over de bloemenbiologie een uitstekend handboek (2) geschre-
ven, waardoor hij bij vele plantenkundigen belangstelling
voor dat gedeelte der botanische wetenschap heeft opgewekt,
— en het is niet overdreven te zeggen, dat verreweg de
meeste hedendaagsche bloemenbiologen discipelen van HER-
MANN MÜLLER zijn.

In het voorbericht van het laatstgenoemde werk (3) duidt
H. MÜLLER zelf de richting aan, die hij bij de studie der
bloemenbiologie gevolgd heeft:

« Het ligt voor de hand.... dat er in de bloemenbiolo-
gie... moet gestreefd worden naar de oplossing van tweeërlei
vraagstukken : 1° de opheldering der bloemenconstructies;

(1) Alpenblumen, ihre Befruchtung durch Insekten und ihre Anpassun-
(2) Die Befruchtung der Blumen ; Leipzig, 1873.
(3) Van dit werk verscheen een Engelsche vertaling onder den titel: The
fertilisation of flowers by prof. Hermann Müller, translated and edited by
D'Arcy W. Thompson B. A., with a preface by Charles Darwin. London,
Macmillan and Co. 1883. — Deze vertaling verdient in alle opzichten de
voorkeur boven de Duitsche uitgave van 1873. Zij bevat talrijke mededee-
lingen over waarnemingen en onderzoekingen, door H. Müller en door
andere bloemenbiologen van 1873 tot 1883 gedaan, en hare waarde wordt
nog vermeerderd door eene bibliographische lijst van circa 825 nummers.
en 2° het op de proef stellen van de wet van Knight-Darwin. Deze beide onderwerpen staan in een nauw verband tot elkander, en somwijlen hangt het eene in zekere mate van het andere af, maar zij kunnen niet zonder nadeel met elkander verward worden.

Bij zijn onderzoekingen over de bestuivingsinrichtingen der Orchideeën was Darwin's voornaamste oogmerk de bevestiging der hoogervermelde wet. Hildebrandt en Delpino hebben dezelfde richting gevolgd: deze drie schrijvers hebben getracht alle bijzonderheden in den bouw der bloemen te verklaren in de onderstelling dat de wet van Knight-Darwin waar was. Indien uit de studie van alle bloemen gebleken was, dat kruisbevruchting, althans van tijd tot tijd, noodzakelijk is, dan had de wet van Knight-Darwin, en tevens de bloementheorie, den hoogsten graad van waarschijnlijkheid bereikt. Dit is echter niet het geval geweest; terwijl van den eenen kant meer en meer bloemen bekend werden waarin kruisbevruchting onvermijdelijk is, werden van den anderen kant nagenoeg evenveel voorbeelden beschreven van planten, die regelmatig zich zelf bevruchten en daarbij volkomen vruchtbaar zijn. En daar nu de mogelijkheid der kruising, in eene bloem, niet kan gelden als een bewijs voor de noodzakelijkheid der kruising, moeten wij erkennen dat al de onderzoekingen over het mechanisme der bloemen volstrekt niets hebben bijgedragen tot staving van de wet van Knight-Darwin. En zoolang de verklaring der bloemenconstructies alleen op die wet zal berusten, zal haar grondslag onzeker zijn.

Die onzekerheid kan alleen vermeden worden door de wet van Knight-Darwin ter zijde te laten liggen, en door ons te beperken bij de stelling dat kruisbevruchting het aanzijn geeft aan nakomelingen die, in den strijd voor het bestaan,
de producten der zelfbevruchting overwinnen. Die stelling levert eene voldoende basis voor de studie der bloemenconstructies, en de waarheid ervan kan proefondervindelijk bewezen worden.

Het ligt voor de hand dat die stelling meer beperkt is dan de wet van KNIGHT-DARWIN. Het is gemakkelijk te begrijpen dat bij alle planten zonder uitzondering, de zelfbevruchte nakomelingen in den strijd voor het bestaan eindelijk zullen bezwijken, wanneer zij tegenover andere kruisbevruchte individuen zullen staan; dit strookt met alle bekende feiten, en daarom is de hoogervermelde stelling juist. Van den anderen kant zijn er vele soorten die regelmatig zelfbevrucht worden, en bij welke zelf- en kruisbevruchte nakomelingen nooit tegen elkander strijden; zulke planten kunnen zich gedurende een onbepaald getal generaties door zelfbevruchting vermenigvuldigen, en daarom is de wet van KNIGHT-DARWIN onwaar.

De vraag, of bij sommige planten, de zelfbevruchte nakomelingen eindelijk bezwijken in den strijd voor het bestaan tegen de kruisbevruchte nakomelingen derzelfde soort, zal waarschijnlijk na weinige generaties kunnen beantwoord worden, door proefnemingen van gelijken aard als de (hooger beschreven) proeven van DARWIN. Het zal daarentegen, in vele gevallen, onmogelijk zijn te beslissen of soorten, bij welke een dergelijke strijd door uitsluitende en voortdurende zelfbevruchting vermeden wordt, eindelijk ten gronde gaan bij gebrek aan kruising. Darwin verklaart uitdrukkelijk (het varieeren der huisdieren en cultureel planten, XVII hoofdstuk. Ned. vert. Deel II, blz. 121) dat «het is van belang, dat de beide partijen zaad (d. w. z. de zelf- en de kruisbevruchte zaden) op de tegenovergestelde zijden van denzelfden pot worden uitgezaaid, zoodat de zaailingen tegen elkander kunnen strijden; want als zij afzonderlijk worden
uitgezaaid is er dikwijls slechts weinig verschil in hun groei. Daarenboven worden door Darwin zelf vele feiten vermeld, die met de wet van Knight-Darwin niet overeenstemmen: er zijn b.v. vele planten bekend, die zich gedurende vele generatien of zelfs uitsluitend ongeslachtelijk vermeerderen, zonder daarom eenige verzwakking in haar gestel te vertonen.

Daarom is het raadzaam bij de verklaring der bloemenconstructies alleen te steunen op de stelling, dat kruisbevruchting het aanzijn geeft aan krachtiger nakomelingen dan zelfbevruchting.

Wij moeten echter, van den anderen kant, met de meeste zorg alle omstandigheden bestudeeren, die invloed kunnen hebben op de wederzijdsche betrekkingen tusschen de bloemen en de transportmiddelen van het stuifmeel.

De werking van den wind en van het water is zoo eenvoudig en zoo regelmatig, dat men zonder moeite de betrekkingen kan aantoonen tusschen de eenvoudige organisatie der wind- en der waterbloemen en hare respectieve transportmiddelen. Maar voor de insectenbloemen wordt het vraagstuk veel meer ingewikkeld: de bloemenbezoekende insecten vertoonen immers zeer veel verscheidenheid wat de grootte, den vorm, de lengte der slurf, de voedingswijze, de bewegingsmiddelen, den kleurzin, enz. betreft; hun bloemenbezoek hangt af van het weder, van de mededinging van andere insecten, van de concurrentie tusschen verschillende, naast elkander groeiende bloemen, enz.; het getal der insecten, die in een bepaalde streek voorhanden zijn, verandert met talrijke omstandigheden. Om al die redenen kan de studie der bloemenconstructies op zich zelf, ons niet leiden tot de kennis der primitieve oorzaken, waardoor een of andere bijzonderheid eener
bloem tot stand is gekomen; en het constateeren van het feit dat in 't algemeen, een zeker aantal bloemen tegenwoordig door insecten bezocht en bevrucht worden is, alleen genomen, eveneens onvoldoende om ons die oorzaken te doen kennen.

Wij moeten daarentegen, voor talrijke bloemen van een en dezelfde streek, nauwkeurig onderzoeken door welke insecten en in welke mate door ieder insectensoort zij bezocht worden; wat het insect in ieder geval in de bloem komt zoeken, welke bewegingen het bij het bezoeken der bloem volbrengt, welke verhouding er bestaat tusschen de grootte van het insect en de grootte der bezochte bloem (b. v. tusschen de lengte der slurf en de diepte der kroonbuis en eventueel der spoor); welk gedeelte van het lichaam der insecten in aanraking komt met het stuifmeel, met den stempel, enz.; — wij moeten, van den anderen kant, voor iedere plant, niet alleen den vorm, den wederzijdschen stand en de ontwikkelingsorde der afzonderlijke deelen der bloem leeren kennen; wij moeten daarenboven de grootte der in 't oog springende deelen der bloem, de breedte van den ingang, de diepte der honigbehouders, en ieder andere bijzonderheid die op de bezoekers eenigen invloed kan hebben, nauwkeurig onderzoeken. En het is alleen na eene dergelijke, grondige vergelijking tusschen de bloemen en haar bezoekers dat wij mogen hopen eene stellige verklaring der bloemenconstructies te kunnen geven.

Al de voorgaande onderzoekingen, ook die van Delpino, zijn in dit opzicht onvolledig geweest.

De methode, die men tot nog toe in de bloemenbiologie gevolgd heeft, moet daarom uit een dubbel oogpunt veranderd worden:

1° In plaats van alleen acht te slaan op de bloemen waarin kruising door insecten verzekerd of zelfbevruchting onmogelijk is, moeten wij alle insectenbloemen zonder uitzondering
bestudeeren; en bij iedere soort moeten wij de mogelijkheid of de onvermijdelijkheid der zelfbevruchting bij uitblijvend insectenbezoek, met evenveel aandacht beschouwen als de volkomen zekerheid of de mogelijkheid der kruising wanneer de bloem door insecten bezocht wordt;

2° In plaats van alleen de bloemen te onderzoeken moeten wij met evenveel aandacht de bloemenbezoekende insecten bestudeeren. Wij moeten voor iedere bloemensoort eene lijst der bezoekers samenstellen, ten einde door vergelijking te kunnen bepalen welken invloed de kleuren, de geuren, de honigafschending, enz., hebben op de bezoekende insecten, en dus ook op de bevruchting der bloem. Wij moeten eveneens rekenschap houden met de wijze waarop de insecten ingericht (aangepast) zijn om zich bloemenvoedsel te verschaffen; wij moeten trachten de aanpassingen der insecten in hare trapsgewijze evolutie te leeren kennen, want vele kenmerken van bloemen en insecten (b. v. de lengte der slurf en de diepte der kroonbuis) hebben zich hand in hand ontwikkeld, en moeten als wederkeerige aanpassingen beschouwd worden ».

Het is vooral in zijn werk over de Alpenbloemen dat H. Müller zijne methode op de studie van de flora eener bepaalde streek toegepast heeft. In dit boek wordt de bestui-
ving van 422 soorten der Zwitsersche Alpenflora beschreven, en voor iedere soort wordt eene lijst van stuifmeeloverbren-
gende insecten gegeven. In 't geheel werden nagenoeg 6000
insectenbezoeken waargenomen: voor ieder bezoek worden
de verrichtingen van het insect (honig zuigen, stuifmeel vre-
ten, stuifmeel verzamelen, kroon beschadigen, enz.), alsook
de plaats, de datum (soms ook het uur van den dag en de
luchtgesteldheid) en de hoogte boven den zeespiegel nauw-
keurig aangegeven.

De insectenbloemen worden er verdeeld in zeven klassen,
nl.

1° de Pollenbloemen: insectenbloemen zonder honig (voor-
gesteld door het teeken Po; b. v. Anemone).

2° de bloemen met blootliggende honig (voorgesteld door
de letter A —; b. v. de Umbelliferen).

3° de bloemen met half verborgen honig (AB —; b. v. de
meeste Cruciferen).

4° de bloemen met verborgen honig (B —; b. v. Veronica
Chamaedrys, Mentha, enz.)

5° de bloemenoverzij betogen met verborgen honig (B* —;
b. v. Compositen, Dipsaceeën).

6° de Bijenbloemen: de honig is volkomen verborgen, en
kun alleen bereikt worden door insecten die van eene vrij
lange slurf (6 mill. of meer) voorzien zijn, of die behendig
genog zijn om de hinderpalen, die den weg naar den honig
versperren, te boven te komen; — deze klasse wordt door
ons voorgesteld door het teeken Bb —. Zij vertoont veel ver-
scheidenheid: b. v. Papilionaceeën, Linaria, en andere bloe-
men, waar de honig alleen kan bereikt worden door insecten,
krachtig genoeg om de bloem open te maken, en behendig
genog om te ontdekken op welke wijze dit moet gedaan
worden; — Symphytum en andere soorten met hangende
bloemen: hier moeten de insecten zich aan den rand der
bloemkroon vasthouden, en onderst boven gekeerd honig zuigen, hetgeen van hunnentweeën een vrij groote behendigheid vergt; — enz.

7e de Vlinderbloemen (voorgesteld door het teken Vb —); hier is de honig verborgen in een nauwe diepe kroonbuis, zoodat die vloeistof alleen kan bereikt worden door insecten met eene lange, dunne slurf, vooral door Vlinders. (B. v. *Saponaria officinalis, Lonicera periclymenum*.)

Op eene gelijke wijze worden de bloemenbezoekende insecten in een aantal groepen verdeeld, naar gelang van de lengte hunner monddeelen en van hunne behendigheid bij het bezoeken van bloemen, nl.

1e de Kevers (mondwerktuigen kort of zeer kort).

2e de Vliegen (Musciden enz., de monddeelen zijn over 't algemeen iets langer dan bij de Kevers, maar de vaardigheid in den bloemenarbeid is doorgaans gering).

3e de Syrphiden, Conopiden en Bombyliden (slurf nog langer, en meer ervarenheid in den bloemenarbeid).

4e de Korttongige bijen (lengte der monddeelen middelmatig; zij voeden haar jongen met honig en stuifmeel, en leggen derhalve, bij het bezoeken van bloemen, meer vlijt aan den dag dan al de vorige insecten).

5e de Langtongige bijen: door de lengte harer monddeelen (6 mill. of meer) en vooral door haar vaardigheid en haar vlijt in den bloemenarbeid overtreffen de langtongige bijen (Apis, Bombus, enz.) alle vorige groepen.

6e de Hymenopteren met korte monddeelen (Ichneumoni- den, Tenthrediniden, Mieren, en alle andere bloemenbezoekende Hymenopteren, uitgezonderd de bijen).

(1) Behalve de zeven hier vermelde klassen onderscheidt Müller nog verscheidene andere bloemenklassen, die slechts enkele soorten bevatten, b. v. de Klemvalbloemen, de Sluipwespenbloemen, enz.
7° de Vlinders, wier slurf de gedaante heeft eener dunne, soms vrij lange buis, waarmede zij de diepste honigbehouders kunnen ledigen, maar waarmede zij daarentegen geen stuifmeel kunnen nuttigen.

H. Müller heeft berekend in welke verhouding de verschillende insectengeroepen ieder der zeven bloemenklassen bezoeken. B. v. in de Alpen werden door H. Müller de bezoekers aangeteekend van 42 bloemen met blootliggende honig: die 42 soorten ontvingen te zamen 783 verschillende insectenbezoeken, nl.:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>89</td>
<td>474</td>
<td>198</td>
</tr>
<tr>
<td>bezoeken</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>van</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Bijen</td>
<td>Vlinders</td>
<td>Vliegen</td>
<td>andere insecten (1)</td>
</tr>
<tr>
<td>2,8 %</td>
<td>11,4 %</td>
<td>60,7 %</td>
<td>25,0 %</td>
</tr>
</tbody>
</table>

In de Alpen ontvingen 100 bijenbloemen, volgens Müller's waarnemingen, 792 bezoeken, nl.:

<table>
<thead>
<tr>
<th>Hommels (langtongige bijen)</th>
<th>341 bezoeken</th>
<th>43,0 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andere bijen</td>
<td>72</td>
<td>9,1 %</td>
</tr>
<tr>
<td>Vlinders</td>
<td>310</td>
<td>39,1 %</td>
</tr>
<tr>
<td>Andere insecten (1)</td>
<td>69</td>
<td>8,7 %</td>
</tr>
</tbody>
</table>

Uit de vergelijking dier twee tabellen blijkt, dat de bloemen met blootliggende honig vooral door insecten met korte monddeelen (60,7 + 25,0 = 85,7 %) bezocht worden, terwijl daarentegen de bijenbloemen, waar de honig veel moeilijker kan bereikt worden, vooral door insecten met langer monddeelen (43,0 + 39,1 = 82,1) bezocht worden.

Om nuttelooze herhalingen te vermijden zullen wij ons hier bij deze twee voorbeelden beperken. In verscheidende vroegere verhandelingen (2) hebben wij Müller's statistische tabellen, alsook de resultaten zijner berekeningen, uitvoerig besproken.

(1) Alle met korte monddeelen: Kevers, Graafwespen, enz.
(2) De bevruchting der bloemen door insecten (statistische beschouwing-
Door de toepassing zijner berekeningsmethode op de verschillende bloemenklassen heeft Müller bevonden dat, in 't algemeen, het getal der bezoekers met lange monddeelen aangroeit en het getal der bezoekers met korte monddeelen vermindert naarmate de honig dieper en volkomener verborgen is.

Door Müller wordt aangenomen dat de insectenbloemen, onder den invloed der natuurkeus, uit de windbloemen ontstaan zijn; onder de insectenbloemen zijn de bloemen met blootliggenden honig (en de Pollenbloemen) de oudste; daarna zijn de bloemen met half verborgen honig ontstaan; daarna de bloemen met verborgen honig (de klassen B en B'), de bijenbloemen en eindelijk de Vlinderbloemen. De insectenbloemen vertonen ons dus eene reeks van vormen die ons van de eenvoudige bloemen met blootliggenden honig tot de nauwe diepe vlinderbloemen leiden, en waarin de honig dieper en dieper verborgen wordt. Wij kunnen gemakkelijk begrijpen op welke wijze de lagere insectenbloemen (de klassen Po en A) uit de Windbloemen gesproten zijn: wij weten immers dat de bestuiving door den wind met een enorm verlies aan stuifmeel gepaard gaat, terwijl dit verlies veel geringer is wanneer het stuifmeel door insecten overgebracht wordt. Windbloemen worden somwijlen toevallig bezocht door insecten, die door het stuifmeel aangelokt worden, en die aldus, nu en dan, wanneer zij van de eene bloem naar de andere vliegen, bevruchting kunnen bewerkstelligen.

Statistische beschouwingen omtrent de bevruchting der bloemen door insecten, met 3 platen. — Botanisch Jaarboek, eerste jaargang, 1889, bladz. 19-90 (mit deutschem Resumé).

De Pyreneënbloemen en hare bevruchting door insecten, eene bijdrage tot de bloemengeographie (avec un résumé en langue française), 226 bladz. met 5 dubbele platen. — Botan. Jaarb. 1891, derde jaargang.
Het ligt nu voor de hand dat ieder kleine verandering der windbloemen, waardoor het insectenbezoek aan die bloemen bevorderd werd, een gunstigen invloed moest hebben op de bevruchting, en dus van de eene generatie tot de andere moest opgehoopt worden, onder den invloed der natuurkeus. Op die wijze werden de bloembekleedsels groter en fraaier gekleurd; er onstonden geurende stoffen in de bloemen, er werd honig afgescheiden; het stuifmeel dat bij de windbloemen droog en poederig was, werd nu kleverig en vochtig, waardoor het gemakkelijker door insecten kon overgebracht worden, en aldus werden een zeker aantal windbloemen trapsgewijze in insectenbloemen veranderd. Die eerste insectenbloemen hebben er als het ware naar gestreefd haren honig steeds dieper te verbergen; aldus werd die vloeistof tegen de gulzigheid der insecten met korte monddeelen beschut, en bewaard voor insecten met langere monddeelen. Men begrijpt gemakkelijk welk voordeel de planten daarbij vonden, wanneer men bedenkt dat de bloemenbezoekende insecten met lange monddeelen (Syrphiden enz., Bijen en Vlinders) uitsluitend met bloemenvoedsel leven en in hun bloemenbezoek meer bedrijvigheid en standvastigheid aan den dag leggen dan de bloemenbezoekers met korte mondwerk- tuigen (Kevers, Musciden enz.), die in vele gevallen slechts bij gelegenheid honig of stuifmeel nuttigen, in hun bloemen- arbeid ongestadig zijn (1), en dus met minder zekerheid het stuifmeel overbrengen. Daarom werd iedere verandering in den bouw der bloemen, waardoor de honig volkomeener verborgen werd, in den strijd voor het bestaan behouden en door de natuurkeus opgehoopt. De honig, die bij de eerste insecten-

(1) B. v. sommige vliegen, zooals Scatophaga merdaria, die in onze weiden bloemen van Bellis, Taraxacum, enz. bezoekt, en zich daarna, met evenveel welgevallen, op uitwerpseilen van runders nederlaat.
bloemen bloot lag, werd allengs half verborgen, daarna volkomen verborgen, en eindelijk kwamen de bijenbloemen en de vlinderbloemen tot stand.

En naarmate, in de bloemen, de honig dieper en dieper verborgen werd, *evoluëerden* de bloemenbezoekende insecten op een overeenkomstige wijze: de monddeelen werden langer, de zintuigen scherper, en de behendigheid bij het uitbuiten van bloemen werd groter. Door de natuurkeus werden de insecten steeds beter uitgerust om den steeds dieper verborgen honig der bloemen te bereiken. Indien wij de hoo!gervermelde insectengroepen rangschikken naar de toenemende lengte der slurf, verkrijgen wij de volgende reeks:

1° Monddeelen kort: bloemenbezoekende Coleopteren, de meeste Dipteren, Hymenopteren uitgenomen de Bijen, en alle bloemenbezoekende Orthopteren en Neuropteren.

2° Lengte der monddeelen middelmatig: de korttongige Bijen; — onder de Dipteren de Syrphiden, Conopiden en Bombyliden.

3° Monddeelen lang (6 mill. of meer) of zeer lang: Langtongige Bijen en Vlinders (1).

(1) De aanpassingen der bloemenbezoekende insecten werden door Müller o. a. in de volgende verhandelingen uitvoerig besproken:

On the fertil. of flowers by insects and on the recipr. adapt. of both; — Nature, VIII-XVI.

Die Bedeutung der Honigbiene für unsere Blumen. — Eichstädtter Bienenzüchter, 1875. — Nature, XIII.

De insectenbloemen en de bloemenbezoekende insecten vormen aldus twee reeksen, die zich als het ware hand in hand door wederkerige aanpassing ontwikkeld hebben.

In zijn boek over de Alpenbloemen heeft H. Müller daarenboven eene vergelijking gemaakt tusschen de Zwitserse Alpen en het Duitsche laagland (in 't bijzonder Westfalen) uit het oogpunt der wederkerige betrekkingen tusschen bloemen en insecten. Uit zijn onderzoekingen is gebleken dat sommige verschillen in de biologische kenmerken der bloemenwereld van de beide genoemde streken gepaard gaan met overeenkomstige verschillen in de samenstelling der insectenfauna.

In de Alpen, vooral in het hooggebergte, komen bloemen met blootliggenden of bijna blootliggenden honig (witte Alsi-neën, witte, gele en gespikkelde Saxifraga-soorten) overvloedig voor, en dit gaat hand in hand met den buitengewonen rijkdom aan Dipteren met korte monddeelen (Musciden, enz.) waardoor de Alpen gekenschetst zijn.

bouw en in haar insectenbezoek, de kenmerken der vlinder-
bloemen duidelijk vertoonden.

Volgens Müller hebben de Alpenbloemen in 't algemeen,
evenzeer als de bloemen uit het laagland, de hulp der
insecten tot hare bevruchting nodig; soorten, die zonder de
tusschenkomst van insecten onvruchtbaar blijven, zijn in de
Alpen ten minste zoo talrijk als in het laagland.

Delpino had reeds vroeger gewezen op de betrekkingen die
estaan tusschen de verspreiding van sommige planten en de
verspreiding der insecten die haar bevruchten. Müller heeft
dit nieuw gezichtspunt verruimd: hij heeft, door zijne verge-
lijking tusschen de Alpen en het Duitsche laagland, bewezen
dat de insectenfauna eener streek op de geheele bloemenflora
derzelfde streek haren stempel drukt, — evenals de droogte,
de temperatuur, de samenstelling van den grond en andere uit-
wendige omstandigheden op den plantengoei, in ieder gewest,
een diepen invloed oefenen. Door zijn werk over de Alpen-
bloemen heeft Müller aldus voor de botanische aardrijkskunde
een nieuwe baan gebroken.

Het is onmogelijk hier een volledig overzicht te geven der
talrijke boeken en verhandelingen, die in de laatste jaren
over bloemenbiologie verschenen zijn. De lijst der titels zou
alleen een geheel boekdeel beslaan! (1) Wij zijn daarom
genoodzaakt een keus te doen.

(1) Zie 1° de bibliograppische lijst tot 1883, in H. Müller, fertilisation
of flowers, translated by d'Arcy W. Thompson. London, Mac Millan and
Co, 1883. — 2° Lijst van boeken, verhandelingen, enz., omtrent de bevruch-
ting der bloemen van 1883 tot 1889 verschenen (vervolg op de lijst door
d'Arcy W. Thompson in 1883 uitgegeven) met een bijvoegsel en een
alphabetisch repertorium der plantennamen; Bot. Jaarb. II, 1889, blz. 195-
254. Gent, J. Vuylsteke.

Die beide lijsten bevatten te zamen circa (825+ 638) 1463 titels, en
sedert 1889 zijn er nog een groot aantal verhandelingen bijgekomen.
Verscheidene honderden verhandelingen werden uitsluitend of bijna uitsluitend gewijd aan de beschrijving van het bestuivingsmechanisme van bloemen uit een groot aantal plantenfamilies. Daardoor is de biologie der bloem bij de meeste centraal-Europese planten bekend geworden; ook vele uitheemsche soorten werden reeds in dit opzicht beschreven, o.a. door Robertson (Vereenigde Staten van Noord-Amerika), door Scott-Elliott (Zuid-Afrika), door Burck (Java), door Fritz Müller (Zuid-Braziliië), door Warming (Groenland), — en door andere schrijvers, die de bloemen van uitheemsche planten vooral in onze broeikassen en in onze tuinen hebben bestudeerd (1). Maar ondanks de enorme som arbeid, die sedert een twintigtal jaren aan de bloemenbiologie werd besteed, is het bestuivingsmechanisme van verreweg het grootste gedeelte der phanerogamen in zijn details nog onbekend.

Een bijzondere melding verdienen de onderzoekingen van Schulz (2): deze schrijver heeft zich niet alleen verdienstelijk gemaakt door de aanzienlijke massa bouwstoffen die hij heeft bijeengebracht, en door zijn algemeene beschouwingen over de bestuiving van een aantal families, maar ook door de aandacht te vestigen op de veranderlijkheid der bloemconstructie bij vele centraal-Europese planensoorten, en op het feit dat, ook in centraal-Europa, talrijke planten regelmatig zelfbevrucht worden.

Kirchner heeft, in zijn Flora van Stuttgart (3), behalve

(1) Zie over deze en andere onderzoekingen ons werk over de Pyreneeënbloemen, Bot. Jaarb. 1891.
(3) Dr. O Kirchner, Flora von Stuttgart und Umgebung. — Stuttgart, Eugen Ulmer, 1888.
de gewone beschrijving der planten, voor iedere soort de beschrijving van het bevruchtingsmechanisme der bloemgegeven. Mocht dit goede voorbeeld door alle floristen gevolgd worden! Het is waarlijk verbazend dat zelfs in de beste flora's, gewichtige biologische bijzonderheden (zoals b. v. de heterostylie, het trimorphisme der bloemen, enz.) met stilzwijgen voorbijgegaan worden, terwijl b. v. de vorm der bladschijf en andere kenmerken, die betrekkelijk weinig wetenschappelijk belang opleveren, en daarenboven in vele gevallen veranderlijk zijn, tot in de kleinste bijzonderheden beschreven worden.

In het beschrijvend gedeelte dezer verhandeling zullen wij de gelegenheid hebben om nog vele andere bloemenbiologische werken te vermelden.

Minder aandacht dan aan de bloemen werd aan de bloemenbezoekende insecten verleend.

Dit moet wellicht toegeschreven worden aan de omstandigheid, dat de zoologen, die hier het meest diensten hadden kunnen bewijzen, tot nog toe aan H. Müller's werken weinig aandacht hebben geschonken.

In eene vroegere verhandeling (1) hebben wij gesproken over de merkwaardige onderzoekingen van Loew (2); deze schrijver heeft het bloemenbezoek der insecten bestudeerd in den plantentuin te Berlijn, alwaar talrijke gewassen, uit de meest verschillende streken (voornamelijk uit Europa, Sibérie, China, Japan, Noord-Amerika en het Middellandsch-Oostersch Gebied), in den open grond gekweekt worden en tot

een samengeraapte mengsel vereenigd zijn, terwijl de bezoekers gewone insecten der Duitsche fauna zijn. Evenals Müller heeft Loew de waargenomen bezoeken tot overzichtstabellen vereenigd, en opgeteld hoeveel bezoeken door iedere insectengroep aan de verschillende bloemenklassen gebracht worden. Op het kunstmatig onderzoeksterrein, waar Loew zijne waarnemingen heeft gedaan, bevonden zich de insecten tegenover vele bloemen, die zij nooit te voren gezien hadden, daar zij tot de Duische flora niet behooren; zij konden dus in hunne bloemenkeus niet geleid worden door de (aangeërfde) kennis van iedere bloemensoort in het bijzonder, noch door de gewoonte, maar uitsluitend door de kleuren, de geuren en de gedaante der bloemen. Ondanks die ongewone, kunstmatige verhouding, waarin de bezoekers zich tot de bloemen bevonden, voldeed de bloemenkeus der insecten in hoofdzaak aan Müller's wetten (zie hooger, blz. 218, reg. 1). Die overeenkomst tusschen de resultaten in de kunstmatige bloemenwereld van den Berlijnschen plantentuin verkregen, en de uitkomsten door Müller in het open veld bekomen, heeft Loew op eene zeer aanschouwelijke wijze voorgesteld: hij heeft de tabellen, waarin de resultaten zijner eigene onderzoekingen samengevat zijn, geplaatst naast tabellen van deszelfden aard, die hij opgemaakt heeft bij middel van de bouwstoffen die Müller in Duitschland heeft verzameld. Een aantal zijner vergelijkningstabellen hebben wij in onze hooger vermelde verhandeling overgenomen en besproken. Uit de algemeene overeenkomst tusschen de tabellen van Loew en die van Müller is gebleken, dat de verkregen resultaten betreffende de bloemenkeus der insecten werkelijk de uitdrukking zijn van bestaande natuurwetten, en niet van toevallige omstandigheden afhangen.

Loew heeft daarenboven Müller's rangschikking der bloemenbezoekende insecten en der bloemen gewijzigd en ver-
beterd. Hij verdeelt de bloemenbezoekende insecten in drie groepen:

2° *de hemitrope insecten*: de aanpassing tot den bloemenarbeid is volkomener, de monddeelen zijn middelmatig of lang. Tot deze groep behoren a) *de korttongige bijen* (*Andrena, Halictus, Sphecodes*, enz.); — b) een zeker aantal *Dipteren*, nl. de Syrphiden, Conopiden en Bombyliden; — c) *de Lepidopteren*, uitgenomen de Sphingiden.

3° *de eutrope insecten*, die voor den bloemenarbeid volkomen geschikt zijn. De monddeelen zijn lang of zeer lang. Hiertoe behoren: a) *de langtongige bijen*, d. w. z. de bijen wier slurf een lengte van ten minste 6 mill. bereikt (*Apis; Bombus, Anthophora*, enz.); — b) *de Sphingiden*.

Op een overeenkomstige wijze worden de bloemen in drie klassen verdeeld:

1° *de allotrope bloemen*, die tot korttongige (allotrope) bezoekers van gemengden aard aangepast zijn. Deze klasse bevat de *bloemen met blootliggenden honig* (A), met *half-verborgen honig* (AB), en de *pollenbloemen* (Po).

2° *de hemitrope bloemen*, die onvolkomen aangepast zijn tot bezoekers met monddeelen van middelmatige lengte. Tot deze klasse behoren de *bloemen met volkomen verborgen honig* (B en B')

3° *de eutrope bloemen*, die meer of minder uitsluitend voor eene bepaalde groep van langtongige (eutrope) bezoekers geschikt zijn. Hiertoe behoren de *bijenbloemen* (Bb) en de *vlinderbloemen* (Vb).
Wij hebben zelve, in de hoogergemelde verhandeling (1), de berekeningsmethode, door Müller en door Loew gevolgd, aan een critische studie onderworpen en eenigszins gewijzigd, ten einde aan de resultaten meer zekerheid te geven. De door ons voorgestelde statistische methode hebben wij de graphische methode genoemd: zij werd naderhand, door Loew zelf (2) en door Heinsius (3) toegepast op de studie van nieuwe reeksen van waarnemingen.

Wij achten het onnodig hier over dit onderwerp verder uit te weiden: al de genoemde werken hebben immers bijgedragen om Müller's theorie omtrent de wederkeerige betrekkingen tusschen bloemen en insecten in hoofdzaak te bevestigen.

**

De vergelijkende studie der betrekkingen tusschen bloemen en insecten in verschillende streken, m. a. w. de bloemengeographie, heeft eveneens enkele beoefenaren gevonden.

Loew (4) heeft, behalve zijne waarnemingen in den plantentuin te Berlijn, een groot aantal bloemenbezoeken waargenomen in het Duitsch laagland (Mark Brandenburg, Neu Brandenburg, Mecklenburg), in het middelgebergte (Harz, Brunswijk, Oostenrijksch Schlesien met het Altvatergebergte,

(2) Loew, Beiträge zur blütenbiologische Statistik. — Abhandl. des bot. Ver. der Prov. Brandenburg, XXXI. — In deze verhandeling werden nieuwe lijsten van insectenbezoeken gegeven en statistisch bestudeerd. De waarnemingen werden gedaan door Loew in verschillende deelen van Duitschland, van Oostenrijk en van Zwitserland. Er werd ook gebruik gemaakt van de waarnemingen van Lindmann in Noorwegen (Dovrefjeld), van aurivillius in Groenland, enz.,
(3) Heinsius, Eenige waarnemingen en beschouwingen over de bestuiving van bloemen der Nederlandsche flora door insecten, met 12 platen. — Bot. Jaarb. IV. 1892, blz. 54-144. — De insectenbezoeken werden waargenomen in Nederland, door Heinsius en door Hugo de Vries.
(4) Loew, Beiträge, enz. Zie hooger, Nota 2.

In onze verhandeling over de Pyreneënbloemen hebben wij reeds de voornaamste werken over de bloemengeographie geciteerd, en den korten inhoud ervan medegedeeld. Wij hebben zelven in de Hooge Pyreneën (Départements des hautes Pyrénées), in Augustus 1889 en in Juni 1890, nagenoeg 2000 insectenbezoeken, aan 262 bloemensoorten, waargenomen. Bij middel van die bouwstoffen en van Müller's werk over de Alpenbloemen hebben wij eene vergelijking gemaakt tussen de bevruchting der bloemen in de Pyreneën en in de Alpen.

De resultaten dier vergelijking kunnen samengevat worden als volgt:

1° Met betrekking tot den invloed der hoogte boven den zeespiegel op de relatieve getalsterkte der verschillende insectengroepen:

 a) In de Alpen worden de Lepidopteren met toenemende hoogte betrekkelijk talrijker; dit is in de Pyreneën twijfelachtig.

 b) In de Alpen worden de Coleopteren in 't algemeen met toenemende hoogte minder talrijk; dit is eveneens in de Pyreneën het geval.

 c) In de Alpen worden de Allotrope Dipteren met toenemende hoogte betrekkelijk talrijker; dit is ook in de Pyreneën het geval.

 d) In de Pyreneën worden de Hemitrope Dipteren, evenals in de Alpen, met toenemende hoogte minder talrijk.

 e) De Allotrope Hymenopteren worden, in de Pyreneën evenals in de Alpen, met toenemende hoogte minder talrijk.

 f) In de Pyreneën is de invloed der hoogte op het relatief getal der Hemitrope Hymenopteren (Korttongige Bijen) niet duidelijk. In de Alpen worden de genoemde insecten met toenemende hoogte betrekkelijk minder talrijk.
In de Pyreneeën worden de niet sociale langtongige bijen (Osmia, Anthophora, Eucera, enz.) betrekkelijk minder talrijk naarmate men hooger in het gebergte klimt: dit is ook in de Alpen het geval. De Hommels (Bombus en Psithyrus) worden in de Alpen met toenemende hooge betrekkelijk talrijker: dit schijnt ook in de Pyreneeën, ofschoon in geringe mate, het geval te zijn.

2° Met betrekking tot de samenstelling der insectenfauna in de Pyreneeën:

a) De Alpen zijn buitengewoon rijk aan Lepidopteren, de Pyreneeën daarentegen niet.

b) De Pyreneeën zijn veel rijker dan de Alpen aan Coleopteren, aan Allotrope Hymenopteren, aan Hemitrope Hymenopteren en aan Allotrope Dipteren.

c) De entrope Hymenopteren (langtongige Bijen) schijnen in de beide bergketens nagenoeg even sterk vertegenwoordigd te zijn. In de beide streken zijn de Hommels talrijk, de niet-sociale soorten schaarsch.

d) De Hemitrope Dipteren zijn in de Alpen en in de Pyreneeën nagenoeg even talrijk.

3° Met betrekking tot den relatieven rijkdom aan soorten der verschillende bloemenklassen:

a) De Allotrope bloemen (de klassen Po, A, en AB) zijn in de Pyreneeën betrekkelijk talrijker dan in de Alpen; wij hebben hooger gezien dat de Pyreneeën betrekkelijk rijker zijn aan allotrope insecten (Coleopteren, allotrope Dipteren en Hymenopteren) dan de Alpen.

b) De Pyreneeën zijn veel armer aan Vlinderbloemen dan de Alpen; wij weten, van den anderen kant, dat in de Pyreneeën veel minder Vlinders voorkomen dan in de Alpen.

c) De Hemitrope bloemen (de klassen B en B') zijn in de Pyreneeën een weinig minder talrijk dan in de Alpen, terwijl de Hemitrope insecten in de Pyreneeën een weinig talrijker zijn dan in de Alpen.

d) De bijenbloemen zijn, evenals de langtongige Bijen, in de Pyreneeën nagenoeg even talrijk als in de Alpen.

De betrekkelijke getalsterkte der verschillende bloemenklassen in de Alpen en in de Pyreneeën is dus in zekere mate afhankelijk van de getalsterkte der overeenkomstige insectengroepen, in dezelfde streken.
C. Verhoeff (1), Alfken (2) en vooral P. Knuth (3) hebben zeer belangrijke waarnemingen gedaan over de bevruchting der bloemen op Norderney, Sylt, Juist en andere Noordzee-eilanden. Zij hebben de genoemde eilanden met het naburige vasteland vergeleken: de resultaten dier vergelijking zijn in het aangehaald opstel van Knuth (3) geresumeerd, en zijn dus de lezers van dit Jaarboek reeds bekend.

Knuth heeft daarenboven de bevruchting van vele bloemen op het eiland Capri (4) bestudeerd; hij heeft o. a. bevonden dat, op dit eiland, de bloemenbezoekende insecten veel minder talrijk zijn dan op het Napolitaansche vasteland.

(1) Verhoeff, Biologische Beobachtungen auf der ostfriesischen Insel Norderney über Beziehungen zwischen Blumen und Insecten. — Abhandl. herausg. vom Naturw. Ver. in Bremen, 1891, Bd. XII, Heft 1, blz. 65-88.
(6) Robertson, een aantal artikels in de botanical gazette.
Robertson heeft de bezoekers van vele Noord-Amerikaanse planten waargenomen, en in sommige gevallen vergelijkingen gemaakt tusschen het insectenbezoek aan dezelfde plantensoort, in Amerika en in Europa. Dezelfde geleerde heeft een aantal Amerikaansche bloemenbezoekende insecten beschreven (1).

Door zijne merkwaardige biologische onderzoekingen omtrent de bevruchting van bloemen in Nederlandsch-Indië (Buitenzorg, op Java) heeft Burck (2) niet alleen belangrijke nieuwe feiten bekend gemaakt; hij heeft daarenboven aange- toond, welke grootsche resultaten de wetenschap mag te gemoet zien, wanneer biologische studien in de tropische gewesten eenmaal op groote schaal zullen ondernomen worden.

Burck heeft onder andere eene plant beschreven, waarvan de bloemen door eene Vleermuis bevrucht worden. Wij laten hier zijne beschrijving in extenso volgen (zie : "s Lands plantentuin te Buitenzorg"); — Batavia, Landsdrukkerij, 1892. Blz. 67-68):

"Het is eene Freycinetia — een Pandanacea —, die tot de hoogste takken van haren steunboom opklimt en die meermalen in 't jaar, eene menigte groote, zacht rose-roode bloemen draagt, die levendig tusschen de lange, smalle, donkergroene bladeren te voorschijn

(2) Behalve de werken, die wij reeds in onze hooger aangehaalde bibliographische lijst vermeld hebben, citeeren wij nog de volgende verhandelingen van dezen schijver :

Ueber Cleistogamie im weiteren Sinne und das Knight-Darwin'sche Gesetz., in Annales du Jardin Botanique de Buitenzorg, VIII, blz. 122-164 met Pl. XX — XXIII.

Eenige bedenkingen tegen de theorie van Weissmann aangaande de beteekenis der sexuele voortplanting in verband met de wet van Knight-Darwin. Natuurkundig tijdschrift voor Ned. Indië, deel XLIX; overgedrukt in het Botanisch Jaarboek, III, 1891.
komen. Vele dezer bloemen vinden wij afgevallen op den grond aan
den voet van den steunboom en wanneer wij ons de moeite willen
geven eenige daarvan, van verschillende boomen afkomstig, op te
rapen, dan zien wij reeds dadelijk, dat de eene plant uitsluitend
mannelijke en de andere vrouwelijke bloemen draagt, maar tevens
valt het ons op dat de 3 binnenste gekleurde bladorganen, die hier
de rol van bloembladen vervullen, bij alle afgevallen bloemen tot
aan den voet zijn afgevallen. Het is de vleermuis *Pteropus edulis* —
Kalong — die bij het vallen van den avond deze verwoesting te
weegbrengt. Toch is het niet zonder nut, dat de kalong deze vleezige
min of meer aangenaam zuur smakende bloemdeelen afvreet en zelfs
is het van buitengewoon veel voordeel voor de plant, want de vleermuis,
bezij zijnde om uit eene mannelijke bloem de bladorganen op
te vreten, verzamelt te gelijk en onwillekeurig op haren behaarden
kop het stuifmeel uit de meeldraden en wanneer zij dan een oogen-
blik daarna eene vrouwelijke plant bezoekt, brengt zij onvermijde-
lijk het zooveel ingezamelde stuifmeel op de stempels der vrouw-
elijke bloemen over. Zoolang nog niet is gebleken, dat ook op andere
wijze het stuifmeel van de eene plant wordt overgebracht naar de
vrouwelijke bloemen van de andere, zoolang moet worden aangenom-
men dat de schijnbare verwoesting door den kalong teweeggebracht
van overwegend belang is voor de plant zelve en dat zelfs de genoemde
Freycinetia in haar voortbestaan afhankelijk is van de vleermuis

De bedoelde *Freycinetia* is, zooveel wij weten, de eerste vleermui-
zenbloem die in de literatuur vermeld wordt. Bij deze plant zijn het
de kroonbladen, die tot lokaas voor de bezoekers dienen. Fritz
Müller (Kosmos, 1886, I, blz. 93-98) heeft in Brazilië een voorbeeld
(*Feijoa*) van gelijken aard beschreven, maar hier zijn het vogels die
de kroonbladen afvreten en de bloemen bevruchten.

In de laatste jaren werden de gevolgen van zelf- en kruisbevruchting in het plantenrijk door verscheidene botanici
bestudeerd, en aldus werden belangrijke bijdragen geleverd
tot de kennis der wet van *Knight-Darwin*.

Anna Bateson (1) heeft de gevolgen van zelf- en kruisbe-

vruchting onderzocht bij drie plantensoorten met kleine, weinig in 't oog springende bloempjes, nl. *Senecio vulgaris*, *Capsella bursa-pastoris* en *Stellaria media*. Bij *Senecio vulgaris* brachten twee zelfbevruchte hoofdjes (1) 69 rijpe vruchtjes voort, terwijl 42 vruchtjes mislukt waren; twee kruisbevruchte hoofdjes droegen 125 goede zaden en 8 mislukte. De kruisbevruchte zaden konden iets vroeger dan de zelfbevruchte, maar zij gaven het aanzijn aan plantjes, die meestal hooger en vruchtbaarder (in de verhouding 100 : 73) waren dan de planten, die uit zelfbevruchte zaden gesproten waren. Bij *Capsella bursa-pastoris* was er tusschen de zelfen de kruisbevruchte nakomelingen weinig verschil te bespeuren, uitgenomen wat het gewicht betreft (kruisbevruchte : zelfbevruchte = 100 : 88). Bij *Stellaria media* bevatten de zelfbevruchte zaaddoozen gemiddeld 10, de kruisbevruchte zaaddoozen gemiddeld 8 (dus minder) zaden; de kruisbevruchte zaailingen waren gemiddeld groter en wogen zwaarder (in de verhouding 100 : 91) dan de zelfbevruchte. Bij de drie genoemde planten is kruisbevruchting dus voordeeliger dan zelfbevruchtung, maar niet in gelijke mate bij de drie soorten, en over 't algemeen is het voordeel geringer dan bij planten met groote, gekleurde, honigrijke bloemen.

Focke (2) heeft bevonden dat *Lilium croceum* (in Noord-West-Duitschland) niet alleen zelfonvruchtbaar is, maar dat zelfs kruising tusschen exemplaren, die van dezelfde plaats afkomstig zijn, zonder gevolg blijft. Alleen door kruising

(1) Zie de nota (1), blz. 181.

tusschen exemplaren van verschillende groeiplaatsen (b.v. Papenburg en Bremen) werd goed zaad bekomen. Een resultaat van gelijken aard werd met L. Davuricum verkregen. Bij L. Buchenavii is de vruchtbaarheid volkomener met stuifmeel van L. croceum dan met eigen stuifmeel.

Beal (1) heeft Maïsplanten bevrucht met stuifmeel van exemplaren van dezelfde varietéit, die op een afstand van honderd mijlen gegroeid waren: daardoor werd de vruchtbaarheid aanmerkelijk vermeerderd.

Wilson (2) heeft bij Wachendorfia paniculata een zeer eigenaardig geval van dimorphisme ontdekt. De genoemde plant komt in tweeërlei exemplaren voor: bij de eene is de stijl naar den rechterkant omgebogen, bij de andere naar den linker. Er werd geen enkel zaad verkregen met 43 bloemen die bevrucht werden met stuifmeel van hetzelfde exemplaar. Andere proeven schenen te bewijzen, dat kruisbevruchting tusschen bloemen van verschillend type het voordeeligst is.

Wilson (3) heeft ook zeer belangrijke onderzoekingen gedaan over de bevruchting van sommige Albuca-soorten. Bij Albuca corymbosa Baker (Kaapland) is spontane zelfbestui-

(1) Beal, W. J., Experiments in cross-breeding Indian Corn with flowers of the same variety, the seed of which was raised one hundred miles away. — Amer. Journ. of science and arts, 3rd series, XXIV, New-Haven, 1882, blz. 452.

ving door den stand der meeldraden uitgesloten. Kunstmatige zelfbevruchting blijft schier altijd zonder gevolg, terwijl kruising tusschen verschillende planten in de meeste gevallen goede zaden voortbrengt. *Albuca fastigiata* is met stuijsmeel van dezelfde plant onvruchtbaar, met pollen van *A. corymbosa* daarentegen volkomen fertiel. De laatstgenoemde soort bleef echter steriel, wanneer zij met stuijsmeel van *A. fastigiata* bevucht werd! De bastaard *fastigiata ♀ × corymbosa ♂* is zeer krachtig en vruchtbaar.

De resultaten der proefnemingen van Focke, Beal en Wilson strooken volkomen met de hooger aangehaalde meening van *Darwin* (zie hooger, blz. 186) « dat de goede gevolgen der kruisbevruchting niet moeten toegeschreven worden aan de bloote kruising van twee individuen, maar aan verschillen in de constitutie der gekruiste planten. »

**

Terwijl de bloemenbiologie, door talrijke ontdekkingen, meer en meer uitbreiding nam, werd van een andere zijde een nieuwe hypothese vooruitgezet, waardoor nieuw licht op de verklaring der bloemenconstructies en op de geheele bloementheorie geworpen werd.

Wij hebben hooger gezien dat de wet van *Knight-Darwin*, zooals zij door Darwin geformuleerd werd (zie hooger, blz. 176) niet volkomen strookt met alle bekende feiten, en voor de verklaring der bloemenconstructies geen voldoenden grondslag oplevert.

De goede gevolgen der kruising en de slechte gevolgen der zelfbevruchting vertoonen niet bij alle plantensoorten een even sterken graad; — bij een en dezelfde plantensoort worden in dit opzicht aanzienlijke individuele verschillen waargenomen; — in sommige gevallen zijn de gevolgen der zelfbevruchting beter dan die der kruising (zie hooger, blz. 184, *Pismu*); — somwijlen hebben uitwendige omstandigheden een invloed op de gevolgen der bestuiving (zie
hooger, blz. 174, Passiflora); — er zijn thans een aantal planten bekend, die zich gedurende talloze successieve generaties uitsluitend door zelfbevruchting (of door vegetatieve vermeerdering) voortplanten, zonder daarom eenige teekens van verzwakking te vertoonen (Myrmecodia, Illecebrum verticillatum, sommige Mossen, enz.); — in vele opengaande bloemen is de zelfbevruchting beter verzekerd dan de kruisbevruchting (Samolus Valerandi, Stellaria media var. apetala, enz. enz.).

Al die feiten dwingen ons voor de verklaring der bloemenconstructies andere grondslagen te zoeken dan de hoogerge noemde wet. Wij mogen, naar ’t voorbeeld van H. Müller, alleen aannemen dat zelfbevruchte planten na korteren of langeren tijd bezwijken wanneer zij, in den strijd voor het bestaan, tegenover kruisbevruchte exemplaren derzelfde plant geplaatst worden (zie hooger, blz. 210); — en de aldus beperkte stelling zelve is, naar onze meening, voor ernstige tegenwerpingen vatbaar.

Een nieuw gezichtspunt werd echter voor de bloemenbiologie geopend door de theorie van Weismann (1) aangaande de oorzaken der veranderlijkheid (der erfelijke individuele verschillen), en het is vooral door Burck dat de aandacht der bloemenbiologen op deze theorie werd geroepen.

Tot vóór weinige jaren werd aangenomen, dat alle wijzigingen die het individu tijdens zijn leven kon verkrijgen, ten gevolge van het gebruik of niet gebruik van organen, van gewoonte en oefening, van slechtere of betere voeding, enz. op de nakomelingen konden overgaan, en dat derhalve de

verschillende voorwaarden waaronder de individuen leefden (klimaat, enz.) de eigenlijke bron vormden voor de vele variaties, die bij de afstammelingen vielen op te merken. De teeltkeus zoekt uit al deze variaties de individuen uit, die afwijkingen vertoonden, welke het meest dienstig zijn voor de soort in verband met de condities waaronder zij leeft, en deze dienstige afwijkingen blijven door overerving op de volgende generaties behouden.

Weismann, hoogleeraar te Freiburg, heeft de feiten, die ten voordeele dier theorie aangehaald werden, aan een nauwgezet en critisch onderzoek onderworpen, en hij is daarbij tot het resultaat gekomen dat tot nu toe geen enkel goed geconstateerd feit bekend is, hetwelk als bewijs kan dienen voor de stelling, dat eenige door het individu tijdens het leven verkregen eigenschap op de nakomelingen is overgeërfd.

Weismann stelt zich voor dat de overerving hierop berust, dat van het werkzame en kenschetsende deel van de kiem, het kiemplasma, steeds een minimale hoeveelheid onveranderd blijft bij de ontwikkeling van kiem tot organisme, en dat deze rest dient om de basis te vormen van de kiemcellen (ecellen, stuifmeelkorrels, enz.), die op hare beurt aan nieuwe individuen (aan nakomelingen) het aanzijn zullen geven (1). Het kiemplasma blijft derhalve van generatie tot generatie behouden. Het vermogen van het kiemplasma, om zich tot een volkomen organisme te ontwikkelen, berust op zijne bijzondere, buitengewoon ingewikkelde moleculaire structuur.

De kiemcellen zijn dus — althans wat haar kenschetsend

(1) Met andere woorden, bij iedere geboorte wordt een gedeelte van het kiemplasma van het ei, waaruit het nieuw individu voortspruit, niet gebruikt om de weefsels van het nieuw individu op te bouwen, maar het blijft behouden om de kiemcellen der volgende generatie te vormen.
gedeelte, haar kiemplasma betreft — niet het product van het lichaam zelf, maar de kiemcellen der successieve generatiën staan tot elkander in dezelfde verhouding als een reeks van generatiën van eencellige organismen, welke door eenvoudige celdeelingen de een uit de andere gesproten zijn. Het kiemplasma wordt dus niet in elk individu opnieuw gevormd, maar is daar reeds als zoodanig voorhanden. Het staat derhalve buiten den invloed van de uitwendige voorwaarden waaronder het individu leeft, en zijn aard, zijne chemische samenstelling en moleculaire structuur worden door die voorwaarden niet in 't minst gewijzigd. Hieruit volgt dus natuurlijk dat alleen zulke kenmerken van de eene generatie op de andere overgaan, die reeds in het kiemplasma zijn opgesloten.

Wanneer men nu met Weismann aanneemt dat dit kiemplasma slechts uiterst moeilijk wijzigingen ondergaat, niettegenstaande het tot in het oneindige groeit en zich voedt, en dat zijne structuur gansch onafhankelijk is van het individu waarin het zich ophoudt, zoo vraagt men natuurlijk op welke wijze dan de variabiliteit tot stand komt, en waarom niet alle nakomelingen precies aan elkander en aan de ouders gelijk zijn.

Prof. Weismann meent nu, dat de grond voor de erfelijke individuele verschillen moet gezocht worden in de geslachtelijke voortplanting.

Gelijk bekend is berust deze op de vereeniging van de kernen van twee kiemcellen (eicel en stuifmeelkorrel) en daardoor ook van hare kiemplasma’s (eerste generatie), tot eene nieuwe kern met nieuw kiemplasma (tweede generatie). Beide kiemplasma’s (♂ en ♀) nu zijn de dragers der specifieke overervingstendenzen der beide individuen der eerste generatie, en uit hunne vereeniging ontstaat een kiemplasma, waarin deze beide tendenzen vereenigd voorkomen. Dit kiem-
plasma (tweede generatie) is dus iets nieuws; hetzelfde mengsel heeft nog niet bestaan.

De individuen der tweede generatie zullen dus onmogelijk eene getrouwe copie kunnen zijn van een der ouders: zij hebben eigenschappen van beiden.

In de derde generatie zijn, door de vermenging der kiemplasma’s, de overervingstendenzen vereenigd van twee individuen der tweede generatie. Het kiemplasma, waaruit deze gesproten zijn, was echter reeds samengesteld uit twee individueel verschillende soorten van kiemplasma, en derhalve bezit ieder individu der derde generatie eene samensmelting van vier verschillende overervingstendenzen.

In de vierde generatie zijn 8, in de vijfde 16,...... in de tiende reeds 1024 verschillende kiemplasma’s ieder met hun eigen overervingstendenzen in één kiem vereenigd, en daar dezelfde combinaaties van individueele eigenschappen nimmer meer herhaald worden, is het onmogelijk dat ooit weder een individu volmaakt identiek zij aan een zijner voorouders.

Zoo is dus volgens Weismann’s inzichten de sexueele voortplanting, waardoor de vereeniging van verschillende kiemplasma’s bewerkstelligd wordt, de bron voor het ontstaan van erfelijke individuele variaties (1).

(1) Tegen dit betoog is niets in te brengen — zoo schrijft Burck, loc. cit. —, wanneer wij slechts aannemen, dat de kiemplasma’s der eerste generatie, waarvan wij bij de beschouwing zijn uitgegaan, reeds van elkander verschillen door het bezit van individueele kenmerken. Zijn erfelijke verschillen eenmaal opgetreden, dan verklaart zich het overige van zelf. De meest verschillende combinaaties van individueele eigenschappen wisselen dan tot in het oneindige met elkander af.

Wanneer nu de condities, waaraan de organismen gedurende het leven zijn blootgesteld, slechts voorbijgaande (niet erfelijke) kenmerken te voor- schijn kunnen roepen, dan vraagt men natuurlijk op welke wijze erfelijke verschillen bij de individuen der eerste generatie zijn ontstaan.

Weismann zoekt den oorsprong der erfelijke individuele veranderlijk-
Weismann gaat nu zelfs zo ver het te voorschijn roepen der individuele variaties het eigenlijke doel te noemen der sexuele voortplanting. De parthenogenese leert, dat de ver-smelting van twee kiemplasma's in 't geheel niet noodig is voor de ontwikkeling van een individu. De sexuele voortplanting zou dus kunnen worden gemist, indien de natuur slechts over andere middelen te beschikken had om individuele variaties op te wekken.

Volgens Weismann's meening geeft dan ook de ongeslachtelijke voortplanting (alsook de voortplanting uit onbevruchte eieren) slechts nakomelingen, die juist dezelfde erfelijke individuele eigenschappen bezitten als het individu waaruit zij gesproten zijn reeds bezat; dezelfde individuele verschillen herhalen zich door alle generaties heen. De nakomelingen missen het vermogen zich hierboven te verheffen en te varieeren in eenige andere richting dan de voorouders, en toch kan dit dringend noodzakelijk worden voor het voortbestaan van de soort.

Bij de steeds veranderende omstandigheden, bij de wisselende uitwendige invloeden, waaraan ieder soort is blootgesteld, is het een onmisbare voorwaarde voor haar behoud, dat hare individuen niet alleen het vermogen bezitten om

heid bij de eencellige organismen. Bij deze bestaat nog geen onderscheid tusschen lichaamscellen en kiemcellen; het is alles een, en zij vermenigvuldigen zich eenvoudig door deeling. Afwijkingen, te voorschijn geroepen door uitwendige invloeden, moeten derhalve hier wel op de nakomelingen worden overgeërfd, en dit is dus de bron voor de erfelijke verschillen bij de eencellige organismen die zich niet geslachtelijk vermeerderen.

Bij het optreden der geslachtelijke voortplanting bezat het kiemplasma van ieder individu reeds een onnoembaar aantal individuele eigenschappen (overervingstendenzen), en die eigenschappen welke door uitwendige invloeden te voorschijn geroepen waren, werden nu op de hooger aangeduide wijze gecombineerd, en zij werden de bron der erfelijke individuele verschillen voor eens en voor altijd.
binnen zeer ruime grenzen te varieeren, maar ook om bepaalde eigenschappen in eene bepaalde richting, die nuttig is voor de soort, verder te ontwikkelen en door combinatie nieuwe te doen ontstaan. Die richting zal in meerdere of mindere mate veranderen telkens de uitwendige invloeden zullen veranderen, en derhalve zullen telkens nieuwe behoeften ontstaan. In die behoeften aan erfelijke veranderlijkheid kan alleen door de sexueele voortplanting worden voorzien. Hieruit volgt dat alle planten of dieren die zich uitsluitend ongeslachtelijk (of parthenogenetisch) voortplanten, op weg zijn om uit te sterven. Volgens Weismann's meening worden in de natuur nergens groote groepen van soorten of geslachten aangetroffen, die zich ongeslachtelijk voortplanten.

In het hooger vermeld opstel, waaraan wij de hier gegeven uiteenzetting van Weismann's theorie hebben ontleend, heeft Burck erop gewezen, dat zeer veel dieren en zeker nog een groter aantal planten thans aan het langzaam uitsterven zouden zijn, wanneer er op geen andere wijze erfelijke individuele verschillen optraden dan bij de sexueele voortplanting.

Zooals natuurlijk is, zal de sexueele voortplanting slechts dan de gunstige gevolgen kunnen hebben, die Weismann zich daarvan voorstelt, wanneer de beide kiemplasma's die zich vereenigen, afkomstig zijn van twee verschillende individuen ieder met hun eigen overervingstendenzen, met andere woorden, wanneer kruisbevruchting plaats grijpt. Planten, wier bloemen uitsluitend zelfbevrucht worden, zullen zich derhalve in dezelfde voorwaarden bevinden als planten die zich ongeslachtelijk vermeerderen. En het is thans bekend dat bij vele planten zelfbevruchting uitsluitend of bijna uitsluitend gebeurt: er zouden derhalve een groot aantal planten weldra van de aarde verdwijnen.

Burck heeft tegen deze conclusie eenige zeer gegronde
bedenkingen gemaakt: hij heeft o. a. verscheidene planten beschreven (Myrmecodia, Unona, enz.) wier bloemen nooit opengaan, en die nochtans geen teekens van verzwakking vertoonen, en bij enkele dier planten schijnen zelfs erfelijke verschillen te zijn ontstaan nadat de bloemen opgehouden hadden open te gaan, — nadat derhalve alle kans op kruising verloren was.

Wij willen hier in 't midden laten of Weismann niet te ver gaat, waar hij de meening uitspreekt dat de sexueele voortplanting de eenige bron is voor het ontstaan der erfelijke variaties. Het is niet onwaarschijnlijk dat, ook bij veelcellige organismen (b. v. bij phanerogamen), uitwendige invloeden erfelijke afwijkingen kunnen te voorschijn roepen, maar in elk geval kan men niet betwisten dat kruising een der voor‐naamste oorzaken der erfelijke veranderlijkheid is.

Wij weten dat bij bastaarden en kruislingen de veranderlijkheid buitengewoon groot is, en het valt niet te betwijken dat in dit geval de variabiliteit opgewekt wordt door de vermenging der kenmerken der ouders, welke kenmerken op de meest verschillende wijzen gecombineerd worden. Er bestaat echter geen principieel verschil tusschen bastaarden, kruislingen, en gewone individuen welke door kruising van twee individuen derzelfde soort en der‐zelfde variëteit zijn ontstaan. Tusschen deze drie categorieën bestaat slechts een quantitatief verschil: een bastaard is gesproten uit twee ouders die tot verschillende soorten behooren, en waartusschen derhalve vrij groote verschillen bestaan; een kruisling wordt voortgebracht door ouders die tot verschillende variëteiten, maar tot een en dezelfde soort behooren, en derhalve minder van elkander verschillen dan de ouders van een bastaard; de ouders van een gewoon individu behooren tot een en dezelfde variëteit, en verschillen dus in nog mindere mate van elkander. Wanneer wij nu constateeren dat, in de beide eerste gevallen, aanzienlijke individuele verschillen bij de nakomelingen opgewekt worden door aanzienlijke verschillen bij de ouders, dan moeten wij aannemen dat ook in het derde geval, geringe verschillen tusschen de ouders even‐
eens bij de nakomelingen variabiliteit zullen veroorzaken, maar die variabiliteit zal geringer zijn.

Wanneer wij ons geheel losmaken van de overleveringen der vroegere wetenschap, en uitsluitend het moderne standpunt kiezen: wanneer wij de woorden soort en variëteit, bastaard en kruising gebruiken als de uitdrukking niet van absolute, maar van relatieve denkbeelden, dan kunnen wij reeds a priori aannemen dat de kruising van twee individuen van dezelfde variëteit bij de nakomelingen veranderlijkheid opwekt; — daardoor wordt echter geenszins bewezen dat kruising de eenige oorzaak der erfelijke variabiliteit is.

Het optreden van erfelijke individueele verschillen is in vele gevallen nuttig en zelfs onontbeerlijk, en die verschillen worden — althans zeer dikwijls — door kruising opgewekt. Wij begrijpen aldus waarom, bij vele planten, kruisbestuiving bevorderd wordt; — waarom iedere afwijking, die in staat is de kruising beter te verzekeren, in vele gevallen voor het ras nuttig is en van generatie tot generatie opgestapeld wordt. Zoo leeren wij de kruisbevruchting beschouwen als voordeelig, zelfs wanneer de rechtstreeksche voordeelen (aangroeiing der levenskracht, der vruchtbaarheid, enz.) daarvan zeer gering, nul of negatief zijn.

De theorie van Weismann opent aldus voor de bloembioïgie een nieuw gezichtspunt: zij leert ons dat de kruising op tweeërlei wijze kan voordeelig zijn, nl. 1° door de meerdere of mindere aangroeiing der levenskracht bij de nakomelingen (Knight-Darwin), en 2° door het opwekken van erfelijke individueele verschillen. In sommige gevallen zal het eerste der beide voordeelen verkregen worden, in andere gevallen het tweede, in andere gevallen eindelijk de beide tegelijk.

""

In zijn werk over het Darwinisme heeft Wallace aan de
bloemenbiologie eenige bladzijden gewijd, waarvan wij hier den korten inhoud willen geven (1).

Wallace geeft een beknopt overzicht van de voornaamste inrichtingen, die in een aantal bloemen kruising bevorderen (dichogamie, herkogamie;... heterostylie, enz.; constructie der Papilionaceeën, Orchidaceeën, Asclepiadaceeën, enz.). Het schijnt moeilijk te verklaren, waarom in zoovele gevallen ingewikkelde middelen gebruikt worden om kruisbevruchting te verzekeren, terwijl hetzelfde doel in andere gevallen op zulke eenvoudige wijze (b.v. door dichogamie) bereikt wordt. Een verklaring daarvan werd gegeven door H. Müller, wiens onderzoekingen over de insectenbloemen door Wallace geresumeerd worden. Daarna wordt eene paragraaf gewijd aan de bevruchting van bloemen door vogels, en eindelijk wordt gehandeld over Darwin's onderzoekingen, die op de bloemenbiologie, en voornamelijk op de kruisbevruchting, helder licht hebben geworpen.

Er zijn echter een aantal andere feiten bekend waaruit schijnt te blijken dat bij vele planten kruising nutteloos is: vele soorten vertoonen bijzondere inrichtingen waardoor zelfbevruchting verzekerd wordt; in andere bloemen, die nooit opengaan, wordt kruising volkomen vermeden. Sommige planten, die ingericht zijn om door insecten bevrucht te worden, ondergaan bijna uitsluitend of uitsluitend zelfbevruchting; sommige soorten, bij dewelke geen kruising plaats grijpt, zijn buitengewoon krachtig (b. v. vele soorten die over bijna de gansche oppervlakte der aarde verspreid zijn).

Uit dat alles blijkt hoe buitengewoon ingewikkeld de bloemenbiologische vraagstukken zijn, en hoevele feiten schijnbaar tegenstrijdig zijn met elkander.

Volgens WALLACE (loc. cit. blz. 326-327) mogen wij hopen den sleutel van het doolhof te vinden door de beide volgende feiten aan een zorgvuldig onderzoek te onderwerpen: 1° de goede gevolgen der kruising worden niet veroorzaakt door de kruising op zich zelf, maar hangen van verschillen in de constitutie der ouders af, welke verschillen zelve een gevolg zijn van de verschillende voorwaarden waaronder de ouders geleefd hebben (Darwin). — 2° Geringe veranderingen in de levensvoorwaarden zijn voor dieren evenals voor planten voordelig, en dragen bij om de taaiheid van gestel en de vruchtbaarheid te vermeerderen, evenals door kruisbevruchting kan gedaan worden (Darwin).

In vele gevallen heeft zelfbevruchting geen slechte gevolgen, nl. wanneer een strenge teeltkeus gepleegd wordt, of wanneer de levensomstandigheden zelve (b. v. verspreiding over een uitgestrekt gebied) constitutioneele verschillen doen ontstaan en daardoor de taaiheid van gestel vermeerderen. Planten, die krachtige verspreidingsmiddelen bezitten, leven meestal onder voorwaarden, die van de eene streek tot de andere veranderen, en kunnen daarom, althans gedurende langen tijd, de voordeelen der kruisbevruchting ontberen; de soorten die daarentegen met geringe verspreidingsmiddelen uitgerust zijn, en een weinig uitgestrekt en gelijkvormig verspreidingsgebied hebben, moeten van tijd tot tijd door kruisbevruchting nieuwe krachten aanwerven. Wij kunnen daarom verwachten dat plantengroepen, die te gelijk tot zelf- en tot kruisbevruchting aangepast zijn, en die tevens in ’t oog springende bloemen en krachtige verspreidingsmiddelen hebben, ook talrijk en ver verspreid zullen zijn. Al die voorwaarden zijn vereenigd bij de Compositen, die in de meeste deelen der aarde, onder de planten met in ’t oog springende bloemen, de talrijkste zijn.

Overal en altijd zullen sommige plantensoorten overheer-
schend en aggressief zijn; andere zullen daarentegen teruggedrongen en minder talrijk worden, en zullen een harden strijd voor haar bestaan moeten voeren. Wanneer nu het getal individuen een plantensoort vermindert, wordt de soort met uitroeiing bedreigd: haar verspreidingsgebied wordt te klein, en de eentonigheid der levensvoorwaarden, die daarvan een gevolg is, veroorzaakt zwakheid en vermindering der vruchtbaarheid. In die omstandigheden zal kruising tusschen verschillende individuen zeer nuttig zijn, en iedere afwijking, waardoor kruising bevorderd wordt, zal voordelig zijn in den strijd voor het bestaan, en zal derhalve behouden blijven, en het uitgangspunt eener nieuwe aanpassing kunnen worden. En bij iedere soort zal het resultaat verschillend zijn, naar gelang van den bouw der bloemdeelen en van de insecten die in de streek voorhanden zijn.

Wanneer de soort op die manier gunstige wijzigingen heeft ondergaan, zal voor haar een nieuw tijdperk van ontwikkeling beginnen, en haar verspreidingsgebied zal wederom aangroeien. Maar de omstandigheden kunnen opnieuw ongunstig worden: de stuifmeeloverbrengende insecten kunnen minder talrijk worden, of door andere bloemen aangelokt worden, ofwel eene verandering in het klimaat kan aan andere, krachtiger planten de overhand geven. Alsdan zal zelfbevruchting met betere verspreidingsmiddelen voordeeliger zijn. De bloemen zullen kunnen kleiner en talrijker worden, de zaden kleiner en lichter, om de verspreiding door den wind te bevorderen, en bij gebrek aan teeltkeus zullen de nutteloos geworden aanpassingen tot insectenbezoek rudimentair worden. Ten gevolge van die veranderingen zal de plant over nieuwe streken kunnen verspreid, en door de veranderingen in de levensvoorwaarden zal hare constitutie sterker worden. Aldus zal het voortbestaan der soort gedurende langen tijd verzekerd zijn, totdat nieuwe
veranderingen in de levensvoorwaarden opnieuw haar verspreidingsgebied doen inkrimpen. Alsdan zal kruisbevruchting opnieuw wenselijk worden, en in die richting zullen, evenals de eerste maal, aanpassingen ontstaan, maar het uitgangspunt dier aanpassingen zal verschillend zijn, daar de bloem iets behouden heeft van de wijzigingen die zij reeds de eerste maal heeft ondergaan, en derhalve zullen de aanpassingen zelven een nieuwe constructie doen tot stand komen.

De hier onderstelde veranderingen grijpen werkelijk plaats: dit blijkt uit de buitengewone verscheidenheid der bloemenconstructie bij verwante geslachten en soorten, en in sommige gevallen bij varieteiten van eene en dezelfde soort.

Hier worden door Wallace een aantal voorbeelden van die verscheidenheid aangehaald (loc. cit., blz. 329-330).

De twee groote middelen om de levenskracht der planten te doen aangroeien (nl. kruisbevruchting en verspreiding over een uitgestrekt gebied) werden beurtelings gebruikt, en telkens de levensvoorwaarden veranderden werden de biologische eigenschappen en de structuur der bloemen veranderd; telkens verwijderde zich de bloem iets meer van haren oorspronkelijken, eenvoudigen vorm, en aldus is de buitengewone verscheidenheid en ouregelmatigheid der hedendaagse bloemen, door de geologische tijden heen, tot stand gekomen.

Algemeene beschouwingen.

Uit het vorig historisch overzicht blijkt dat de moderne bloemenbiologie, waarvan de studie vóór een eeuw met het werk van Sprengel een aanvang heeft genomen, thans een buitengewone uitbreiding en een hooge wetenschappelijke
beteekenis heeft verkregen. De bloemenbiologie houdt zich niet alleen bezig met de studie der bloemen zelven. Haar gebied is ruimer geworden: zij heeft de levensverrichtingen der bloem in verband gebracht met de meeste groote vraagstukken der algemeene biologie. De studie der erfelijkheid, der veranderlijkheid, der aanpassing, der geographische verspreiding der planten, der wederkeerige betrekkingen tusschen planten en dieren zijn zoo vele hoofdstukken der algemeene natuurwetenschap, waarin de bloemenbiologie een voornam rol speelt.

Voor de phylogenie van het plantenrijk heeft de bloemenbiologie reeds kostbare bouwstoffen geleverd, maar dit bijzonder onderwerp zijn wij in onze inleiding met stilzwijgen voorbijgegaan, daar wij hopen daarover later een bijzonder opstel in 't licht te geven.

Ook op de kennis der insecten, in 't bijzonder der insecten met volkomen gedaanteverswisselingen (Hymenopteren, Dipteren, Lepidopteren, Coleopteren), heeft de bloemenbiologie helder licht geworpen. De meeste dier insecten halen immers hun voedsel uit de bloemen, en vertoonen in hun lichaamsbouw en in hunne levenswijze talrijke aanpassingen tot den bloemenarbeid.

De studie der bestuiving der bloemen is thans ontegen sprekkelijk het best uitgewerkte hoofdstuk der vergelijkende physiologie: geen andere levensverrichting werd tot nog toe bij zoo veel georganiseerde wezens uit de meest verschillende klassen en familïën bestudeerd. Op dit gebied is het vooralsnog mogelijk met de eenvoudigste materieele hulpmiddelen hoogst belangrijke resultaten te verkrijgen: toen Müller de bouwstoffen voor zijn onovertroffen werk over de bevruchting der alpenbloemen verzamelde, was hij voorzien van een microscoop, potlood en teekenpapier, een paar doozen en een insectennet; meer had hij niet noodig.
Voor land- en tuinbouw is de bloemenbiologie zeer gewichtig, maar dit wordt, althans in ons land, nog niet genoeg begrepen (1).

De studie der bloemenbiologie is daarenboven zeer aantrekkelijk, bij uittrekkendheid geschikt om de plantenkunde te populariseeren, en om den leerling aan te sporen om zelf waarnemingen en onderzoekingen te doen. Welke gunstige ommekeer zal er niet in de studie der plantenkunde tot stand komen, wanneer de hedendaagsche flora's met hare droge Linnaeaansche volzinnen, waarin de planten beschreven worden alsof het doode voorwerpen, b. v. postzegels waren, — wanneer die flora's overal zullen vervangen worden door boeken, waarin iedere bloem zal afgeschilderd worden als een wezen, tintelend van leven. Het is naar onze meening een der grootste verdiensten van H. Müller dat hij die paedagogische waarde der bloemenbiologie begrepen heeft, en in zijn onderwijs ten nutte heeft gemaakt. H. Müller heeft gehandeld als een kunstenaar, als een schilder of een beeldhouwer, die zich niet tevreden stelt met zijne gewrochten, in zijne werkplaats, aan andere kunstenaren te laten zien, maar die daarmede in de openbare tentoonstellingen, voor het groote publiek voor den dag komt. Mochten alle beoefenaren der wetenschap op dezelfde wijze handelen, en zooveel mogelijk bijdragen tot de wetenschappelijke opvoeding der oninge- wijd, — evenals de kunstenaar bijdraagt tot de kunstopvoeding van het publiek, zonder terug te deinzen voor de bittere miskeningen en teleurstellingen, die hij zoo vaak van wege datzelfde publiek moet verduren.

(1) Wij willen hier slechts gewag maken van de hoogvermelde proef- nemingen van Beal met Maïs (zie hooger, blz. 234), en van de onderzoekingen van Millardet (Bot. Jaarb., IV, blz. 266) over de bestuiving van den wijnstok.
Ofschoon wij veel redenen hebben om ons over de verkregen uitkomsten te verheugen, toch mogen wij niet ontkennen dat er in de bloemenbiologie een aantal begrippen en meeningen heersen, die vroeger diensten hebben bewezen, maar die thans den vooruitgang der wetenschap wellicht in den weg staan. Van een aantal verschijnselen geven wij verklaringen, die bij een oppervlakkige beschouwing bevredigend zijn, maar die nochtans aan de eischen der critiek niet voldoen, en die het groote nadeel hebben dat zij onzen geest afwenden van het zoeken eener betere verklaring.

De geheele bloemenbiologie is gedrenkt met Sprengel’s "theorie der bloemen". Sprengel’s uitgangspunt was echter een vooropgevatte meening: volgens zijn teleologisch natuurbegrip moest alles met een bepaald doel tot stand zijn gebracht, en daar hij nu bevonden had dat een zeker aantal bijzonderheden in den bouw van sommige bloemen konden verklaard worden, wanneer men wilde aannemen dat zij bestemd waren om kruising door insecten te bevorderen, zoo werd hij er toegebracht dit princiep te generaliseeren, en de geheele structuur van alle bloemen door hetzelfde principe te verklaren. Later heeft Darwin proefondervindelijk bewezen dat, in vele gevallen, kruisbevruchting betere gevolgen heeft dan zelfbevruchting, en daardoor is het mogelijk geworden Sprengel’s "inzicht der Natuur" te vervangen door "strijd voor het bestaan" en "aanpassing", hetgeen beter strookt met de wijsgeerige begrippen van de tweede helft der XIXe eeuw. Maar ondanks die moderne grondbeginselen zijn wij aan Sprengel’s methode grootendeels verslaafd gebleven: iedere bijzonderheid, die wij in eene bloem aantreffen, trachten wij uit het oogpunt der bevruchting te verklaren, juist zooals door Sprengel gedaan werd, en wij zijn
daarenboven bijna steeds geneigd de voorkeur te geven aan
die verklaring, welke het best overeenstemt met de beroemde
cernspreek « nature abhors perpetual self-fertilisation ». En
ezelfs wanneer wij aannemen, zooals door vele bloemen-
biologen gedaan wordt, dat ook zelfbevruchting in vele geval-
len nuttig is, toch verliezen wij uit het oog, dat vele bijzon-
derheden in den bouw der bloemen het gevolg kunnen zijn
van geheel iets anders dan eene « aanpassing tot bestuiving ».

SPRENGEL heeft de meening uitgesproken, dat de fraaie
kleuren der insectenbloemen bestemd zijn om insecten aan te
lokken, en de meeste bloemenbiologen hebben Sprengel
hierin gevolgd, met dit enkel verschil, dat zij het woord
bestemming vervangen hebben door het woord aanpassing.
Maar de vraag is nu, of de bloemenbezoekende insecten
kleurenonderscheiden, en men heeft het recht hieraan eenigszins
zie twijfelen (1). Er wordt algemeen aangenomen, dat
de windbloemen dof gekleurd zijn, in tegenstelling met de
insectenbloemen, en dit strookt volkomen met de bloemen-
theorie. Wanneer men echter een zeker aantal bloeiende
windbloemen aandachtig onderzocht, dan wordt men weldra
tot de meening gebracht, dat vele dier bloemen bijna even
fraai gekleurd zijn als vele insectenbloemen.

De bloempjes van sommige Juncus-soorten zijn, met eene
loupe gezien, even fraai als vele leliën, en bijna even rijk
gekleurd als sommige entomophiele Liliaceeën onzer
inheemsche flora. Maar die bloempjes zijn klein, en daarom
weinig in 't oog springend. Plantago- en Rumex-soorten,
vele Gramineën (Holcus b. v.), enz. verkeeren in hetzelfde
geval; de stempels van Corylus avellana zijn schoon rood, en

(1) Zie daarover o. a. Vitus Graber, Grundlinien zur Erforschung des
Helligkeits- und Farbensinnes der Tiere; — Leipzig, Freytag; Prag,
Tempsky, 1884.
de mannelijke katjes derzelfde soort zijn geel en trekken reeds op een afstand van vijf of tien meters de aandacht op zich; de vrouwelijke bloem (kegel) van Larix europaea is rose, en daarenboven vrij groot — en nochtans worden al die planten uitsluitend door den wind bevrucht, zoodat hier van aanpassing aan insectenbezoek geen sprake kan zijn. En wanneer men nu bedenkt dat, aan den anderen kant, vele echte insectenbloemen klein en van fraaie kleuren verstoken zijn (groen of groenachtig: Adoxa, Cherlera sedoides, Beta maritima, Crithmum maritimum; — geelachtig groen: Listera ovata; — enz.) (1), dan dringt zich de meening op, dat de kleuren der bloemen op een andere wijze tot stand zijn gekomen dan door «aanpassing aan insectenbezoek».

Sprengel heeft eveneens opgemerkt, dat bij vele bloemen gekleurde vlekken en strepen voorkomen, die schijnbaar den weg naar den honig wijzen: die gekleurde teekeningen werden door hem honigmerken (Saftmal) genoemd. Door de meeste moderne bloemenbiologen wordt aangenomen, dat die dusgenoemde honigmerken een gevolg zijn van de teeltkeus, door insecten gepleegd, — Sprengel's meening, in een modern kleed. Ook hier heeft men geen rekenschap gehouden met den kleurzin der insecten, noch met de omstandigheid dat een aantal andere plantendeelen, die met bloemenbezoeke kende insecten niets te maken hebben, eveneens met fraaie kleurteekeningen versierd zijn. Men denke slechts aan de bladen van een aantal Maranta- (Calathea)-soorten, van Nephytis picturata, Pteris tricolor, sommige Tradescantia's, Fittonia's (2), Peperomia's, en talrijke andere soorten.

(1) Wij noemen hier slechts soorten, die door insecten veel bezocht worden.

(2) Wij maken hier slechts gewag van soorten, wier gekleurde bladen niet het product zijn van kunstmatige teeltkeus.
Ten tijde van Sprengel waren de meeste dier uitheemsche planten in Europa nog niet bekend; en wie weet of hij zelf zijn theorie der honigmerken niet zou hebben laten varen, was hij in de gelegenheid geweest een onzer hedendaagsche plantenkassen te bezoeken.

Sprengel heeft waargenomen dat bij sommige planten (o. a. bij *Valeriana dioica*) de mannelijke bloemen meer in 't oog springen dan de vrouwelijke, en dit feit heeft hij met de bevruchting door insecten in verband gebracht: daar de mannelijke bloemen meer in 't oog springen worden zij vóór de vrouwelijke bezocht, en aldus is de bevruchting beter verzekerd. Ook dit gedeelte der bloemtheorie werd door de nieuweren aangenomen, en op een aantal gevallen toegepast. Bij sommige windbloemen nu wordt hetzelfde verschijnsel geconstateerd: bij *Rumex acetosella* hebben wij waargenomen, dat op sommige groeiplaatsen (o. a. op akkerland tusschen St-Denijs-Westrem en Deurel, zomer 1892) de mannelijke bloemen rood, de vrouwelijke groenachtig en veel minder in 't oog springend zijn. Dit verschil wordt vooral duidelijk wanneer men een zeker aantal bloeiende takjes van ieder geslacht bij elkander brengt; dan kan men, zelfs op een aanzienlijken afstand, het mannelijke ruikertje van het vrouwelijke onderscheiden. Hetzelfde is in meerdere of mindere mate het geval met *Corylus, Alnus, Myrica gale*, en andere windbloemigen met eenslachtige bloemen (1). In al deze gevallen kan er geen spraak zijn van aanpassing aan insectenbezoek! (2)

(1) Bij *Larix europaea* heeft het tegenovergestelde plaats: ♀ bloemen fraai rose, ♂ bloemen dof-geelachtig
Uit de vorige opmerkingen blijkt, dat het gedeelte der bloementheorie, hetwelk op de kleuren der bloemen betrekking heeft, op wankelende gronden berust. Het is zeer wel mogelijk, dat in vele gevallen de kleuren der bloemen werkelijk aanpassingen zijn tot het insectenbezoek, maar ongetwijfeld zijn er nog andere factoren in het spel, en indien de Sprengelsche verklaringen in de wetenschap blijven heersen, zullen wij er niet aan denken, die andere factoren op te zoeken, — en wij zullen daarenboven gevaar loopen, vele feiten over te slaan.

Bij vele planten, o. a. bij een aantal Umbellijferen, Scabiosa, Viburnum Opulus, enz., zijn de randbloemen der inflorescentie groter dan de centrale bloemen, en daarenboven gewoonlijk onregelmatig, daar de kroonbladen (of -slippen) die buitenwaarts gekeerd zijn, groter zijn dan die, welke naar het centrum toegekeerd zijn. Sprengel heeft dit verschijnsel verklaard uit het oogpunt der bestuiving door insecten: de Natuur heeft de randbloemen groter gemaakt, om de geheele inflorescentie meer in 't oog springend te maken (1). Ook deze meening treffen wij bij de meeste moderne bloemenbiologen aan: de grottere afmetingen der randbloemen worden beschouwd als het gevolg eener aanpassing aan insectenbezoek. Dit komt ons zeer twijfelachtig voor: waarschijnlijk is de asymmetrie der randbloemen bij vele soorten niets anders dan een geval van klinomorphie (2), d. w. z. een niet erfelijke eigenschap, die niet kan ontstaan zijn door

not, and cannot be (except teleologically), explained by sexual selection, but in origin and continued development are outcrops of a male as opposed to a female constitution. »

teeltkeus. Het is best mogelijk (maar naar onze meening geenszins bewezen) dat die eigenschap in sommige gevallen bijdraagt om insecten aan te lokken, maar het is niet vol-doende te constateeren dat iets nuttig is; de moderne weten-schap wil weten hoe dat iets is tot stand gekomen, en wan-neeër wij op die vraag telkens antwoorden met het woord aanpassing, dan begaan wij dezelfde fout als SPRENGEL,wan-neeër hij de «inzichten der Natuur » inroept. Dit zal nog duidelijker blijken uit het volgende voorbeeld: De Leliën met overhangende bloemen hebben een naar buiten en naar boven gebogen stijl, zoodat zij niet volkomen actinomorph zijn. Door deze inrichting wordt de kruisbestuiving bevoor-derd, daar de stempel aldus gemakkelijker en zekerder door het lichaam der bezoekers aangeraakt wordt. Die inrichting wordt daarom gewoonlijk beschouwd als een aanpassing, als een gevolg der teeltkeus, door de insecten gepleegd. Focke (1) heeft echter bevonden, dat de kromming van den stijl der Leliën een gevolg is van het heliotropisme: wordt de bloem van Lilium croceum, die in normalen toestand recht-opstaat, kunstmatig naar onderen gebogen, dan neemt de stijl denzelfden gekromden vorm aan als bij de soorten met overhangende bloemen (2).

De vorm van den stijl is dus in dit geval niet erfelijk, en kan dus niet als eene aanpassing beschouwd worden.

(2) Volgens Focke zou het heliotropisme van den stijl het tot stand komen van hangende bloemen mogelijk hebben gemaakt; zonder die eigenschap zou de stijl recht gebleven zijn, en daardoor zou de bevruchting der bloe-men zoo buitengewoon geleden hebben, dat de instandhouding van het ras gevaar zou hebben geloopen. Het is volgens denzelfden Schrijver niet onmogelijk, dat ook in andere gevallen, b. v. bij de Papilionaceëen, eene heliotropische kromming van den stijl het uitgangspunt is geweest van het ontstaan van zygomorphe bloemen.
Wanneer men, naar 't voorbeeld van Sprengel, de geheele constructie der bloemen tracht in verband te brengen met de bestuiving, verliest men uit het oog, dat zekere organen der bloem een andere verrichting volbrengen, vóór, of tijdens, of na den bloei. Sommige deelen der bloem spelen b. v. eene rol bij de verspreiding der zaden. De opgeblazen kelk van Silene inflata, van Rhinanthus cristatus, en van andere planten wordt door de meeste bloemenbiologen beschouwd als een beschuttingsmiddel tegen de aanvallen van insecten, nl. van sommige hommels (B. terrestris, mastrucatus, enz.), die de kroonbuis van vele bloemen van ter zijde doorboren om den honig te stelen. De biologen die zich met de verspreiding der zaden bezighouden (1) geven daarvan een geheel andere verklaring: wanneer de zaden rijp zijn en wanneer de vrucht opengaat vervult de verdroogde kelk de rol van windvang, waardoor het heen en weer schudden der plant door den wind, en bijgevolg de uitstrooing der zaden, bevorderd wordt. Het is natuurlijk onmogelijk te beslissen, welke van de beide verklaringen de juiste is: het is waarschijnlijk, dat de opgeblazen kelk tot de beide verrichtingen dient, maar dit leert ons niets omtrent de oorzaak, waaraan het ontstaan van dien kelk moet toegeschreven worden.

Kerner von Marilaun (2) heeft de aandacht gevestigd op talrijke inrichtingen, waardoor ongenoode gasten (d. w. z. insecten, of dieren in 't algemeen, die honig of stuifmeel nuttigen zonder de bloemen te bevruchten) verhinderd worden in de bloemen te dringen.

Over Pinguicula sprekkende zegt Kerner o. a.: « De

(1) F. Hildebrandt, Die Verbreitungsmittel der Pflanzen. Leipzig, Engelmann, 1873 (Blz. 64).
(2) Die Schutzmittel der Blütchen gegen unberufene Gäste, met 3 platen — Festschrift der k. k. zool.-bot. Ges. in Wien, 1876.
biologische beteekenis der klieren aan de bovenzijde der bladen van *Pinguicula* (evenals bij talrijke andere planten, die met klierachtige haren uitgerust zijn) ligt.... in de eerste plaats ongetwijfeld hierin, dat zij insecten afweren, die al kruipende de bloemen zouden bereiken, en wier lichaam te klein is opdat hun bezoek aan de bloem de voordeelen der kruisbevruchting zou verschaffen in verwisseling voor haren honig. Dit sluit natuurlijk niet uit, dat de diertjes, die...... aan de bladen gekleefd blijven, verteerd worden en de plant tot voedsel.... verstrekken (1).»

Hier bevinden wij ons tegenover een geval van gelijken aard als hooger met den opgeblazen kelk van *Rhinanthus* en *Silene*; de klierachtige bladen van *Pinguicula* kunnen aangezien worden, ofwel als organen die bestemd zijn om kleine diertjes te vangen en om aldus aan de plant een zekere hoeveelheid extra-voedsel te verschaffen, ofwel — zooals door Kerner schijnt gedaan te worden — als verdedigingsmiddelen voor de bloem. Het is zeker a priori zeer aannemelijk dat een en dezelfde inrichting meerdere diensten aan de plant bewijst, maar wanneer men geneigd is om in alles en overal inrichtingen of aanpassingen tot bevordering der kruisbevruchting te zien, dan maakt men van het begrip aanpassing een even onbezonnen gebruik als door Sprengel van de inzichten der Natuur werd gemaakt.

Talrijke inrichtingen, welke de bloembiologen beschouwen als aanpassingen tot de bestuiving zijn aldus voor een geheel andere verklaring vatbaar : in Kerner's hoogervermeld werk treft men daarvan meerdere voorbeelden aan.

Sommige bijzonderheden der bloemen, die als aanpassingen zijn beschreven geworden, zijn waarschijnlijk niets anders dan gevallen van individuele veranderlijkheid. Bij *Euphra-

sia officinalis beschrijft H. Müller tweeërlei individuen;
a) een grootbloemige vorm waarvan de stempel buiten de
bloem te voorschijn komt alvorens de helmknoppen open
gaan; en zelfs nadat de helmknoppen zijn opengegaan wordt
de stempel nog het eerst aangeraakt door den kop der
bezoekers, waaruit volgt dat deze vorm regelmatig kruis-
bevrucht wordt en niet in staat is om zich zelf te bevruch-
ten; — b) een kleinbloemige vorm, waarin de stempel buiten
het bereik der insecten ligt als de bloem opengaat;
later wordt de stempel naar voren gebracht, maar tevens
naar onderen, zodat hij kan bestoven worden met pollen
dat rechtstreeks uit de helmknoppen valt. Bij den kleinbloe-
migen vorm is dus niet alleen kruisbevruchting, maar ook
spontane zelfbestuiving verzekerd.

Men heeft nu deze twee vormen willen beschouwen als het
gevolg van twee verschillende aanpassingen. Wanneer men
echter een zeker aantal Euphrasia-bloemen zonder voorop-
gevatte meening wil onderzoeken, dan zal men bevinden dat
er tusschen de twee hoogerbeschreven vormen tallooze
overgangen bestaan, hetgeen reeds door Müller voorzien
werd (1). En wanneer men daarna, in het werk van Wål-
lace over «Darwinism», het hoofdstuk leest waarin de
variabiliteit besproken wordt, en waarin aangetoond wordt
hoe aanzienlijk individuele verschillen kunnen zijn, dan
wordt men overtuigd dat er bij Euphrasia geen aanpassin-
gen, maar alleen individuele verschillen bestaan, te meer
daar er geen correlatie bestaat tusschen de grootte der
kroon en de kromming van den stijl. En wanneer wij nu de
vaarag willen stellen zooals zij moet gesteld worden naar den

(1) Men kan bij Euphrasia officinalis nagenoeg zooevele vormen onderscheid en als men verlangt. Dit werd duidelijk aangetoond door Schulz (loc. cit., zie hooger, Nota (2), blz. 223), die van de genoemde bloem niet minder dan zeven variëteiten beschrijft.
geest der moderne wetenschap, dan moeten wij eerst en vooral vragen in welke maat die individueele verschillen erfelijk zijn, in welke maat en op welke wijs de verschillen door uitwendige levensomstandigheden te voorschijn zijn geroepen, en slechts na het antwoord op die vragen te hebben gevonden kunnen wij met vrucht onderzoeken of hier al dan niet aanpassingen voorkomen. Het is waar, de oplossing van dergelijke vraagstukken is soms zeer moeilijk, maar het is van die oplossing dat wij den vooruitgang der wetenschap moeten verwachten.

Wij zouden wellicht beschuldigd worden onze lezers te vervelen, indien wij hier nog meer voorbeelden aanhalen. Wij gelooven afdoend te hebben aangetoond dat een overdadig gebruik van het begrip «aanpassing» ons verhindert de wetenschappelijke vragen te stellen zooals zij dienen gesteld. Door andere schrijvers (1) werd reeds meermalen op dit gevaar gewezen, maar nergens misschien doet het zich zoozeer gevoelen als in de bloemenbiologie.

werk over «de gevolgen van zelf- en kruisbevruchting in het plantenrijk (1) schrijft Darwin o. a. het volgende: «In 1862 I summed up my observations on Orchids by saying that nature «abhors perpetual self-fertilisation». If the word perpetual had been omitted, the aphorism would have been false. As it stands I believe that it is true, though perhaps rather too strongly expressed; and I should have added the self-evident proposition that the propagation of the species, whether by self-fertilisation or by cross-fertilisation, or asexually by buds, stolons, etc. is of paramount importance Hermann Müller has done excellent service by insisting repeatedly on this latter point». Deze plaats uit DARWIN's werk hebben wij tot nog toe nergens aangehaald gevonden.

Het is waar, men heeft meermalen gewezen op het feit dat bij zeer veel planten zelfbevruchting de regel is of zelfs uitsluitend plaats grijpt, zonder enige merkbare verzwakking van het ras na zich te slepen. TREVRANUS, VON MOHL, AXELL, WARMING, SCHULZ (loc. cit.), BURCK (loc. cit.) en anderen hebben aangetoond, dat dit niet alleen in de Noordelijke streken, maar ook met vele Centraal-Europese en zelfs met tropische soorten het geval is, en DARWIN zelf heeft reeds op talrijke feiten van gelijken aard gewezen. Daaruit volgt dat het niet mogelijk is de wet van KNIGHT-DARWIN tot grondslag voor de verklaring der bloemenconstructies te nemen. En nochtans is de vooropgevatte meening zoo sterk (2),

(2) BURCK (loc. cit. Botanisch Jaarboek, 1891) heeft tegen deze vooropgevatte meening en tegen het bestaan der wet van Knight-Darwin zeer gegrunde bedenkingen in 't midden gebracht. Zijne verhandeling verdient daarom, en ook wegens de hoogst interessante feiten, die hij heeft bekend gemaakt, een eereplaats onder de nieuwere geschriften over bloemenbiologie.
dat de meeste bloemenbiologen, als het ware onbewust, bij voorkeur die bloemen bestudeeren, waarin de kruising door eene of andere inrichting bevorderd wordt, terwijl zij de autogame bloemen grootendeels versmaden, ofwel, bij de studie dier bloemen, vooral hunne aandacht vestigen op die bijzonderheden, welke kruising schijnen te bevorderen. En het onderzoek van vele bloemenbiologen is daarenboven, zooals Burck zeer terecht doet opmerken, «dikwerf niet van gebrek aan de noodige objectiviteit vrij te pleiten en herhaaldelijk vindt men dan ook in de literatuur bloemenconstructies besproken met adaptaties, die zouden dienen tot verzekering van kruisbevruchting, die ook een andere lezing toelaten».

In de twee groote werken van H. Müller b. v. worden zeer veel planten, die nochtans alomverspreid zijn, maar die weinig of niet door insecten bezocht worden, en waarin zelfbevruchting de regel is, met stilzwijgen voorbijgegaan. En nochtans heeft H. Müller zelf, in zijn voorbericht (1), duidelijk aangetoond dat men geheel verkeerd te werk gaat, wanneer men de bloemenconstructies uit het oogpunt der wet van Knight-Darwin wil verklaren. Volgens Müller mogen wij alleen aannemen dat zelfbevruchte nakomelingen vroeg of laat ten gronde gaan, wanneer zij in den strijd voor het bestaan tegenover kruisbevruchte planten derzelfde soort geplaatst worden,—maar dat zelfbevruchting alleen voldoende is voor het behoud van het ras, daar een dergelijke concurrentie niet kan tot stand komen, wanneer slechts een enkele soort van nakomelingen (namelijk zelfbevruchte) bestaat. Door die hypothese kunnen wij (volgens Müller) verklaren waarom, van den eenen kant, bij zooveele bloemen kruisbevruchting bevorderd wordt, terwijl van den anderen

kant, zoovele andere bloemen zich met zelfbevruchting alleen tevreden stellen.

Het komt ons voor, dat zelfs Müller's onderstelling, al is zij veel meer beperkt dan de wet van Knight-Darwin, niet voldoende is om de bloemenconstructies te verklaren. Het is immers algemeen bekend, en Darwin zelf heeft reeds deze opmerking gemaakt (Cross-and self-fertilisation, blz. 442-443), dat bij zeer vele planten geene verhouding bestaat tusschen de voordeelen (aangroeiing van levenskracht, van vruchtbaarheid, enz.) door de kruisbevruchting opgeleverd, en de meerdere of mindere volkomenheid der middelen waardoor, in de bloem, zelfbevruchting vermeden en kruising bevorderd wordt (1). Hieruit mag reeds a priori besloten worden, dat men te vergeefs de verklaring der bloemenconstructies van ééne eenvoudige wet zal verwachten. De zaak is veel meer ingewikkeld. Ten tijde van Sprengel kon de wetenschap zich tevreden stellen met een idee, namelijk « dat de Natuur niet schijnt te willen dat eenige bloem bevrucht worde met haar eigen stuifmeel ». Thans achten wij een dergelijke verklaring niet voldoende, — maar wanneer wij dat idee in een modern kleed steken, wanneer wij zeggen dat de bloemen (of de meeste bloemen) niet met haar eigen stuifmeel bevrucht worden omdat de zelfbevruchte exemplaren zwakker zijn dan de kruisbevruchte, dan zijn wij al zeer weinig vooruitgegaan, en zoolang wij niet kunnen zeggen waarom de kruisbevruchte nakomelingen krachtiger zijn is het geheim niet ontsluierd (2).

(1) Bij Corydalis cava b. v. is de bloem volkomen zelfsteriel; de voordeelen der kruising zijn hier dus oneindig groot, en nochtans zou men volkomen het recht hebben uit de bloote studie van hare constructie te besluiten dat zij tot zelfbevruchting aangepast is. (Zie hooger, blz. 201).

(2) Darwin, Cross and self-fertilis., blz. 455.
Wij weten thans dat ieder levensverschijnsel het resultaat is van de werking van een groot aantal oorzaken of factoren, en een dusgenoemde natuurwet, die van een zeer samengestelde zaak, b. v. van een levensverschijnsel, een zeer eenvoudige voorstelling geeft, zoaals b. v. door de wet van Knight-Darwin gedaan wordt, kan daarom niets anders zijn dan een voorloopige hypothese; een dergelijke hypothese kan alleen diensten bewijzen, zoolang de wetenschap niet in staat is om het samengestelde vraagstuk in zijne enkervoudige elementen te verdeelen (1), d. w. z. om iederen factor op zich zelf te bestudeeren en om de wetten te ontdekken die zijne werking beheersen. En wanneer men dit uit het oog verliest, wanneer men dergelijke voorloopige wetten wil beschouwen als de definitieve uitdrukking der waarheid, begaat men een fout van gelijken aard als op 't eind der vorige eeuw begaan werd, toen men onder den invloed van het idealistisch natuurbegrip, met dusgenoemde inzichten der Natuur tevreden was.

Vele bloemenbiologen meenen dat Darwin, en de andere plantenkundigen die zijn onderzoekingen hebben voortgezet, bewezen hebben dat geen plant zich zelf gedurende eene lange reeks van generatien kan voortplanten, of althans dat de gevolgen der kruising beter zijn dan de gevolgen der zelfbevruchting. Wanneer men echter de werken van Darwin en van andere proefnemers aandachtig leest, en over de daarin beschreven feiten nadenkt, en rekenschap houdt met de talrijke opmerkingen, die Darwin zelf omtrent de resultaten zijner onderzoekingen neergeschreven heeft, — dan wordt men tot de meening gebracht, dat de verkregen uitkomsten geenszins kunnen samengevat worden in eene der beide hoogervermelde stellingen.

Wanneer men de gevolgen der zelfbevruchting en der

kruising wil vergelijken, dient in de eerste plaats een onderscheid gemaakt tusschen drie verschillende zaken, nl.:

1. de vruchtbareheid der bevruchte bloemen;
2. de sterkte van gestel der nakomelingen;
3. de vruchtbareheid der nakomelingen. Dit zijn drie elementen, die niet altijd hand in hand gaan, zooals DARWIN zelf reeds heeft opgemerkt. Wij hebben hooger (blz. 191) gezien dat, b. v. in sommige gevallen kruisbevruchting betere gevolgen heeft dan zelfbevruchting in betrekking tot één dezer drie elementen, en daarentegen minder gunstige of zelfs slechte gevolgen wat de beide andere (of één van de beide andere) elementen betreft. Met andere woorden, het gebeurt meermalen dat, wanneer een der drie grootteën a, b en c, (b. v. b), sterk aangroeit, een der beide anderen (a of c, ofwel a en c te gelijk), eene geringere aangroeiing of zelfs eene vermindering ondergaat (zie ook bl. 233).

Een volkomen overeenstemming tusschen de drie elementen mogen wij a priori niet verwachten, want wij weten dat, bij de bastaardvorming, de sterkte van gestel en de vruchtbareheid niet samen gaan, en zelfs in meerdere of mindere mate antagonistisch zijn (zie hooger, blz. 194), en dat er in dit opzicht zeer veel verscheidenheid waargenomen wordt. NÄGELI (1), die de geheele bastaardliteratuur met veel zorg heeft bestudeerd, heeft de meening uitgesproken dat, over 't algemeen, de bastaarden die tusschen nauw verwante soorten (of variëteiten) ontstaan, een aanzienlijke aangroeiing van levenskracht en een geringe vermindering van vruchtbareheid vertoonen, terwijl er daarentegen een vermindering in de levenskracht en tevens een sterke vermindering in de vruchtbareheid te bespeuren is wanneer de ouders slechts verre verwanten zijn. En wij weten, van den anderen kant, dat eene bastaardvorming van een gewone kruisbevruchting alleen verschilt, dewijl in het eerste geval het verschil tusschen de ouders grooter is.

dan in het laatste geval (1) — een quantitatief verschil dus. Wij mogen daarom, telkens twee planten van een en dezelfde soort gekruist worden, eveneens gebrek aan proportionaliteit tusschen levenskracht en vruchtbaarheid, en verscheidenheid in de resultaten verwachten, als bij de bastaardvorming, doch in mindere mate.

Wanneer wij dus spreken van « de goede gevolgen der kruising » en van « de slechte gevolgen der zelfbevruchting », in 't algemeen, zonder een onderscheid te maken tusschen de drie elementen van het vraagstuk, dan voegen wij groot- heden samen, die niet gelijksoortig zijn, en dit wordt een zeer grove fout, wanneer de beschouwde grootheden niet steeds in dezelfde richting variëren.

De onderzoeken van Darwin en van de andere plantenkundigen, die de gevolgen der verschillende bevruchtingswijzen proefondervindelijk hebben bestudeerd, leeren ons daarenboven dat de « goede gevolgen der kruising » niet even sterk zijn uitgesproken bij alle plantensoorten (zie blz. 182 en volgende), noch bij alle individuen van een en dezelfde soort; — dat het resultaat der bevruchting bij een en dezelfde soort o. a. afhangt van den graad van verwantschap der ouders, van de levensomstandigheden waaronder de ouders geleefd hebben, met andere woorden, van de grootere of kleinere constitutionele verschillen tusschen de kiemcellen die vereenigd worden, — en somwijlen van de uitwendige voorwaarden waarin de bevruchting geschiedt (Passiiflora); — en eindelijk, dat in enkele gevallen, de gevolgen der zelfbevruchting beter zijn dan de gevolgen der kruising (b. v. bij de gekweekte erwten; zie hooger, blz. 184).

Uit die feiten blijkt dat de vruchtbaarheid der bevruchte bloemen, de sterkte van gestel en de vruchtbaarheid der nakomelingen drie veranderlijke grootheden \(a, b\) en \(c\) zijn.

(1) Het begrip soort is immers volkomen subjectief. (Zie blz. 242.)
waarvan de waarde afhangt van de specifieke eigenschappen van ieder soort, en zelfs van ieder individu, alsook van de andere vermelde factoren; en een der grootste verdiensten van Darwin ligt juist hierin, dat hij de aandacht gevestigd heeft op de werking dier factoren. Het spreekt daarom van zelf dat de waarde der verhoudingen

$$\frac{a_k}{a_z}, \quad \frac{b_k}{b_z}, \quad \frac{c_k}{c_z},$$

in dewelke a_k, b_k en c_k de door kruisbevruchting verkregen waarden en a_z, b_z en c_z de overeenkomstige waarden, door zelfbevruchting verkregen, voorstellen, eveneens zeer veranderlijk is.

Aan Darwin's werk (Self- and Cross-fertilis.) ontleenen wij de volgende voorbeelden:

Dianthus caryophyllus (loc. cit. blz. 133).

\[
\frac{a_k}{a_z} \quad \text{(getal der zaden, door de bevruchte bloemen voortgebracht)} = \frac{100}{93}.
\]

\[
\frac{b_k}{b_z} \quad \text{(hoogte der nakomelingen)} = 100.
\]

\[
\frac{c_k}{c_z} \quad \text{(getal der zaden, door 2maal zelfbevruchte en door 2maal kruisbevruchte nakomelingen voortgebracht)} = \frac{100}{65}.
\]

Nicotiana Tabacum (loc. cit. blz. 203).

\[
\frac{a_k}{a_z} \quad \text{(gewicht der zaden)} = \frac{100}{150}.
\]

\[
\frac{b_k}{b_z} = 100.
\]

\[
\frac{c_k}{c_z} \quad \text{(gewicht)} = \frac{100}{97}.
\]

Reseda odorata (loc. cit. blz. 119).

\[
\frac{b_k}{b_z} = \frac{100}{82}.
\]

Delphinium consolida (loc. cit. blz. 129).

1e Proefneming:

\[
\frac{a_k}{a_z} \quad \text{(getal)} = \frac{100}{59}.
\]

2e "

\[
\frac{a_k}{a_z} \quad \text{(gewicht der zaden)} = \frac{100}{45}.
\]

\[
\frac{b_k}{b_z} = 100.
\]

\[
\frac{c_k}{c_z} \quad \text{(getal der zaaddoozen)} = \frac{100}{56}.
\]
Wanneer men nu eenvoudig constateert dat, in de meeste gevallen (niet altijd)
\[\frac{a_k}{a_z} > 1 \quad , \quad \frac{b_k}{b_z} > 1 \quad , \quad \frac{c_k}{c_z} > 1 \]
en daaruit eene natuurwet wil afleiden, dan sluit men den weg af, die ons tot een grondiger kennis der beschouwde verschijnselen moet leiden. Darwin heeft die fout vermeden, maar vele bloemenbiologen hebben zich met een dergelijke onvolkomen voorstelling tevreden gesteld, en hebben daarop voortgebouwd.

De feiten, welke Darwin en andere plantenkundigen hebben ontdekt, zijn reeds zoo talrijk, dat er slechts weinig hoop bestaat het vraagstuk door nieuwe proefnemingen dichter bij zijn oplossing te brengen, indien men niet tevens nieuwe vragen stelt. De volgende beschouwingen zullen misschien bijdragen om nieuw licht te werpen op de vragen, welke thans dienen gesteld te worden: zooals blijkt uit de hooger (blz. 242, regel 20 en volgende) gemaakte opmerkingen kan de studie der bastaardvorming veel licht werpen op de kennis der gewone bevruchting. Een aandachtig onderzoek van de resultaten der proefnemingen van Kölreuter, Knight, Gärtner en anderen over bastaardvorming heeft Naegeli (1) tot de meening gebracht dat de gevolgen der bevruchting hun optimum bereiken (2) als het verschil in oorsprong tusschen de twee kiemcellen een zekere middelmatige waarde bereikt.

Uit de bekende feiten mag men daarenboven besluiten dat de middelmatige waarde, waarvoor \(a, b \) en \(c \) maximaal worden, niet bij alle plantensoorten en in alle omstandigheden

(1) Naegeli, Sitzungsbl. der bayer. Akad. der wissenschaften, München, 1865 en 1866. (Gecit. naar Sachs, traité de botanique, 1874.)

(2) Met andere woorden, dat de waarden \(a, b \) en \(c \) haar maximum bereiken...
dezelfde is, en als een veranderlijke grootheid moet beschouwd worden. Die middelmatige _optimale_ waarde schijnt in zeer vele gevallen verkregen te worden als de twee kiemcellen (stuifmeelkorrel en eicel) behoren tot twee verschillende individuen van een en dezelfde soort (gewone kruisbevruchting). Wordt de waarde van het verschil groter (1) of wordt zij kleiner (2), dan wordt het resultaat der bevruchting over 't algemeen minder gunstig, of de bevruchting wordt onmogelijk. — Er zijn echter ook gevallen, waar de optimale waarde als het ware verplaatst is, d. w. z. groter of kleiner dan in het gewone geval. Bij de erwt b. v. is het verschil tusschen de kiemcellen van _twee variëteiten_ optimaal. In andere gevallen schijnt de bewuste waarde binnen ruime grenzen te mogen variëren, zonder aanmerkelijke variaties in de gevolgen der bevruchting te veroorzaken: dit schijnt het geval te zijn met die planten, bij dewelke slechts een zeer gering verschil bestaat tusschen de gevolgen der zelfbevruchting en die der kruisbevruchting.

De « _wet van Nägeli_ » strookt volkomen met de resultaten van Darwin's proefnemingen (3). Naar onze meening draagt deze wet veel meer den stempel van een echte natuurwet dan de dusgenoemde « _wet van Knight-Darwin_ ». De wet van Knight-Darwin is eigenlijk niets anders dan een corollarium van de _wet van Nägeli_, hetwelk niets anders beteekent dan dat, bij de kruisbevruchting, de constitutioneele verschillen tusschen de kiemcellen schier altijd dichter bij het optimum liggen dan in het geval der zelfbevruchting.

De proefondervindelijke methode nu moet de _wet van_

(1) B. v. als de ouders tot verschillende soorten behooren.
(2) B. v. als de beide kiemcellen door een enkel individu of door nauw verwante individuen voortgebracht worden.
(3) Zie Darwin, _Cross- and Self-fertilisation_, 1876, blz. 455.
Nägeli tot grondslag kiezen. Voor ieder plantensoort moet de optimale waarde van het verschil in oorsprong (1) tusschen stuifmeelkorrel en eicel proefondervindelijk bepaald worden, in betrekking tot de drie waarden a, b en c. Er dient onderzocht te worden in welke mate dit optimum «verplaatst» wordt (met andere woorden: aangroeit of verminderd) onder den invloed van uitwendige omstandigheden tijdens de bevruchting; — in welke mate de waarden a, b en c aangroeien of verminderen, als de waarde van het verschil in oorsprong tusschen σ en φ kiemcel een zekere aangroeiing of een zekere vermindering ondergaat; — en binnen welke grenzen de waarde van het genoemd verschil kan aangroeien of verminderen zonder aanmerkelijke veranderingen van de waarden a, b en c te veroorzaken.

Laten wij thans onderzoeken op welke wijze de uitkomsten der proefondervindelijke methode kunnen toegepast worden op de verklaring der bloemenconstructies. Hierbij dient in de eerste plaats een streng onderscheid gemaakt te worden tusschen de voordeelen der kruisbevruchting, wat de sterkte van gestel, de vruchtbaarheid enz. betreft, en de voordeelen welke door de kruisbevruchting in den strijd voor het bestaan zullen behaald worden. Het is niet voldoende te constateeren dat, in een bepaald geval, kruisbevruchting, in een of ander opzicht betere gevolgen heeft dan zelfbevruchting, om het recht te hebben daaruit te besluiten dat kruisbevruchting, in den strijd voor het bestaan, boven zelfbevruchting verkieselijk is. Wij weten immers dat de plant zich zekere opofferingen moet getroosten om het overbrengen van het stuifmeel te verze-

(1) Met andere woorden « van de constitutioneele verschillen, die zelve afhangen van de verwantschap en van de voorwaarden waarin de ouders hebben geleefd ».
keren: met andere woorden, de eventueele voordeelen der kruising moeten door de plant gekocht worden.

Wanneer het een insectenbloem geldt, dan moeten de stuifmeeloverbrengende insecten aangelokt worden door middel van honig, van geurende stoffen, en misschien ook, in vele gevallen, door grote, fraai gekleurde kroon- of kelkbladen; dat alles kost aan de plant bouwstof en arbeidsvermogen, terwijl er daarenboven eene soms zeer aanzienlijke hoeveelheid stuifmeel ten offer gebracht wordt (1). Wanneer het eene windbloem geldt, dan wordt het verlies aan stuifmeel buitengewoon groot, en tevens wordt eene zekere hoeveelheid organische stoffen verbruikt tot het opbouwen van den stempel, die meestal, kort na de bevruchting, verslenst en verloren gaat (zie b. v. verder, fig. 5 en 6). In de bloemen, die regelmatig zelfbevrucht worden, en in 't bijzonder in de cleistogame bloemen (zie hooger, blz. 197), is een dergelijk stofverbruik veel geringer, zoo gering mogelijk, en de aldus bespaarde bouwstoffen kunnen de andere levensverrichtingen der plant, en in 't bijzonder de vorming der zaden na de bevruchting, ten goede komen. De prijs nu, die de plant voor hare kruisbevruchting moet betalen, is eene veranderlijke grootheid, in 't bijzonder wat de insectenbloemen betreft: het getal der insecten, die op de groeiplaats der beschouwde plant voorhanden zijn, en de aard van die insecten zijn twee factoren die daarop een gewichtigen invloed zullen hebben, en die van de eene streek tot de andere, van de eene maand tot de andere, en ook naar gelang van de groeiplaats en van de weersgesteldheid verschillend kunnen zijn. De mededinging van andere planten is eveneens een niet onbelangrijk element, enz.

(1 B. v. wanneer de bloem door stuifmeelverzamelende bijen bezocht wordt, of wanneer het een pollenbloem (Anemone, Papaver, enz.) geldt.)
Wij weten daarenboven dat de aangroeiing der sterkte van gestel en der vruchtbaarheid, door de kruisbevruchting teweeggebracht, veranderlijke grootheden zijn, waarvan de waarde in sommige gevallen zeer groot, in andere gevallen kleiner, en zelfs nul of negatief kan zijn, en talrijke feiten, door Darwin en door anderen bekend gemaakt, hebben ons geleerd dat die grootheden (hooger a, b en c genoemd) dikwijls onafhankelijk van elkander variëren.

Zoolang men, naar aanleiding van de wet van Knight-Darwin, de kruising als een conditio sine qua non, als onontbeerlijk tot het behoud van het ras beschouwt, kan men ook aannemen dat in iedere bloem, de kruising kost wat kost, en al is het ook met lange tusschenpoozen, moet verzekerd worden. Maar wij weten thans dat de wet van Knight-Darwin geen algemeene natuurwet is; en dat sommige planten zich zelf kunnen bevruchten gedurende een onbepaald aantal generatiën, zonder eene merkbare verzwakking van het ras te vertoonen.

Het spreekt nu van zelf, dat de voordeelen, die het ras door de kruisbevruchting in den strijd voor het bestaan zal behalen, zullen afhangen van de waarde der verhouding tusschen de aangroeiing der sterkte van gestel en der vruchtbaarheid, die de kruisbevruchting teweegbrengt, en den prijs, dien de plant voor hare kruisbevruchting betaalt. En daar nu de twee termen der verhouding (prijs en aangroeiing) buitengewoon en onafhankelijk van elkander variëren, zal ook de waarde der verhouding schier in 't oneindige veranderlijk zijn. Telkens die waarde groter is dan 1 (dus wanneer aangroeiing > prijs) zal de kruisbevruchting in den strijd voor het bestaan een voordeel zijn, en anders niet. En daarbij dient nog gevoegd te worden, dat de aangroeiing der sterkte van gestel en de aangroeiing der vruchtbaarheid twee elementen zijn, die in den strijd voor het bestaan, naar
gelang van de omstandigheden, zeer verschillende diensten kunnen bewijzen. In sommige gevallen zal het voor het behoud van het ras van hoog belang zijn dat de individuen een sterk gestel hebben, terwijl het in andere omstandigheden, veel belangrijker zal zijn, dat het getal der individuen groter worde, en omgekeerd (1).

Het ligt nu voor de hand, dat in den natuurstaat, de afwijkingen of variaties, welke de kruisbevruchting bevorderen, alleen dan zullen behouden blijven en door de natuurkeus zullen opgestapeld worden, wanneer de uitgaaf die zij veroorzaken, kleiner is dan de voordeelen die zij aan de plant verschaffen. Dit schijnt ons nu het ware standpunt te zijn, waaruit de aanpassingen tot kruisbevruchting moeten beschouwd worden. Wij kunnen thans, in 't algemeen, begrijpen waarom, vele planten geene of bijna geene aanpassingen tot kruisbevruchting vertoonen, ofschoon de gevolgen der kruisbevruchting, op zich zelf genomen, beter zijn dan de gevolgen der zelfbevruchting. Wij kunnen eveneens begrijpen waarom andere plantensoorten zich enorme opofferingen getroosten om kruisbevruchting te bewerkstelligen.

Laten wij b.v. onderstellen dat 2 soorten, A en B, uit een insectenrijke streek overgebracht worden naar een streek waar bloemenbezoekende insecten schaarsch zijn. Laten wij onderstellen dat de soort A door de kruisbevruchting een aanzienlijke aangroeiing aan levenskracht en vruchtbaarheid ondergaat. Bij deze soort zal iedere kleine bijzonderheid, waardoor de insecten beter aangelokt worden, een aanzienlijk voordeel bijbrengen, en door de natuurkeus van de eene generatie tot de andere opgestapeld worden: de plant zal bij gevolg met grootere bloembekleedels, grootere honigklieren, enz. uitgerust worden. Laten wij, aan den anderen kant, onderstellen dat bij de soort B de voordeelen der kruising daarentegen geringer zijn: toen de plant in een insectenrijke streek leefde, werd zij voldoende beloond voor de opofferingen die zij zich

(1) Zie hooger, blz. 245, Wallace.
getroostte om insecten aan te lokken. Maar in de nieuwe insecten-arme streek waar zij thans groeit worden hare opofferingen niet voldoende vergeld; de prijs dien zij betaald is niet hoog genoeg om de schaarscher geworden waar te koopen: iedere verandering, waardoor de insecten beter aangelokt worden, veroorzaakt echter een vermeerdering van uitgaven, die te groot is om door de voordeelen der kruising vergoed te worden; veranderingen van dien aard worden dus nadeelig, en in den strijd voor het bestaan niet behouden. En omgekeerd zal iedere vermindering der kroonbladen, der honigklieren, enz. voordeelig zijn, want daardoor zal telkens een nutteloos geworden uitgave van het budget geschrapt worden. Onder den invloed der natuurkeus zal de plant allengs hare lokmiddelen verliezen, en eindelijk kleine, weinig in 't oog springende bloempjes dragen, die niet langer door insecten bezocht worden. En indien nu een natuurvorscher met dergelijke individuen van de soort B proeven neemt, zal hij constateeren dat bij die plant de gevolgen der kruisbevruchting (althans in zekere mate) beter zijn dan de gevolgen der zelfbevruchting; hij zal echter van den anderen kant waarnemen dat de bewuste planten geen insecten aanglokken, en hij zal tot de gansch verkeerde meening worden gebracht, dat er geen verhouding bestaat tusschen de voordeelen der kruising en de middelen, waardoor insecten aangelokt worden.

Met de soort B kan zich misschien nog een ander geval voordoen: ten gevolge van de schaarschheid der insecten zullen de bloemen gedurende een aantal generatien uitsluitend zelfbevrucht worden, en het zal daarbij kunnen gebeuren dat zij niet variëren, dat er zich in hare structuur b. v. geene veranderingen voordoen waarop de natuurkeus kan inwerken. In dit geval zullen de lokmiddelen (kleuren, honig, enz.) behouden blijven, maar ten gevolge van haarhaalde zelfbevruchting zal er meer uniformiteit in de constitutie van het ras tot stand komen, en gewone kruising zal ophouden betere gevolgen te hebben dan zelfbevruchting (de optimale waarde van het verschil tusschen stuifmeelkorrel en eicel zal verplaatst worden). Een voorbeeld van dien aard wordt aangetroffen bij de gekweekte erwten (Pisum sativum), zooals hooger reeds werd vermeld (zie blz. 184) (1).

(1) Maupas (Comptes-Comptes-Comptes-Reunis, 1886, 1887; Archives de zoologie expéri-
En eindelijk kunnen, in de gegeven omstandigheden, de beide wijzigingen bij dezelfde plantensoort tot stand komen: de bloem kan hare lokmiddelen verliezen, en de gevolgen der kruisbevruchting kunnen ophouden, op zich zelf genomen, voordeelig te zijn.

Wij kunnen ook begrijpen waarom, bij een en dezelfde plantensoort, de bevruchtingswijze kan verschillen, naar gelang van het jaargetijde waarin de bloemen bloeien (Viola, Oxalis, enz.) : een aantal uitwendige voorwaarden zijn immers, van de eene maand tot de andere verschillend. Dergelijke verschillen in de levensvoorwaarden kunnen, aan den eenen kant, de gevolgen der kruising (wat levenskracht, vruchtbaarheid, enz. betreft), en, aan den anderen kant, den prijs die voor de kruising betaald wordt, veranderen (1), en aldus de waarde der verhouding tusschen uitgave en

mentale, 1888; geciteerd naar Geddes en Thomson, The evolution of sex) heeft met een infusorium (Stylonichia pustulata) proeven genomen, waarvan de resultaten doen denken aan de verschijnselen, die bij de Erwt werden waargenomen:

In November 1885 werd een Stylonichia geïsoleerd, en hare vermenigvuldiging werd tot Maart 1886 nagegaan: gedurende dien tijd hadden 215 generatien, door deeling voortgebracht, elkander opgevolgd, en daar deze organismen niet paren met nauwe verwanten had geen geslachtelijke voortplanting plaats gegrepen. Door die lang voortgezette ongeslachtelijke vermeerdering werd het ras uitgeput: de individuen der laatste generatien waren eigenlijk niet oud, maar zij werden oud geboren. De deeling kwam tot stilstand, en het voedingsvermogen ging eveneens verloren.

Alvorens het ras uitgeput was werden verscheidene individuen in een ander aquarium geplaatst, waar zij paarden met niet verwante individuen derzelfde soort (vergelijk met de proef van Darwin, Colchester-Ipomaea, blz. 185, en met die van Focke, Lilium croceum, blz. 233). Een der aldus voortgebrachte individuen werd opnieuw geïsoleerd en gedurende 5 maanden gadegezlagen: hij gaf, door successieve deelingen, aan 130 achtereenvolgende generatien het aanzijn, en exemplaren, die van tijd tot tijd in een ander aquarium werden gebracht, paarden aldaar met niet verwante exemplaren. Eindelijk was het ras opnieuw zijn einde nabij: het was te vergeefs dat men nog individuen in de gelegenheid stelde met niet-verwante te paren. Omtrent de 118e generatie deed zich het zonderling verschijnsel voor, dat nauw verwante individuen (van dezelfde familie) trachten met elkander te paren, maar deze paringen bleven zonder eenig gevolg.

(1) De gevolgen der bestuiving kunnen b. v. veranderd worden door een
voordeel (en bijgevolg de voordeelen der kruisbevruchting in den strijd voor het bestaan) groter of kleiner doen worden.

Men heeft meermalen de vraag gesteld waarom bij zoovele planten met kleine weinig in 't oog springende bloemen, waarin zelfbevruchting bijna uitsluitend de regel is, de bloemen niet cleistogaam geworden zijn. Darwin en anderen hebben hierop geantwoord dat de bewuste bloemen ontluiken en honig voortbrengen, ten einde een laatste kans op kruisbevruchting open te laten, en dat die bloemen, niettegenstaande hare geringe lokmiddelen, toch door insecten (al is het ook zeer zelden) bezocht worden, en aldus, nu en dan, de voordeelen der kruisbevruchting genieten (1). En het is om die voordeelen niet geheel te verliezen dat zij honig afscheiden en haar stuifmeel aan regen en wind blootstellen, in plaats van gesloten te blijven.

Het komt ons voor dat deze verklaring geen steek houdt, zoodra men de kruisbevruchting niet als een conditio sine qua non voor het behoud van het ras beschouwt. Bij Draba verna b. v. zijn de goede gevolgen der kruisbevruchting waarschijnlijk zeer gering; deze plant heeft zeer kleine, opengaande bloempjes, waarin nochtans honig voortgebracht wordt (2). Deze bloempjes worden schier nooit door insecten bezocht: wij hebben meermalen de gelegenheid gehad Draba verna bij helder, warm weder, op verschillende uren van den dag gade te slaan, en op groeiplaatsen, waar zonder overdrijving millioenen bloempjes te gelijker tijd openstonden, en wij hebben slechts tweemaal een klein vliegje op die bloemen gezien. Kan men nu aannemen dat de talloze bloemen van

verschil in de temperatuur (zie Passiflora, blz 174); het getal der insecten kan van de eene maand tot de andere verschillend zijn; enz.

(1) Darwin, Cross- and self-fertilisation, blz. 386.

Draba verna honig afscheiden, een witte bloemkroon voortbrengen en haar stuifmeel aan allerlei oorzaken van vernieling blootstellen om zeer geringe voordeelen, die slechts in zeer zeldzame gevallen verkregen worden, te genieten?

Andere verklaringen liggen hier voor de hand: men mag aannemen dat het voor de stuifmeelkorrels voordeelig is aan de vrije lucht en aan het licht blootgesteld te worden. Laten wij niet vergeten dat de stuifmeelkorrel een levend wezen is, dat ademt, dat den invloed ondergaat van prikkels, evenals een eencellig wier of een Protozoon; en als de bloem niet opengaat blijft het stuifmeel opgesloten van binnen in eene kamer waar de zuurstof niet de gewone spanning heeft, en waar de prikkelende lichtstralen niet of bijna niet kunnen binnendringen. Men mag ook onderstellen dat de honigklieren bij de voorouders een nuttige rol speelden, en, evenals zoo-vele andere nutteloos geworden organen, bij de nakomelingen zijn behouden; — dat het opengaan der bloemen eveneens een overgeërfde, maar nutteloos geworden levensverrichting is (1), enz.

Op een gelijke wijze kunnen vele andere bijzonderheden in den bouw der bloemen als volkomen nutteloos aanzien worden. Men kan ze beschouwen als overgeërfde eigenschappen, ofwel, in vele gevallen, als het gevolg van correlatie-verschijnselen: als een plant, onder den invloed der natuurkeus, in een van hare organen gewijzigd wordt, kan die wijziging immers in andere deelen van het organisme en ook in de constitutioneele eigenschappen der plant correlatieve veranderingen opwekken.

Als een bloem b. v. van groote kroonbladen voorzien is en veel honig afscheidt, is dit a priori geen bewijs dat die eigenschappen

(1) Evenals de bewegingen der staminodiën in de vrouwelijke bloemen van sommige Geranium-soorten. — Zie Mac Leod, Pyreneeënbloemen, Botan. Jaarb., III, blz. 404.
voor haar nuttig zijn: zij kunnen immers een eenvoudig gevolg zijn van een rijke voeding, of van een of andere aanpassing, die met de bevruchting in geenerlei rechtstreeksche betrekking staat. Bij een en dezelfde plantensoort zijn de bloemen van krachtige exemplaren dikwijls groter en fraaier dan de bloemen van zwakke exemplaren (b. v. bij Ranunculus repens, Capsella, Papaver-soorten, enz.). Bij verscheidene Viola- en Oxalis-soorten komen in het voorjaar fraaie opengaande bloemen voor, terwijl in den zomer kleinere, niet opengaande bloemen gevormd worden. Dit merkwaardig dimorphisme is misschien het gevolg eener aanpassing (zie hooger, blz. 274, reg. 5). Maar het is ook mogelijk dat de niet opengaande zomerbloemen ten gevolge van correlatie-verschijnselen hare eigenaardige constructie hebben verkregen. Bij een en hetzelfde exemplaar van Viola odorata b. v. is de regeling der voeding in de lente bijna ongetwijfeld zeer verschillend van hetgeen zij in den zomer is. Bij andere planten zijn dergelijke verschillen zeer in 't oog springend: Raphanus sativus b. v. vormt gedurende het eerstedeel van zijn leven (in het voorjaar) een aanzienlijke voorraad reserve-stoffen, die in den knolvormigen wortel vastgelegd wordt; later, in den zomer, worden bloemen en vruchten gevormd, en de bouwstoffen die daartoe noodig zijn worden ten deele ontleend aan de onderaardsche voorraadkamer, die nu geledigd wordt. Als men Raphanus in de lente vergelijk met Raphanus in den zomer, wat de inwendige huishouding der plant betreft, dan is het bijna alsof men twee verschillende plantensoorten met elkander vergeleek. Bij Viola, Oxalis, enz. doen zich zeer waarschijnlijk, in de regeling der voeding, veranderingen van gelijken aard voor. Als de physiologie ons met den aard van die veranderingen beter zal hebben bekend gemaakt, zullen wij het dimorphisme der bloemen wellicht als een eenvoudig gevolg van die veranderingen (d. w. z. als een correlatieverschijnsel) kunnen verklaren. (1)

Sommige biologische eigenschappen der bloemen worden bij al de leden van een systematische groep (geslacht, fami-

(1) De invloed van de hoeveelheid en van de hoedanigheid van het voedsel, alsook van de temperatuur op de geslachtelijke voortplanting bij infusoriën (Leucophrys) werd bestudeerd door Maupas.
lie, enz.) waargenomen: de proterandrie b.v. komt in meer- dere of mindere mate bij de meeste Umbelliferen voor (1). Deze eigenschap kan in dit geval moeilijk beschouwd worden als een adaptatie die iedere Umbelliferensoort afzonderlijk, als het ware op eigene hand, zou verkregen hebben. Er bestaat daarentegen geen reden om de proterandrie niet op denzelfden rang te plaatsen als een aantal andere kenmerken (b.v. den bouw van den stengel, van de bladen, van de inflorescentie, enz.), die eveneens bij de meeste of bij alle Umbelliferen aangetroffen worden. Tusschen al die kenmerken bestaat een onbetwistbare correlatie: men mag onderstellen dat zij geërfd zijn van een gemeenschappelijken stamouder, of dat zij onder den invloed van dezelfde oorzaak tot stand zijn gekomen, ofwel dat een van die kenmerken het ontstaan van de overige heeft veroorzaakt (2). Door

(1) Wij laten hier eenige andere voorbeelden volgen: Bijna al de Cyperaceeën zijn proterogynisch. — Al de Amentaceeën zijn windbloemig, uitgenomen het geslacht Salix, dat een duidelijke neiging tot entomophilie vertoont. — Sommige familiën, zooals b.v. de Labiatiën, bevatten een aantal soorten met eenslachtige bloemen, terwijl dit met andere familiën (b.v. de Papilionaceeën) schier nooit het geval is. — Al de soorten van het geslacht Hypericum zijn van honig verstoken. — Enz.

(2) Volgens Bürck (Botan. Jaarb., III, blz. 66-68) mag de proterandrie niet als een bijzondere adaptatie beschouwd worden: « Er ligt immers niets vreemds in het verschijnsel dat het eerst aangelegd orgaan (nl. het androecium) ook het eerst volwassen is. Proterogynie alleen kan als iets bijzonders worden opgevat, maar proterogynische bloemen zijn betrekkelijk zeldzaam ». Daarenboven zou de dichogamie in vele gevallen geen aanleiding geven tot kruising tusschen verschillende exemplaren, maar tusschen bloemen van een en hetzelfde exemplaar, en wij weten dat een dergelijke kruising niet dezelfde voordeelen oplevert als kruising tusschen verschillende exemplaren. (Zie hooger, blz. 183 en 201).

De verklaring die Bürck van de proterandrie geeft is zeer eenvoudig, maar zij geeft ons geen uitlegging van het feit dat de proterandrie in sommige familien algemeen waargenomen wordt, en in andere plantenfamilien daarentegen zeer weinig of niet. Daarenboven is de proterogynie niet zoo zeldzaam als door Bürck aangenomen wordt, vooral onder de windbloemigen (Cyperaceeën, enz.).
Darwin en door H. Müller werd gewezen op het feit, dat het bestuivingsmechanisme bij nauw verwante soorten vaak zeer verschillend is, waaruit volgt dat ieder soort in het bijzonder dient bestudeerd te worden. Het schijnt alsof die opmerking vele bloemenbiologen tot de meening had gebracht dat er tusschen de verschillende soorten van eene systematische groep geene betrekkingen bestaan wat de bestuivingswijze betreft, en door die verkeerde meening wordt de aandacht van een aantal interessante analogiën afgewend.

Hiermede hebben wij nog niet alle elementen van dit ingewikkeld vraagstuk tot hun recht laten komen: het is immers zeer waarschijnlijk, zooniet onbetwistbaar, dat de kruisbevruchting een gewichtigen invloed heeft op de variabiliteit. En in sommige gevallen zal het voor de plant een groot voordeel zijn te kunnen variëren (1), terwijl dit in andere gevallen veel minder belangrijk zal wezen. Het voordeel, door de veranderlijkheid in den strijd voor het bestaan opgeleverd, zal dus ook eene variabele grootheid zijn, waarvan de variaties geheel onafhankelijk zullen blijven van de variaties, welke de aangroeiing der sterkte van gestel en de aangroeiing der vruchtbaarheid ondergaan. Het zal daarom kunnen voordeelig zijn dat aanpassingen tot kruising, al zijn zij ook met groote kosten verbonden, tot stand komen en behouden blijven, zelfs wanneer de kruising geen noemenswaardige aangroeiing der levenskracht en der vruchtbaarheid veroorzaakt: dit zal voordeelig zijn, indien door de kruising veranderlijkheid opgewekt wordt, en indien dit een voordeel is voor het behoud van het ras.

Uit de vorige beschouwingen mag besloten worden dat de studie der bloemenconstructies niet zoo eenvoudig is als tot nog toe door de meeste bloemenbiologen werd aangenomen. Het is niet voldoende bij iedere bloemensoort na te gaan op welke wijze en in welke mate zelfbevruchting en kruisbevruchting mogelijk zijn, en door welke middelen (insecten enz.) de bestuiving bewerkstelligd wordt. Er dient daarenboven onderzocht welke betrekkingen er bestaan tusschen de bestuivingswijze en andere levensverrichtingen der plant, zooals b. v. hare voedingswijze (woeker-, afvalplanten), het midden waarin zij leeft (schaduwplanten, waterplanten (1), enz.), hare betrekkingen met sommige dieren (myrmecophilie) (2), hare vegetatieve vermeerdering (3).

(2) Zie over den waarschijnlijk invloed der myrmecophilie op de bestuivering van Myrmecodia: Burck, Ueber Kleistogamie im weiteren Sinne und das Knight-Darwinsche Gesetz; Annales du jardin botanique de Buitenzorg, VIII, 2e partie, 1890. — De bloem van Myrmecodia is zuiver wit en protogynisch; zij scheidt overvloedig honig af. Deze eigenschappen zijn echter volkomen nutteloos, daar de bloem nooit opengaat en daarenboven tot zelfbevruchting aangepast is. Myrmecodia nu is een mierenplant; vroeger werden hare bloemen door insecten bevrucht, maar als zij begon door mieren bewoond te worden werd hare honig door de mieren geplunderd; tevens werden vlinders en bijen door de tegenwoordigheid van mieren in hare bloemen afgeschrikt, en daardoor werd de kans op kruising bijna nul. De plant werd gedwongen hare bloemen te sluiten, om de voortplantingsorganen tegen de mieren (die vaak de bloemen die zij bezoeken beschadigen en weinig of geen stuifmeel overbrengen) te beschutten. Tevens werd zij tot zelfbevruchting aangepast; de fraaie kleur, de honig en de protogynie werden nutteloos, maar door overerving behouden.

het jaargetijde waarin zij bloeit, haren levensduur, en ook de monocarpie of de polycarpie. Daarenboven moet de bestuivingswijze van iedere plantensoort beoordeeld worden naar de algemeene eigenschappen der systematische groep (geslacht, familie, enz.) waartoe zij behoort, en niet uitsluitend uit het oogpunt van hare bevruchting op zich zelf beschouwd.

Eindelijk moeten de betrekkingen tusschen de bestuivingswijze en de uitwendige voorwaarden waarin de bestuiving in iedere streek plaats grijpt, o. a. de samenstelling der insectenfauna, zorgvuldig bestudeerd worden.

In de volgende verhandeling hebben wij getracht eene bijdrage te leveren tot de studie van eenige dier onderwerpen.

ERRATUM

Blz. 226 : De verdeeling der insecten en der bloemen in 3 groepen (europe, hemitrope en allotrope) hebben wij op blz. 226 gegeven

Niet naar de eerste (op blz. 224 geciteerde) werken van Loew : *Beobachtungen en Weitere Beobachtungen*,

Daarbij hebben wij een onnauwkeurigheid begaan : de 2e insectengroep (hemitrope insecten) bevat, volgens Loew, behalve de op blz. 226 genoemde Kerfdieren, enkele langtongige Vespiden en Graafwespen (b. v. Amphıpla sabulosa, Bembex rostrata).

Men leze dus ook : blz. 226, reg. 8-9 : « de Hymenopteren, uitgenomen de Bijen en enkele langtongige Vespiden en Graafwespen », in plaats van « de Hymenopteren uitgenomen de Bijen. »

In zijn eerste verhandelingen (Beobachtungen en Weit. Beobacht.) heeft Loew een classificatie der bloemenbezoekende insecten in 4 groepen (dystrope, allotrope, hemitrope en eutrope) gegeven, maar de samenstelling dier groepen verschilt eenigzins van die, welke in zijn later verschenen werk (Beiträge, enz.) gegeven wordt.

maar zij doen voornamelijk de meening ontstaan, dat, in het insectenarme Groenland, hoe meer eene plant de hulp der insecten tot hare bevruchting nodig heeft, des te beter hare vegetatieve vermeerdering verzekerd is, terwijl de autogame soorten deze vermenigvuldigingswijze kunnen ont-beren en er ook zeer dikwils van verstoken zijn ».

9
Bestuiving en Insectenbezoek der Bloemen van het Kempisch gedeelte van Vlaanderen.

EERSTE KLASSE: *Eenzaadlobbigen (Monocotylen).*

FAM. I. LEMNACEEËN.

Bloemen 1slachtig, schier altijd 1huzig. Iedere ♀ bloem bestaat uit 1 meeldraad; stuifmeelkorrels met fijne stekeltjes bezet. De ♀ bloem bestaat uit één fleschvormigen stamper, met 1 à 6 zaadknoppen. Iedere bloeiwijze bestaat uit 1 ♀ bloem en gewoonlijk 2 ♂ bloemen, en wordt door een gemeenschappelijke scheede (spatha) omgeven.

Volgens Ludwig (1) zou *L. minor* (waarschijnlijk ook *L. trisulca*, *gibba* en *polyrrhiza*) bestoven worden door insecten, die aan de oppervlakte van het water rondkruipen. — Volgens Delpino (2) zouden slakken bij de bevruchting dier planten een gewichtige rol spelen. — Volgens Ludwig is de bloeiwijze van *L. minor* proterandrisch. — Volgens Hegelmaier (3) is de bloeiwijze van *L. minor* proterogynisch, die van *L. gibba* daarentegen proterandrisch: zelfbestuiving (binnen eene en dezelfde inflorescentie) is de regel. — Volgens Trelease (4) is *L. minor* (Noord-Amerika) proterogynisch, maar zelfbestuiving is niet geheel uitgesloten, daar de stempel frisch blijft.

(1) Ludwig, gecit. naar Müller, fertil. of flowers.
(2) Delpino, Rivista botanica, 1881, blz. 33.
(3) Hegelmaier, Lemnaceen, Leipzig, 1866.
tot dat de eerste helmknop opengaat. De *Lemma*-plantjes zouden door bewegingen van het water met elkander in aanraking gebracht worden, en aldus zou kruisbestuiving plaats grijpen. De tegenwoordigheid van stekeltjes aan de oppervlakte der stuifmeelkorrels zou met de bevruchting in verband staan, en, ofwel door *L. minor* aangeworven zijn, ofwel van hooger georganiseerde voorouders (Araceeën) overgeërfd zijn.

Uit dit kort overzicht blijkt dat men het over de bestuiving van *Lemma* niet eens is; de bevruchtingswijze (in 't bijzonder de volgorde waarin de ♂ en ♀ deelen zich ontwikkelen) is wellicht niet overal en altijd dezelfde.

De *Lemma*'s bloeien betrekkelijk zelden, vooral in de gematigde luchtstreken. In Duitschland (1) bloeit *L. arrhiza* nooit. In Frankrijk (2) werd *L. polyrrhiza* (althans voor 1845) nooit bloeiend aangetroffen. De vegetatieve vermeerdering is daarentegen zeer actief: uit de (gewoonlijk drijvende, bij *L. trisulca* ondergedompelde) spruiten, waaraan geen tegenstelling tusschen stengel en blad is waar te nemen, ontstaan zijsspruiten, die na korter of langeren tijd van de moederspruit loslaten, en nieuwe individuen vormen. In den herfst ontstaan winterspruiten, die gewoonlijk in jongen toestand van de stervende moederplant loskomen, op beschutte plaatsen den winter overbrengen, en in 't volgend voorjaar met verbazende snelheid nieuwe zijsspruiten vormen.

Fam. II. Potamogetonaceëen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bloeien</td>
<td>1</td>
<td>13</td>
<td>16</td>
<td>12</td>
<td>3 soorten.</td>
</tr>
</tbody>
</table>

Bloemen in aren, die bij alle inheemsche soorten boven de oppervlakte van het water uitsteken. De bloemen zelve zijn 2slachtig, en bevatten 4 meeldraden en 4 daarmede afwisselende stampers, wier vruchtbeginsel slechts 1 ei bevat en een streepvormigen stempel draagt (1). De 4 kleppen (schaalvormige deelen of lepelvormige schubben) die de meeldraden omsluiten en gewoonlijk *bloemdek* genoemd worden, zijn eigenlijk uitwassen van de helmbindsels.

Alle onderzochte *Potamogeton*-soorten zijn proterogynisch. De stempel is reeds geslachtsrijp en kijkt buiten de bloem uit, als het *bloemdek* (zie hooger) nog gesloten is, en als een bloemknop uitziet (3). Als de stempels beginnen te verwelken gaan de 4 schaalvormige deelen van het *bloemdek* open : bijna te gelijkertijd ontstaan in de helmknoppen, die te voren door die *bloemdekschubben* verborgen waren, overlangsche spletten, die weldra opengaan, en waaruit een aanzienlijke hoeveelheid geel, poederig stuifmeel te voorschijn komt. Wanneer nu een droge wind over de oppervlakte van het water strijkt wordt het stuifmeel medegevoerd. Indien daarentegen, tijdens het opengaan der helmknoppen, windstilte heerscht, valt het stuifmeel ten deele uit iederen helmknop in de lepelvor-

(1) Bij *P. trichoides* wordt gewoonlijk slechts 1 vruchtje met 1 zaad in iedere bloem gevormd.

mige bloemdekschub die er zich onmiddellijk onder bevindt, en daarin kan het stuifmeel verscheidene uren bewaard blijven, tot dat het door een krachtige windbui uit de schalen geblazen en naar andere bloemen gevoerd wordt. (Zie Kerner, Pflanzenleben, blz. 144-146; de hier gegeven beschrijving heeft vooral betrekking op P. crispus; volgens den genoemden schrijver zouden de bloemdekschubben ook bij verscheidene andere Potamogeton-soorten de rol van tijdelijke stuifmeelbehouders kunnen vervullen.)

Te oordeelen naar de beschrijvingen die wij in de literatuur aangetroffen hebben, is kruisbestuiving bij Potamogeton de regel.

Vegetatieve vermeerdering door organen, die met de winterknoppen van andere waterplanten overeenstemmen, komt volgens Ascher-son (loc. cit. blz. 195) zelden voor: bij P. pectinatus vindt men knoldragende uitloopers, bij P. crispus winterbroedknoppen. Alle inheemsche soorten worden in de flora's als overblijvend (2) aangegeven, waaruit wij mogen besluiten dat hare instandhouding niet uitsluitend op het voortbrengen van zaad berust.

23. Zannichellia palustris L. (2)

Plant 1-huizig: ♀ bloemen met 1-2 meeldraden; vruchtbladen doorgaans 4 (soms minder) ieder met 1 eitje.

De bevruchting werd beschreven door Roze (1).

Fam. III. Hydrocharidaceeën.

24. Hydrocharis Morsus-Ranae. (Jl.–Aug.) Bloem met halfverborgen honig. — Fleur à nectar partiellement caché

Plant 2huizig, insectenbloemig. De 3 binnenste bloemdeksbladen (kroonbladen) wit met gele basis. In de ♀ bloemen aan den voet van ieder kroonblad een gele vleezige honigklier. De ♂ bloemen met 12 meeldraden, waarvan 3 zonder helmknop, en met een verkrompen stamper. ♀ bloemen: één onderstandig vruchtbeg., met zeer korten stijl en 6 gele 2lobbige stempels; 6 gele meeldraden zonder helmknoppen, bij paren tusschen de honigklieren. Vrucht vleezig, met 6 veelzadige hokjes, wordt onder het water rijp; de inhoud gaat over in eene geleachtige massa, waarin de zaden bevatten zijn.

(1) Roze, Journ. de botanique, 1887, 15 Nov.

25. *Stratiotes aloïdes*. Bloem met blootliggende honig. (*Fleur à nectar librement exposé.*)

De 3 binnenste bloemdekbladen vrij groot, wit. De ♂ bloemen met ongeveer 12 vruchtbare meeldraden, en met 15-30 heldergele klierachtige draden, die als honigklieren dienst doen, en tusschen de meeldraden en de kroonbladen staan. De ♀ bloemen met een bijna zittend vruchtbeginsel, met een korten stijl en 6 tweelobbig stempels. De honigklieren hebben denzelfden bouw als in de ♂ bloemen. De vrucht wordt onder het water rijp; de zaden zijn weinig talrijk.

Tegen het begin van den winter zinken de planten op den bodem van het water; zij overwintert aldaar en komen eerst in het volgend voorjaar aan de oppervlakte.

Geen bezoekers gezien. In uitgestrekte streken komen slechts planten van één geslacht voor, ten gevolge waarvan de plant alleen op vegetatieve wijze vermeerderd wordt.
Elodea canadensis is (in Amerika) 3-huizig: ♂ en ♀ planten vaak samen aangetroffen, de ♀ planten steeds op andere groeiplaatsen. De ♀ bloem gaat open aan de oppervlakte van het water; de ♂ bloemen komen los, en drijven aan de oppervlakte rond, totdat zij bij toeval met den stempel een ♀ bloem in aanraking gebracht worden. In Europa tot nog toe uitsluitend ♀ planten.

Vegetatieve vermeerdering zeer actief: door het afsterven van het onderst gedeelte van den hoofdstengel komen de bebladerde zijtakken van de moederplant en van elkander los en iedere tak kan zich tot eene nieuwe plant ontwikkelen. In 1836 (?) uit Noord-Amerika naar Europa overgebracht.

Fam. IV. Alismaceën.

26. Sagittaria sagittifolia L. (Witte bloem, eenhuizig, — met blootliggenden honig? — Fleur blanche, monoïque — à nectar librement exposé?)

Bloemen gewoonlijk in kransen, de ♂ bloemen van boven, de ♀ van onderen aan iederen tros. De ♂ en ♀ bloemen hebben een 6-bladig bloemdek: de 3 buitenste bladen zijn klein en groen, de 3 binnenste grooter en wit. Ieder ♀ bloem is voorzien van talrijke stampers, die samen een rondachtig hoofdje vormen. Er is, volgens HILDEBRANDT, (Geslechter-Vertheilung 1867, blz. 9) geen spoor van verkrompen meeldraden te vinden. Wij meenen dat er bij de door ons onderzochte exemplaren (te Melle, 1885) staminodiën in de ♀ bloemen voorkwamen; wij hebben echter verzuimd dit onmiddellijk aan te teekenen, zodat wij daaromtrent geen volkomen zekerheid hebben. In de ♂ bloemen zijn de meeldraden talrijk. Volgens Buchenau (Alismaceae, in Engler-Prantl, Pflanzenfamilien, II, blz. 229) zouden alle Alismaceën, dus ook Sagittaria, honigdruppels afscheiden.

Te Melle hebben wij (Juli 1893) ♀ bloemen aangetroffen. Zie verder Alsineecn.

De bevruchting is alleen door insecten mogelijk. In ons gebied draagt de plant overvloedig rijp zaad.

Vegetatieve vermeerdering (Kerner von Marilaun, Pflanzenleben, II, blz. 724): uit den knoopigen stengel, die in de slib verborgen is, ontspringen in den herfst okselstandige uitloopers, die
verscheidene decimeters lang kunnen worden, en vrij diep in de slib dringen. Ieder uitlooper is aan zijn top knolvormig verdikt, en voorzien van een eindknop, die zelf uit een centrale as met meerdere groenachtige, elkander bedekkende blaadjes bestaat. De knol met zijn knop is omgeven door vliezige scheiden en brengt den winter in de slib door, terwijl de moederplant afsterft. In het voorjaar groeit ieder knop tot een nieuwe plant uit, en daarbij wordt de voorraad voedsel, die in den knol voorhanden is, verbruikt. Men ziet nu, op de plaats waar de moederplant stond, eene groep jonge individuen uit de slib voor den dag komen. Wanneer het water, waarin *Sagittaria* groeit, te diep is, draagt zij geen bloemen (Schenck, *Wasser-gewächse*).

27. **Alisma plantago** L. Witte of bleekrose, tweeslachtige bloem met blootliggenden honig. — (Fleur blanche ou rose pâle, hermaphrodite, à nectar librement exposé).

(Zie H. Müller, *fertilisation of flowers*, blz. 565, fig.). De 3 kroonbladen zijn aan hun voet geel; de middellijn van ieder bloem ongeveer 10-12 mill. De 6 meeldraden zijn schuin naar buiten gericht, en de helmknoppen gaan aan de buitenzijde open. In 't midden der bloem staan de talrijke stampers, wier stempels te gelijker tijd als de helmknoppen geslachtsrijp zijn. De meeldraden zijn aan hun voet vereenigd tot een ring, die aan zijn binnenzijde 12 (soms samenvloeiende) honigdruppels afscheidt (6 honigdruppels zijn epistaminaal, de 6 andere interstaminaal). Door insecten wordt gewoonlijk kruisbestuiving, somwijlen zelfbestuiving bewerkstelligd. Kans op spontane zelfbestuiving daarentegen zeer gering, daar de helmknoppen op een vrij grooten afstand van de stempels staan.

De inflorescentie is een fraaie veelbloemige pluim, waaraan meestal vele bloemen te gelijkertijd open zijn. De bloemen worden, althans bij windstil weder, tamelijk veel bezocht, en dragen regelmatig rijpe vruchten.
Als het water te diep is draagt *Alisma* geen bloemen (Schenck, *Wassergewächse*).

Fig. 1. — *Alisma plantago*. — *h*, ring door de vergroeide bases der meeldraden gevormd. — *k*, kelkblad. — *kr*, kroonblad. — In 't centrum de stampers, tot een langrond kogeltje vereenigd, ieder met een stijl.

28. **Alisma Ranunculoides** L. (Witte bloem met blootliggenden honig? — *Fleur blanche, à nectar librement exposé*)

29. *Alisma natans* L. (Witte bloemen, met blootligg- genden honig? — *Fl. blanches, à nectar librement exposé?)*

Volgens *Hildebrandt* (Geslechter-Vertheilung, blz. 77) zijn de bloemen soms ondergedoken: de kroon blijft alsdan gesloten, en binnen de luchthoudende ruimte die door de kroonbladen begrensd wordt grijpt zelfbestuiving plaats.

Fam. V. Butomaceeën.

30. *Butomus umbellatus* L. Witte of rose bloem met blootliggendenden honig. — (Fleur blanche ou rose à nectar librement exposé.)

De 6 bloemdekbladen zijn rose (soms bijna wit): de 3 buitenste zijn iets kleiner dan de binnenste. Er zijn 9 meeldraden, die bijna recht- opstaan als de bloem opengaat; de helmknopen der 6 buitenste meel- draden springen het eerst open, en daarna de 3 binnenste, terwijl de 6 stempels gesloten zijn. Daarna worden de stempels op hunne beurt geslachtsrijp, en tevens naar buiten gekromd, terwijl de grootendeels geledigde helmknoppen zich bijna horizontaal uit- spreiden.

Kruising door insecten door de proterandrie bevorderd. Spontane zelfbevruchting niet geheel uitgesloten, daar de helmknoppen, bij uitblijvend insectenbezoek, een gedeelte van hun stuifmeel behouden totdat de stempels geslachtsrijp zijn, en ten deele met de naar buiten gebogen stempels in aaraking komen.

Honig wordt afgescheiden tusschen de stampers en aan hun voet, in 6 druppels. De honig ligt, evenals het stuifmeel, geheel bloot.
Ieder bloem brengt 6 kokervruchtjes met talrijke zaden voort.
(Zie Kirchner, Flora von Stuttgart, blz. 182-183. — H. Müller, Weitere Beobachtungen, I, blz 293. — Heinsius, Waarnemingen en beschouwingen, enz., in Bot. Jaarb. IV, 1892, blz. 68.)

Volgens Schulz (Beiträge, I, blz. 96) zijn de bloemen (te Halle in Duitschland) gewoonlijk homogaam of zwak proterandrisch, zelden duidelijk proterandrisch. Meeldraden korter dan de stijlen; helmknoppen niet alleen 3-6 mill. van de stempels verwijderd, maar 2-4 mill. lager dan de stempels, en daar de stempels slechts aan hun top een weinig naar buiten omgebogen worden schijnt spontane zelfbestuiving uitgesloten te zijn. In enkele bloemen staan de helmknoppen en de stempels op gelijke hoogte.

Fam. VI. Juncaginaceae.

31. Triglochin palustre L. Windbloem. — (Fleur anémophile.) 24

Proterogynisch. Zelfbevruchting geheel uitgesloten, daar de stempels verdroogd zijn als de helmknoppen opengaan. Zes meeldraden in twee 3-tallige kransen; onder iederen meeldraad een uitgehold bloemdekblad. Als een helmknop opengaat valt het stuifmeel in de de uitholling van het bloemdekblad dat er onder gezeten is, en dat zich intusschen een weinig van het middelpunt afgewend heeft: wordt nu de slanke bloemaar door den wind heen en weer geschud, zoo wordt het stuifmeel uit zijn tijdelijke verblijfsplaats weggeblazen en medegevoerd. De 3 onderste meeldraden komen eerst aan de beurt, en als het stuifmeel, dat zij hebben ontlast, door den wind verwijderd is, vallen zij af evenals de 3 overeenkomstige bloemdekbladen. Daarna worden dezelfde verschijnselen met de 3 bovenste meeldraden en met de overeenkomstige bloemdekbladen herhaald. Ieder bloem brengt 3 lizadige vruchtjes voort.
(Zie: Axell, Växt. Befruktning, blz. 38; — Kerner von Marilaun, II, blz. 146.)
32. *Arum maculatum* L. 2. E eenhuizig, insectenbloeemig. (H. Müller, Fert. of flowers, blz. 562, fig. 185.)

De bloeiwijze is eene kolf (*spadix*), die aan hare basis met ♀ bloemen, hooger met ♂ bloemen bezet is. Boven de ♂ bloemen draagt de kolf een aantal afstaande stijve haren (vervormde ♂ bloemen); het bovenst gedeelte der kolf is van bloemen verstoken en iets verdikt. De kolf wordt omgeven door een breede bloeischeede (*spatha*), die een wijde opening vertoont, en daaronder ingesnoerd is. De insnoering bevindt zich op gelijke als de hoogervermelde stijve haren. Onder de insnoering vormt het onderst gedeelte der scheede eene kamer, waarin het onderst gedeelte der kolf met de ♂ en de ♀ bloemen verborgen is.

Gedurende het *eerste tijdperk* van den bloei zijn de stempels der ♀ bloemen (die op het onderst gedeelte der kolf gezeten zijn) geslachtsrijp; tevens geeft de inflorescentie een ammoniakale lucht van zich af, waardoor kleine vliegjes (*Psychoda*, enz.) aangelokt worden. Deze diertjes dringen, tusschen de hoogervermelde stijve haren heen, in de kamer waarin de bloemen zich bevinden, en indien zij met stuifmeel uit een vroeger bezochte inflorescentie beladen zijn zullen zij de stempels bevruchten.

Gedurende het *tweede tijdperk* verslensen de stempels; in 't centrum van iederen stempel wordt een druppel honig afgescheiden, waaraan de gevangen vliegjes zich nu kunnen vergasten.

Gedurende het *derde tijdperk* gaan de helmknoppen open; het stuifmeel valt op den bodem der kamer, en de vliegjes worden daarmede

Fig. 2. *Arum maculatum*: Inflorescentie. — †, bovenst bloemoos gedeelte der kolf. — ‡, insnoering der bloeischeede. — st, stengel.

Fig. 3. *Arum maculatum*: Bloeikolf. — ♀, vrouwelijke bloemen. — ♂ mannelijke bloemen. — †, haren, die zich op gelijke hoogte als ‡ in fig. 2 bevinden. — †, verdikte top der kolf. st, stengel.

Fam. VIII. Typhaceëen.

33. Typha latifolia L. 4 Windbloem.

Bloemen zeer talrijk, in kolven. In iedere kolf staan de ♂ bloemen boven de ♀.

Volgens Engler (Engler und Prantl, Pflanzenfamilien) zijn de Typhaceëen proterandrisch. Volgens Kerner (Pflanzenleben, II, blz. 311) is Typha proterogynisch (Bij T. minima zouden de helmknoppen eerst 9 dagen na de stempels opengaan).

Typha heeft een overblijvend, kruipende worstelstok, die aan zijdelingsche uitloopers het aanzijn geeft,

Fam. IX. Sparganiaceëen.

35. Sparganium simplex Huds. windbl.
36. » ramosum Huds. »
37. » minimum Fries. »

Eenhuizig. De ♂ bloemen van boven, de ♀ van onderen aan iedere inflorescentie.

Volgens Kerner (Pflanzenleben, Band II, blz. 311) is Sparganium proterogynisch (d. w. z. dat de ♀ bloemen van iedere inflorescentie voor de ♂ bloemen derzelfde inflorescentie geslachtsrijp zijn). Of zelfbevruchting binnen een en dezelfde
inflorescentie geheel onmogelijk is moeten wij in 't midden laten.
Wortelstok met uitloopers.

Fam. X. Cyperaceae.

40. C. arenaria L. — 41. C. vulpina L. — 42. C. muri-
cata L. — 43. C. teretiuscula Good. — 44. panicu-
— 47. C. remota L — 48. C. elongata L. — 49. C.
canescens L. — 50. C. acuta L. — 51 C. stricta Good.
— 52. C. glauca Scop. — 53. C. pallescens L. —
Hoppe. — 59. C. binervis Sw. — 60. C. sylvatica Huds.
— 63. C. vesicaria L. — 64. C. acutiformis Ehrh. —

| bloeien 6 | 30 | 26 | 0 | 0 | 0 soorten |

De bloemen worden somwijlen door stuifmeelverzamelende in-
secten bezocht (zie Kirchner, Neue Beob., 1886), maar daardoor
kan slechts in zeer uitzonderlijke gevallen bevruchting teweegge-
bracht worden.

Men vindt veel verscheidenheid wat den wederzijdschen stand
der ♂ en ♀ bloemen betreft. Bij vele soorten staan de ♂ en de ♀
bloemen in afzonderlijke aren (C. acuta, flava, enz.). Bij andere
soorten bevat iedere aar (of ieder aartje) ♂ en tevens ♀ bloemen:
in dit geval staan de ♂ bloemen in iedere aar ofwel boven, ofwel
onder de ♀ bloemen, enz. In de flora’s wordt de relatieve stand
der bloemen bij iedere soort beschreven.

Volgens Kerner (Pflanzenleben, II, blz. 311 en 313) zijn alle een-
huizige Carex-soorten proterogynisch (d. w. z. dat bij ieder individu
de ♀ bloemen voor de ♂ opengaan).

Volgens Kirchner (Neue Beob., 1886) zijn C. brizoides L. en
C. verna Vill. zwak proterogynisch. Door Axell (Växt. Befrukt.,
1869, bl. 115) worden een aantal Carex-soorten als proterogynisch vermeld.

Bij vele Carex-soorten speelt de vegetatieve vermeerdering (door kortere of langere uitloopers) een gewichtige rol.

68. *Cyperus flavescens* L. Windbloemen. ○.
69. *C. fuscus* L. Windbloemen ○.

Bloemen ☞. Bevruchting niet onderzocht.

Bloemen tweeslachtig. Bij *S. lacustris* en *S. maritimus* zijn de bloemen volkomen proterogynisch: de stempel is reeds verwelkt, als de helmknoppen nog tusschen de kafjes verborgen zijn. Zelfbevruchting is dus volkomen uitgesloten. Over de bevruchting van andere soorten is ons niets bekend. Waarschijnlijk zijn zij alle proterogynisch.

De meeste soorten kunnen zich vegetatief vermeerderen. (Bij *maritimus, lacustris* en *sylvaticus* een kruipende worstelstok; bij *pauciflorus* kruipende uitloopers; bij *fluitans* wortelende stengels). Bij *S. setaceus* alleen berust de instandhouding der soort uitsluitend op het voortbrengen van zaad.

Bloemen tweeslachtig, waarschijnlijk alle proterogynisch.

H. acicularis vormt nieuwe individuen door uitloopers.

88. **Leersia oryzoides** Sw. 4.

De pluim blijft vaak ten deele in de bladscheede verscholen. De meeste (soms alle?) bloempjes van iedere pluim blijven gesloten, en bevruchten zich zelf, terwijl aan het bovenst gedeelte der pluim enkele bloempjes opengaan, en door den wind bevrucht worden. (Zie Kerner, Pflanzenleben, II, blz. 386).

89. **Phalaris arundinacea** L. 24.

De bevruchting wordt door Hildebrandt (Beob. Bestäubungsverhältnisse der Gramineen, blz. 746) beschreven als volgt: "toen de kafjes, bij het opengaan der bloem (s morgens), elkander aan hun top loslieten, kwamen de uiteinden der stempels eerst voor den dag. In dezen toestand konden zij door stuifmeel uit andere bloemen bevrucht worden. De helmknoppen, die zich dieper bevonden, werden allengs langer dan de uiteinden der stempels en werden eindelijk

Door HILDEBRANDT wordt de vraag gesteld, of P. arundinacea zich altijd op de hier beschreven wijze gedraagt.

De wortelstok is kruipend, en vormt afleggers in de slib. Een enkel exemplaar kan aldus op vegetatieve wijze aan talrijke nakomelingen het aanzijn geven.

Proterogynisch. Langen tijd voor het opengaan der bloem en het onlasten van het stuifmeel kijken de stempels reeds buiten de kafjes uit: in dien toestand kunnen zij door vreemd stuifmeel bevrucht worden. Als de helmknoppen opengaan zijn de stempels verslent: zelfbestuiving is dus onmogelijk

Het stuifmeel wordt omstreeks 7-8 ure's morgens onlast (Kerner, Pflanzenleben, II, blz. 139).

Bij P. sanguinale en P. crus-galli stemt de bestuiving met die van Paspalum elegans overeen (Hildebrandt, loc. cit., blz. 757): de helmknoppen en de stempels komen gelijktijdig aan den top der bloem, dus op dezelfde plaats, te voorschijn. Het behaard gedeelte der stijlen kijkt alleen buiten de kafjes uit, terwijl het kaal gedeelte tusschen de kafjes verborgen blijft; zelfbestuiving is mogelijk. De stempels blijven nog een tijd lang frischt nadat de helmknoppen afgevallen zijn, en alsdan kunnen zij door stuifmeel van andere, mannelijke of tweeslachtige bloemen bevrucht worden.

97. Alopecurus agrestis L. Ω.

Deze soort is, evenals de volgende, volkomen proterogynisch. De
geheele bloeiwijze is eerst ♀, en wordt daarna ♂. (Kirchner, Neue Beobacht., 1886).

De proterogynie is even volkomen als bij Anthoxanthum (zie Nr 90); zelfbestuiving is uitgesloten (zie Hildebrandt, loc. cit. blz. 745). — Bij deze soort komt viviparie somwijlen voor (zie Wacker, Ned. kruidk. archief, V, 4e stuk, blz. 682).

99. Alopecurus geniculatus L. ♂.

Stemt met A. agrestis overeen. (Kirchner, Beiträge zur Biologie der Blüten, 1890.)

Volgens Kerner (Pflanzenleben, II, blz. 139) wordt het stuifmeel bij Alopecurus (soort niet aangeduid) omstreeks 7-8 ure 's morgens ontlast.

100. Phleum pratense L. 4.

Proterogynisch, evenals Alopecurus pratensis. Helmknoppen geel of violet. Stuifmeel om 7-8 ure 's morgens ontlast (Kerner, Pflanzenleben, II, blz. 139),

Volgens Kirchner (Beiträge, 1890, blz. 8) zou deze soort daarentegen homogaam zijn.

Wij hebben te Gentbrugge-bij-Gent (1892) enkele exemplaren met fraaie levendbarende (vivipare) aren aangetroffen.

Volgens Kerner (loc. cit., blz. 139) wordt het stuifmeel bij de meeste soorten van het geslacht Agrostis omstreeks 11 ure 's morgens ontlast.

104. Apera spica-venti P.V. ♂. — Niet onderzocht.

105. Calamagrostis Epigeios Roth. 4.

106. C. lanceolata Roth. 4.

Volgens Kerner (loc. cit., blz. 139) wordt het stuifmeel omstreeks 12-1 ure ontlast. — Evenals bij Agrostis zijn de takken der inflorescentie afstaande als het stuifmeel ontlast wordt.
107. **Milium effusum** L. 4.
Zwak proterogynisch. Volgens Kirchner (Neue Beobacht., 1886) zijn de stempels nog frisch, als de helmknoppen opengaan.

110. **Aira praecox** L. O. — 111. **A caryophyllacea** L. O. Niet onderzocht.

Volgens Kerner (loc. cit., blz. 449) brengt A. alpina, voornamelijk in de poolstreken en in het hooggebergte, dikwijls jonge planten voort op de plaats der bloemen.

111°. **Deschampsia coespitosa** L. 4.
Stuifmeel omstreeks 5-6 ure 's morgens ontlast (Kerner, blz. 139).

112. **Deschampsia flexuosa** L. 4.
Stuifmeel omstreeks 5-6 ure 's morgens ontlast (Kerner, blz. 139).
Deze soort is homogaam, maar de kafjes blijven open en de stempels frisch nadat de helmknoppen afgevallen zijn; in dien toestand is kruisbevruchting mogelijk.

113. **Deschampsia discolor** Thuill. 4. Niet onderzocht.

114. **Avena pubescens** L. 4.
Volgens Kirchner (Flora, blz. 134) zijn de bloemen zwak proterogynisch. Als de kafjes openspringen zijn de stempels geslachtsrijp. Korten tijd daarna gaan de helmknoppen open. Nadat de helmknoppen afgevallen zijn blijven de stempels nog frisch en de kafjes nog open. Zelfbestuiving is dus mogelijk, maar er is meer kans op kruisbevruchting.

De bloemen gaan 's morgens open. Volgens Hildebrandt (loc. cit., blz. 139) gaan de gekweekte Avena-soorten 's namiddags open.

115. **Trisetum flavescens** P. B. 4.
Het stuifmeel wordt omstreeks 7-8 ure 's morgens ontlast. Tegen den tijd dat het stuiven zal plaats grijpen wijken de takken van de hoofdas af (Kerner, II, blz. 139-140).

De volgende beschrijving ontleenen wij aan Kerner (Pflanzenleben, II, blz. 138):

Omstreeks 4-5 ure 's morgens springen de kafjes plotseling open, en daardoor worden de helmknoppen ontbloot. De *helmdragers*
(filamenten) nemen nu met een echt verbazende snelheid aan lengte toe: daardoor worden de helmknoppen uit de bloem geschoven; weldra buigen de meeldraden zich naar onderen en hangen de helmknoppen naar beneden. Nu gaan de helmknoppen open door het ontstaan van eene spleet in iedere helft. De randen deze spleet komen slechts aan den top van den helmknop (op die plaats, waar de beide helften van den helmknop in twee tegenovergestelde richtingen naar buiten gebogen zijn) van elkander los. Daaruit volgt dat het stuifmeel niet dadelijk uit de stuifmeelzakjes kan verwijderd worden: bij windstil weder blijft dit poeder gedurende eenigen tijd in de twee gebogen behouders bewaard. Wanneer de helmknoppen door den wind tot schommelen worden gebracht, wordt een klein wolkje stuifmeel in vrijheid gesteld. Vooreerst wordt de kleine hoeveelheid stuifmeel, die zich in het terminaal (onderste) geopend gedeelte van den helmknop bevindt, weggeblazen. Dit klein snuifje wordt nu vervangen door een nieuwe hoeveelheid, die uit het bovenst (basaal) niet geopend gedeelte naar beneden zinkt. Dit stuifmeel wordt nu op zijne beurt door den wind weggeblazen, en op die wijze wordt de helmknop allengs geheel geledigd. Daarna vallen de helmknoppen op den grond, gewoonlijk eenige uren nadat de bloem is opengegaan.

![Diagram](image-url)

Fig. 6. — *Arrhenatherum elatius*. Bloeiend aartje. — g, schutkasjes. — gl, kelkkasjes der bovenste φ bloem. — gl', id. der onderste σ bloem — m, meeldraden der φ bloem. — m', id. der σ bloem. — st, stempel.
De bestuiving van *A. elatius* wordt ook door Kirchner (Beiträge, 1890, blz. 8) beschreven. Ieder aartje bevat een ♀ en een ♂ bloem. De ♀ bloem is homogaam, maar spontane zelfbestuiving kan in den regel niet plaats grijpen, daar de stempels zich boven de openingen der helmknoppen bevinden.

Ieder aartje bevat een ♀ en een ♂ bloem. Bij *H. lanatus* komen de stempels en de helmknoppen gelijktijdig buiten de kafjes te voorschijn: de kans op zelfbestuiving is nagenoeg even groot als de kans op kruisbestuiving. (Zie Hildebrandt, loc. cit., blz. 758).

Volgens Kerner gaan de bloemen van het geslacht *Holcus*, bij gunstige weersgesteldheid, iederen dag tweemaal open: 1° een eerste maal omstreeks 6 ure ’s morgens; 2° een tweede maal (andere bloemen) omstreeks 7 ure ’s avonds. — Telkens moet de temperatuur ten minste 14° bereiken.

119. **Triodia decumbens** Beauv. 4. Niet onderzocht.

120. **Phragmites communis** Trin. 4.

Vegetatieve vermeerdering door uitloopers, waaruit stengels met bladen en bloemen ontstaan (Kerner, II, blz. 726). Niet onderzocht.

121. **Cynosurus cristatus** L. 4.

De stempels en de helmknoppen komen gelijktijdig buiten de kafjes te voorschijn: zelf- en kruisbevruchting kunnen beide plaats grijpen (Hildebrandt, loc. cit., blz. 758).

122. **Melica uniflora** Retz. 4. Niet onderzocht.

123. **Molinia coerulea** Mönch. 4. Niet onderzocht.

125. **Glyceria fluitans** R. Br. 4.

126. **G. aquatica** Wahl. 4.

Volgens Kerner (loc. cit. II, blz. 139) gaan de helmknoppen van *Glyceria* (soort niet aangeduid) omstreeks 4-5 ure ’s morgens (in ’t midden van den zomer) open. Bij *G. fluitans* kan de wortelende, vaak drijvende stengel 10 meters lang worden.

Volgens Hildebrandt (loc. cit., blz. 758) zijn de bloemen van
Briza media homogaam. Zelfbevruchting kan nagenoeg evengoed als kruisbevruchting plaats grijpen. — Het stuifmeel wordt omstreeks 4-5 ure 's morgens onlast (Kerner, blz. 139).

129. Poa annua L. ⊙. — 130. P. serotina Ehrh. ². —
133. P. pratensis L. ². — 134. P. compressa L. ².

De bloemen van P. pratensis zijn homogaam, maar de stempels blijven frisch en kijken nog buiten de kafjes uit, nadat de helmknoppen geledigd zijn (Kirchner, Flora, blz. 141) Volgens Kerner wordt het stuifmeel van Poa (soorten niet aangeduid) omstreeks 4-5 ure 's morgens onlast. — Bij P. annua, trivialis en pratensis werd viviparie (kleine plantjes op de plaats der bloemen) waargenomen (Wakker, Nederl. Kruidk. archief, V° deel, 4° stuk).

135. Dactylis glomerata L. ².

Volgens Kirchner (Beiträge, 1890, blz. 9) zijn de bloemen protogynisch met lang levende stempels. De stempels komen zijdelings tusschen de opengaande kafjes te voorschijn; alsdan zijn de helmknoppen nog gesloten en de belmgdragers (filamenten) nog kort. Als de filamenten hunne definitieve lengte hebben bereikt worden zij niet naar onderen gebogen; zij zijn daarentegen tamelijk stijf en recht uitgestrekt, waaruit volgt dat in dit stadium spontane zelfbevruchting gemakkelijk kan plaats grijpen. De stempels zien nog frisch uit nadat de helmknoppen geledigd zijn.

Volgens Hildebrandt (loc. cit., blz. 756) is de tijd, gedurende denwelken kruisbevruchting alleen mogelijk is, veel langer dan de tijd, gedurende denwelken zelfbevruchting kan plaats grijpen, waaruit volgt dat kruisbevruchting boven zelfbevruchting begunstigd wordt.

De bloemen gaan tusschen 6 en 7 ure 's morgens open, (Kerner, II, blz. 139). — Ook bij deze soort werd viviparie waargenomen (Wakker, loc. cit.). Zie Poa.

Volgens KicHNER (Beiträge, 1890, blz. 10) is *B. erectus* homogaam: als de kafjes elkander loslaten zijn de stempels geslachtsrijp. Tevens hangen de oranje-gele antheren naar onderen; daar zij echter aan haar top opengaan heeft spontane zelfbestuiving doorgaans geen plaats.

144. *Brachypodium sylvaticum* P. B. 4.

Bij *B. pinnatum* hangen de stempels nog tusschen de kafjes naar buiten, nadat de helmknoppen afgevallen zijn (Kirchner, flora, blz. 149).

Bij *L. temulentum* (Hildebrandt, blz. 758) zijn de bloemen homogaam. — Bij *L. perenne* zijn zij zwak proterogynisch (Kirchner, neue Beobachtungen, 1886). — Bij *L. multiflorum* (Kirchner, Flora, blz. 161) gaan de helmknoppen open als zij reeds buiten de bloem hangen; zelfbestuiving heeft aldus geen plaats. De helmknoppen zijn geel of grauwviolet. — Bij *L. perenne* werd viviparie waargenomen (Wakker, loc. cit.). Zie *Poa*.

Bij *Festuca elatior* (Hildebrandt, Gramineeen, blz. 756) zijn de bloemen homogaam; zelfbevruchting nagenoeg in gelijke mate als kruisbevruchting mogelijk. (1)

160. **Hordeum murinum** L. ©.

161. **H. secalinum** Schreb. ¼.

Bij de gewone gekweekte Gerst (*Hordeum vulgare*) staan de bloemen (eenbloemige aartjes) in 6 rijen. De bloemen der twee middelste rijen gaan niet open en worden uitsluitend zelfbevrucht; de bloemen der vier andere rijen gaan een weinig open en gedragen zich nagenoeg zooals de bloemen der Tarwe (*Triticum vulgare*). (2)

Bij een andere gekweekte soort, *Hordeum distichum*, staan de bloemen eveneens in 6 rijen, maar hier zijn de bloemen der 2 middelste rijen alleen tweeslachtig, terwijl de bloemen der vier overige rijen mannelijk (of geheel geslachteloos) zijn. Door de aren te schudden doet men het stuifmeel uit deze mannelijke bloemen vliegen. De tweeslachtige bloemen blijven niet alleen altijd gesloten, maar hare bestuiving geschiedt als de aar nog *volkomen* in de scheede opgesloten is. Als de aar uit de scheede te voorschijn komt zijn de stempels reeds afgestorven. Nochtans schijnt kruisbestuiving bij deze soort niet geheel uitgesloten te zijn, want tusschen de genoemde tweeslachtige bloemen bevinden er zich enkele, die schijnen bestemd te zijn om vreemd stuifmeel te ontvangen. Deze bloemen blijven 5 en meer dagen na de andere onbevrucht; zij zijn groter en ook door-

(1) *Festuca borealis* (Hildebrandt, Gramineeen, blz. 758) is homogaam, maar de stempels blijven nog een tijd lang frisch nadat het stuifmeel uit de helmknoppen verwijderd is. Alsdan kan kruisbestuivering plaats grijpen.

(2) De bloemen der tarwe gaan slechts een weinig en gedurende korten tijd (nagenoeg 15 minuten) open. Zoodra de kafjes van elkander loslaten springen de helmknoppen open, en de geslachtsrijpe stempels die zich tusschen de half-opengegane kafjes bevinden kunnen bestoven worden. Volgens Delpino komt (bij de Tarwe) nagenoeg een derde gedeelte van het stuifmeel op de stempels derzelfde bloem terecht, terwijl het overige door de lucht medegevoerd wordt en tot de bevruchting van andere bloemen kan dienen. Volgens Hildebrandt zou zelfbestuiving daarentegen niet onvermijdelijk zijn: het stuifmeel schijnt voor het overgrootste gedeelte in alle richtingen verspreid te worden. (zie Hildebrandt, loc. cit. blz. 750).
schijnender dan de andere. Zij gaan een weinig open en kunnen met vreemd stuifmeel (vooral met stuifmeel uit mannelijke bloemen) bevrucht worden. (Deze waarnemingen werden gedaan in Italië, door Delpino; geciteerd naar Hildebrandt, loc. cit. blz. 760.)

162. Agropyrum pungens R. en S. Niet onderzocht.

N. B. Op de aren van de gewone Rogge (Secale cereale) en wellicht ook van andere Gramineeeën, treft men soms vliegen aan, die het stuifmeel vreten dat op de kafjes gevallen is. Het is niet onmo- gelijk dat deze diertjes bij toeval stuifmeelkorrels brengen op de stempels, die tusschen de kafjes uitkijken. — Wij hebben op 9. 6. 86, te Melle, Spilogaster duplicata Meig. ♂ en ♀, in zeer groot aantal, stuifmeelvretend aangetroffen.

Fam. XII. Juncaceeën.

Al de inheemsche soorten dezer familie zijn windbloemig. (Toutes les espèces indigènes de cette famille sont anémophiles).

165. J. filiformis L. ♄.

Volgens Axell (Om Anordningarna enz., 1869, blz. 38) is deze soort protogynisch. Gedurende het eerste tijdperk gaan de bloemdekbladen slechts aan hun top open; de stempels alleen kijken buiten de bloem uit, en de helmknoppen zijn nog gesloten en tusschen de bloemdekbladen verborgen. Gedurende het tweede tijdperk gaat het bloemdek gansch open; de meeldraden spreiden zich uit en ontlasten hun stuifmeel.

166. Juncus effusus L. ♄

Zwak protogynisch (Kirchner, Neue Beobacht., 1886, blz. 10).
168. J. squarrosus L. ɔ.
Volgens Schulz (Beitr. zur Kenntniss der Bestäubungseinricht., Cassel, 1888; — blz 102) zijn de bloemen, in de Riesengebirge, homogaam of zwak proterogynisch. In vele gevallen wordt de stempel eerst na het opengaan der bloem volkomen geslachtsrijp. Gewoonlijk kan de stempel nog bevrucht worden als de helmknoppen reeds geledigd zijn.
Het schijnt dat de bloemen bij duister maar weinig opengaan. In dit geval heeft zelfbevruchting van binnen in de bloem plaats.

170. J. bufonius L. ɔ.
Volgens Batalin (Bot. Zeit., 1871) zijn de bloemen in Rusland driehelmig; zij blijven gesloten en zelfbevruchting heeft uitsluitend plaats.

172. J. compressus Jacq. ɔ.

176. Juncus lamprocarpus Ehrh. Bloemen volkomen proterogynisch (Kirchner, Flora, blz. 75)

177. Luzula campestris D. C. ɔ.
Bloemen volkomen proterogynisch. De geslachtsrijpe stempels komen buiten het nog gesloten bloemdek te voorschijn. Dikwijls gaan de bloemdekbladen eerst 3-4 dagen later open. Als dan zijn de stempels gewoonlijk half verdrogd. Onmiddellijk na het opengaan
van het bloemdekk (of iets later) wordt het stuifmeel ontlast: de buitenste helmknoppen gaan voor de binnenste open.

In ieder inflorescentie gaan de bovenste bloemen na de onderste open, waaruit volgt dat bestuiving eener bloem met stuifmeel van een andere bloem derzelfde inflorescentie slechts moeilijk kan plaats grijpen (Volgens Schulz, Beiträge, I, blz. 102)

178. Luzula multiflora Lej. 4. — Niet onderzocht.

Proterogynisch. Na het verwelken der stempels, die gedurende het eerste tijdperk buiten het bloemdekk te voorschijn komen, gaan de bloemdekkbladen open, en de helmknoppen ontlasten hun stuifmeel (zoals nr 165).

FAM. XIII. LILIACEËN.

180. Colchicum autumnale L. 4. (Honig geheel verborgen. — Nectar entièrement caché.)

Bolplant. — De bloemen ontspringen rechtstreeksch uit den onderaardschen stengel, die zich naast den bol bevindt, en door dezelfde scheede als de bol omgeven wordt. Zij zijn kortgesteeld; het bloemdekk is kroonachtig. De bloembuis is vrij lang, en haar onderste gedeelte (met het vruchtbeginsel) is tijdens den bloei in den grond verborgen. De zoom van het bloemdekk is 6-deelig, bleekrose of paars. De meeldraden zijn aan den voet der kroonlippen ingeplant. Hunne helmdragers (filamenten) zijn aan hun voet en aan de buitenzijde verdikt en geel (later oranje). Dit verdikt gedeelte scheidt honig af. Tegenover ieder honigklier. op de middelline van iedere kroonslip, bevindt zich eene door wollige haren overdekte groef, waarin de honig verzameld wordt. De stijlen zijn drie in getal, zeer lang, draadvormig. (Zie Kirchner, Flora, blz. 66).

Volgens Schulz (Beiträge, I, 1888, blz. 99) gaan de helmknoppen bijna aan den rand open, en het stuifmeel wordt aan de buitenzijde ontlast. Daarna worden zij horizontaal of zelfs geheel omgekanteld, zoodanig dat de stuifmeelzijde naar binnen toegekeerd wordt. Dikwijls worden zij naar eene zijde gekerd.

In jonge bloemen bevinden de stempels zich gewoonlijk (niet altijd) hooger dan de helmknoppen der langste (binnenste) meeldraden; in de volkomen ontwikkelde bloem zijn zij gewoonlijk op gelijke hoogte als deze (zelden lager).
Gewoonlijk zijn de stempels voor de helmknoppen geslachtsrijp (soms te gelijker tijd, soms later). In ieder geval kunnen de stempels nog bevrukt worden nadat de helmknoppen volkomen geledigd zijn.

Zelfbevruchting is gewoonlijk mogelijk als de bloem zich sluit.

Volgens Kirchner (Flora, blz. 66-67) zijn de bloemen proterogynisch met lang levende stempels. In den beginne hebben de stijlen dezelfde lengte als de meeldraden; later worden zij merkelijk langer, en hierdoor wordt kruisbevruchting bevorderd. Spontane zelfbestuiving is niet mogelijk. Insecten brengen gewoonlijk kruisbevruchting, zelden zelfbevruchting teweeg.

Volgens Schulz (loc. cit.) heeft de bloem bij het ontluiken gewoonlijk slechts de helft van hare definitieve groote bereikt, en is zij (soms zeer duidelijk) zygomorph. Later wordt de lengte der verschillende kroonslippen nagenoeg gelijk.

Bézoekers: Hemitrope Dipteren: Eristalis tenax algemeen, in September, in den botanischen tuin te Gent.

Bolplant. — De bevruchting werd beschreven door Kirchner (Neue Beobacht., 1886, blz. 7).

De bloem is proterogynisch, maar de antheren zijn nog frisch, als de helmknoppen reeds open zijn. De bloemdekbladen zijn 6 in getal, van binnen wit, van buiten groen met een smallen witten rand; zij spreiden zich bij helder weder volkomen uit. De filamenten der meeldraden zijn breed; als de bloem ontluikt staan zij rechtop, rondom den stamper, met gesloten helmknoppen. Eerst gaan de 3 buitenste, daarna de 3 binnenste helmknoppen open; het bovenst gedeelte der helmdragers (filamenten) buigt zich allengs naar buiten om, terwijl hun onderst gedeelte tegen het vruchtbeginsel aangedrukt blijft: tusschen de filamenten en het vruchtbeginsel zijn 6 nauwe kanalen begrepen. Van deze kanalen zijn er 3, die overeenstemmen met de vergroeiide randen der drie vruchtbladen. In ieder dezer drie kanalen wordt (door de septaalklieren) een druppel honig afgescheiden (althans bij zonnig weder). Het bovenste gedeelte van het vruchtbeginsel is geel en glanzend, maar scheidt geen honig af. Als de helmknoppen beginnen open te gaan is de stijl 3 mill. lang; later wordt hij 4 mill. lang. De bloemen sluiten zich bij duister weder en
's namiddags: alsdan staan de antheren rondom den stempel, en zelf-bestuiving heeft plaats (de drie binnenste meeldraden zijn iets langer dan de buitenste; in de gesloten bloem staan de helmknoppen der buitenste meeldraden op dezelfde hoogte als de stempels, die der binnenste iets boven deze).

183. Allium ursinum L. ♂. Wit, met volkomen verborgen honig? — (Blanc, à nectar complètement caché?)
(De volgende beschrijving ontleend aan Kirchner, Flora, blz. 60). — Bolplant. Bloemen onvolkomen proterandrisch. Eerst springen de helmknoppen der 3 binnenste, daarna de helmknoppen der 3 buitenste meeldraden langzaam na elkander open. Tevens wordt de stijl (die bij het opengaan der bloem slechts 2-3 mm. lang is) 6 mill. lang, en de stempel wordt geslachtsrijp. De stuifmeelzijde der helmknoppen wordt naar boven toegekeerd. Honig wordt verzameld in de 3 ruimten, tusschen de groeven van het vruchtbegin en den voet der binnenste meeldraden begrepen. Insecten die den honig willen bereiken moeten den kop tusschen den stempel en de helmknoppen steken; in de meeste gevallen zullen zij kruisbevruchting bewerkstelligen. Bij uitblijvend insectenbezoek wordt de stijl, in enkele bloemen, naar de helmknoppen toe gebogen, waarbij spontane zelfbevruchting mogelijk is.

184. Allium vineale L. ♂
Bevruchting niet onderzocht. Dikwijls worden, in plaats van bloemen, broedknoppen voortgebracht.

De bloemen rieken naar abrikozen, De bovenste bloemen van
- *Fleur jaune; à pollen*.
Wij hebben geen honig in de bloem gevonden.

187. *Convallaria majalis* L. Witte bijenbloem, zonder honig. — (*Fleur blanche, méllitophile, sans nectar*).
Als de bloem ontluikt gaan de helmknoppen (successievelijk of alle gelijktijdig) aan hun binnenzijde open; dikwijls worden de helmdragers (filamenten) zoodanig gedraaid dat de stuifmeeldragende oppervlakte zijdelings of zelfs naar buiten toegekeerd wordt. Het stuifmeel is droog, zeer licht, en wordt als een wolkje uit de helmknoppen ontlast wanneer men de bloem schudt.
De stempel is reeds in den bloemknop met tepels bezet; korten tijd voor het ontluiken of tijdens het ontluiken (volgens Müller eerst na het opengaan der helmknoppen) wordt stempelvocht afgescheiden. Bij het opengaan der bloem is de stijl doorgaans reeds iets langer dan de helmknoppen.
Door insectenbezoek wordt behalve kruisbestuiving ook zelfbestuiving (althans zoolang de helmknoppen niet geledigd zijn) bewerkstelligd.
Bij uitblijvend insectenbezoek is spontane zelfbestuiving bijna onvermijdelijk: de volkomen ontloken bloem is immers naar onderen toegekeerd, waaruit volgt dat stuifmeel uit de helmknoppen op den kleverigen stempel kan vallen.

(Zie ook H. Müller, fert. of flowers, blz. 549; — Kirchner, neue Beobacht., 1886, blz. 8 en Flora, blz. 69; — Ludwig, deut. botan. Monatsschrift, 1883).

188. **Polygonatum multiflorum** All. — Bijenbloem, witachtig met groenen zoom. — *(Fleur méliblophile, blanchâtre à limbe vert)*.

Het bloemdek heeft de gedaante van een witachtige buis, 13 à 17 mill. lang, van onderen buikig verbred, aan den ingang eveneens verbred en iets trechternormig.

De 6 bloemdekslippen zijn groenachtig, bij de volkomen ontloken bloem nagenoeg horizontaal uitgespreid, met omgebogen toppen.

Op den bodem der kroonbuis bevindt zich (soms zeer weinig) honig. De zes meeldraden staan tegenover de kroonslippen.

Zij zijn over het grootste gedeelte hunner lengte met den wand der kroonbuis vergroeid: slechts aan hun uiteinde zijn zij (over een veel kleiner gedeelte hunner lengte) vrij. Zij zijn wollig behaard, over nagenoeg de helft hunner lengte. De helmknoppen gaan aan de binnenzijde open; het opengaan begint aan den top en schrijdt allengs naar de basis voort. De bloem is homogaam.

De stijl is soms korter dan de meeldraden: de stempel bevindt zich alsdan tijdens den bloei nagenoeg op gelijke hoogte als de basis van het vrij gedeelte der meeldraden (fig. 8).

Door insecten die den honig op den bodem der kroonbuis trachten te bereiken zal zelfbevruchting in dit geval even gemakkelijk als kruisbevruchting bewerkstelligd worden, daar zij de helmknoppen voor den stempel aanraken (1).

Fig. 8. — **Polygonatum multiflorum.** — st, stempel. — m, basis van het vrij gedeelte van het filament van een der meeldraden. — Lengte der bloembuis: 13 mill. — (Naar de Natuur).

1) Volgens Müller (Alpenblumen, blz. 53) zou de stempel, bij *Polygonatum officinale* (*Convallaria Polygonatum*), aan den ingang der kroon-
andere (talrijkere) bloemen is de stijl nagenoeg evenlang als de meeldraden: de stempel bevindt zich alsdan op gelijke hoogte als de helmknoppen. Bezoekende insecten zullen in dit geval bijna onvermijdelijk zelfbestuiving bewerkstelligen, daar zij den stempel tegen de helmknoppen zullen drukken.

buis staan en ongeveer 3 mill. voor de helmknoppen uitsteken. Bijgevolg zouden de bezoekende insecten den stempel voóor de helmknoppen aanra-ken, en daardoor zou kruisbevruchting door insecten bevorderd worden. Van den anderen kant zou spontane zelfbevruchting bij uitblijvend insek-tenbezoek door den wederzijdschen stand van helmknoppen en stempel bevorderd worden: daar de bloem met hare opening naar onderen hangt kan stuifmeel uit de helmknoppen op den stempel vallen.

In sommige opzichten stemmen onze exemplaren (P. multiflorum) niet volkomen overeen met de beschrijvingen die in flora's gegeven worden.

Wij laten hier de kenmerken volgen van P. officinale en P. multiflorum, volgens

Stengel hoekig-gestreept; Stengel hoekig, in zijn bovenst gedeelte bijna afgeplat;	Stengel rol rond;
P. officinale. (P. vulgare Desf.)	P. multiflorum.
Bloemstelen 1-2 bloemig; Bloemstelen 1-2 bloemig;	Bloemstelen 3-5 bloemig; Bloemstelen 2-5 bloemig;
Bloemen groter; Bloembuis 14-17 mill. lang;	Bloemen kleiner; Bloembuis 11-15 mill. lang;
Filamenten der meeldra-den kaal.	Filamenten der meeldra-den behaard.
Bladen bijna zittend of stengelomvattend. Bladen bijna zittend.	

Onze exemplaren vertoonden de volgende kenmerken (Melle-bij-Gent, 1 Juni 1893): stengel van onderen cilindrisch of bijna cilindrisch, de bovenste stengelleden iets hoekig; — bloemstelen 1-4 bloemig; — Bloembuis 13-17 mill. lang; — Filamenten der meeldraden behaard; — Bladen zittend of bijna zittend, de onderste iets stengelomvattend.
Daar de bloemen met hare opening naar onderen hangen zal spontane zelfbestuiving onmogelijk zijn als de stijl korter is dan de meeldraden (zooals in de bloem, in fig. 8 afgebeeld); spontane zelfbestuiving zal daarentegen onvermijdelijk zijn als de stempel zich op gelijke hoogte als de helmknoppen bevindt, want in dit geval zal de stempel met een of meerdere helmknoppen in aanraking komen, althans aan 't eind van den bloei, want alsdan wordt het gedeelte der bloem, waar de helmknoppen en de stempels zich bevinden, als het ware dichtgesnoerd, en daardoor worden de helmknoppen tegen den stempel gedrukt.

Het ware belangrijk de individuele verschillen die zich bij P. multi/lorum voordoen (alsook de verschillen tusschen P. officinale en P. multi/lorum; zie de nota) grondig te bestudeeren. Komen die verschillen in alle streken en op dezelfde wijze voor? In welke mate worden zij op de nakomelingen overgeërfd? Welke rol wordt bij het ontstaan dier verschillen door de levensvoorwaarden gespeeld?

189. Majanthemum bifolium D. C. 4. (Witte pollenbloem; zeer zelden met bloottiggenden honig. — (Fleur blanche, à pollen; très rarement à nectar librement exposé). Zie Kirchner (neue Beobacht., 1886, blz. 9) en Schulz (Beiträge, II, 1890, blz. 168).

Bloeim klein, wit. Als zij opengaat is de stempel geslachtsrijp; de kroonbladen zijn afstaande, de helmknoppen zijn gesloten en staan dicht bij den stempel. Daarna worden de kroonslippen teruggeslagen; de meeldraden spreiden zich naar buiten uit, en de helmknoppen gaan successievelijk aan hunne binnenzijde open. De stempel blijft gewoonlijk nog frisch nadat de helmknoppen geledigd zijn. Daar de bloemsteeljes nagenoeg horizontaal afstaan heeft de bloem doorgaans een bijna verticaal stand: stuifmeel kan bijgevolg uit eenige helmknoppen op den stempel vallen. Deze spontane zelfbestuiving schijnt
(volgens SCHULZ) steeds door vruchtbaarheid gevolgd te zijn. De bloem is van honigklieren (septaalklieren) voorzien; honig komt echter zeer zelden voor. Wij hebben een enkele maal, bij zeer warm, zonnig weder, in een tweetal bloempjes een aanzienlijke hoeveelheid (blootliggende) honig rondom den voet van het vruchtbeginsel aangetroffen (te Melle-bij-Gent, Mei 1893).

Bezoekers: Wij hebben nooit bezoekers gezien, ofschoon wij de plant meermalen in gunstige omstandigheden hebben gadegeslagen.

Stempels geslachtsrijp als de bloem ontluikt; de helmknoppen gaan verscheidene dagen later open, maar de stempels blijven frisch tot het einde van den bloei. De stuifmeelkorrels zijn niet kleverig, en vliegen in een wolkje uit de helmknoppen bij de geringste aanraking. Er is geen honig. Het vruchtbeginsel is glanzig (volgens Kirchner gewoonlijk dof) en evenals de 4 stempels donkerpurper. Door deze kleur en door hare (onaangename) lucht lukt de bloem *Scatophaga merdaria* en andere aasvliegen aan: gedurende het eerste tijdperk van den bloei vinden de insecten niets dat hun tot voedsel kan verstrekken. Gedurende het tweede tijdperk kunnen zij stuifmeel vreten. — Door de proterogynie wordt *kruis*bevruchting door insecten bevorderd. — Somwijlen zijn de meeldraden bladachtig en onvruchtbaar: alsdan is de bloem vrouwelijk (Kirchner).

Fam. XIV. Amaryllidaceae.

Beverrichting niet onderzocht.

(1) Wij vertalen aldus het woord *Tauschblume.*
De bloem hangt met hare opening naar onderen. De groene deelen aan de binnenzijde der drie binnenste kroonbladen scheiden honig af en dienen tevens tot honigbehouders. De 6 helmknoppen liggen rondom den stijl, en gaan aan hun top open; wanneer zij aangeraakt worden laten zij een weinig stuifmeel uitvallen. Ieder helmknop is voorzien van een borstelvormig aanhangsel dat naar buiten gericht is. Als een insect den honig tracht te bereiken moet het onvermijdelijk een of meerdere dier aanhangselen aanraken; aldus worden de overeenkomstige helmknoppen bewogen, en een zekere hoeveelheid stuifmeel wordt op den kop van het insect uitgeschud. Daar de stempel voor de helmknoppen uitsteekt wordt hij voor de helmknoppen aangeraakt, en daardoor wordt kruisbevruchting door insecten bevorderd. Bij uitblijvend insectenbezoek kan spontane zelfbestuiving plaats grijpen, daar stuifmeel uit de helmknoppen op den stempel kan vallen.

Fam. XV. Iridaceen.

192. *Iris Pseudacorus* L. 4. — Gele bijenbloem. — *(Fleur mélitophile jaune).*

Zie H. Müller, Fert. of flowers, blz. 543, en Ludwig, Biol. Centralblatt, VI, 1887, n° 24.

De drie buitenste (afstaande) bloemdekbladen zijn voorzien van een honigmerk, in den vorm van een donkergere vlek met bruine strepen. Volgt men deze honigmerken naar binnen toe, zoó bereikt men den honig, die afgescheiden wordt door het onderst gedeelte der bloembuis, en tusschen den wand van die buis en den centralen stijl verzameld wordt. De 3 binnenste, meer of minder rechtopstaande, veel kleinere bloemdekbladen dienen slechts om de bloem meer in 't oog springend te maken, en spelen bij de bevruchtting geen rechtstreeksche rool. De drie hoogervermelde honigwegen zijn begrepen tusschen de buitenste bloemdekbladen met hunne honigmerken van onderen, en de drie bladachtige stempels van boven. Onder iederen stempel bevindt zich een helmknop; het filament van iederen helmknop is aan zijne basis met de middelnerf van het overeenkomstige buitenste bloemdekblad vergroeid. Daaruit volgt dat een insect, dat tusschen
het kroonblad en den stempel kruipt, door de basis van den helmknop tegengehouden wordt, en aan weerszijden van die basis een opening vindt waarin het zijne slurf kan voeren. De honig kan alleen bereikt worden door insecten, wier slurf 7 mill. lang is. De honigbehouder kan slechts door middel van eene 14 mill. lange slurf geleigd worden.

Iedere stempel draagt dicht bij zijn uiteinde en aan de onderzijde een klein blaadje, waarvan de bovenzijde de rol van stempel vervult. Insecten die van buiten naar binnen in de bloem dringen, zullen de bovenzijde van dit blaadje aanraken en met stuifmeel uit een andere bloem bestuiven. Enkele millimeters verder zal hun rug de (naar onderen gekeerde) stuifmeelzijde van den helmknop aanraken en zelf met stuifmeel bepoeiderd worden. Wanneer nu het insect, na honig te hebben gezogen, achteruitkruipend de bloem verlaat, zal het hoogervermeld blaadje naar boven gedrukt worden, en alleen de onderzijde van dit blaadje zal met den rug van het insect in aanraking komen; aldus zal het eigen stuifmeel nooit (of bijna nooit) op de stempeloppervlakte kunnen gebracht worden. Spontane zelfbestuiving is onmogelijk.

H. Müller heeft van deze plant twee vormen beschreven: bij den eersten vorm bevindt zich iedere stempeltak 6-10 mill. boven het overeenkomstige buitenste kroonblad. De bloemen die tot deze vorm behoren, worden door hommels bezocht. Bij den tweeden vorm is de ruimte tusschen stempeltak en bloemdekblad veel kleiner, en de bevruchting wordt voornamelijk bewerkstelligd door eene vlieg, Rhingia rostrata. — Overgangsvormen tusschen deze beide vormen zouden, volgens Müller, zelden voorkomen. Het ware belangrijk te onderzoeken of overgangsvormen werkelijk zoó weinig talrijk zijn.

Fam. XVI. Orchidaceeen.

De bevruchting van een groot aantal Orchidaceeen werd beschreven door Darwin, in zijn standaardwerk: «On the various contrivances by which british and foreign orchids are fertilised by insects, » with illustrations. — London, John Murray, 1862.

193. Orchis maculata L. 4. — Plant met volkomen
verborgen honig, volgens Müller, Alpenblumen. — (Plante à nectar complètement caché, d’après Muller, Alpenblumen).

De bloemdekbladen zijn ten getale van 6. Het onderste vormt de lip (labellum), en is aan zijne basis van een vrij lange, holle spoor voorzien. Deze spoor bevat geen honig, maar haar wand bevat eene vloeistof, welke de insecten weten te bemachtigen door van binnen in den wand te boren. De twee zijdelingsche kroonbladen (fig. 9, 4 en 5) zijn meer of minder afstaande, de drie bovenste (fig. 9, 1, 2 en 3) zijn los vereenigd tot een soort van helm, die boven de voortplantingsorganen een dak vormt. De zes kroonbladen zijn bleek-paars, soms bijna wit; het onderste en de twee zijdelingsche zijn versierd met paarse (op het figuur niet afgebeelde) aderen, die men als honigmerken kan beschouwen. Achter den ingang der spoor verheft zich de stempelzuil (gynostemium). Het bovenst gedeelte dezer stempelzuil draagt aan haar voorzijde twee stuifmeelzakjes, waarvan de wanden donkerder zijn dan de overige deelen der bloem. Op de middellinie zijn deze twee zakjes duidelijk gescheiden; aan hun top zijn zij verbonden door een soort van brug, die niets anders is dan het verbreed uiteinde van het helmbindsel (1). Ieder stuifmeelzakje is peervormig: zijn onderste, versmald gedeelte rust op de bovenzijde van een snavelvormig uitsteeksels h der stempelzuil, hetwelk naar voren gebogen is. Aan zijn top is deze snavel voorzien van een klein zakje of heursje (2) h (bursicula).

Ieder stuifmeelzakje gaat met een overlangsche spleet open. De inhoud van ieder stuifmeelzakje bestaat uit een enkel peervormig stuifmeelklompje (pollinium), dat gemakkelijk uit het zakje kan verwijderd worden (zie verder op welke

(1) Dit helmbindsel is vooral aan de achterzijde van de stempelzuil duidelijk zichtbaar.

(2) Dit beursje wordt door Darwin rostellum genoemd.
wijze), en in fig. 11 afgebeeld is. Dit stuifmeelklompje bestaat
uit een zeker aantal kleine lichaampjes, die zelf uit aan elk-
ander klevende stuifmeelkorrels zijn samengesteld (fig. 14).
Deze lichaampjes zijn onderling verbonden door zeer elasti-
sche, dünne draden. Aan het onderste uiteinde van ieder stuif-
meelklompje vloeien deze draden als het ware samen tot een
enkel draad, die zich als de steel van het stuifmeelklompje
voordoet, en staartje (caudicula) genoemd wordt (fig. 11, c).
Het beursje bij nu, dat zich aan den top van het gebogen
snaveltje bevindt, wordt van achteren begrensd door twee vlie-
zige schijfjes, die nagenoeg verticaal zijn (1) en aan hunne

(1) Deze schijfjes zijn eigenlijk deelen van den achtersten wand van het
beursje. Zie fig. 13.
voorzijde ieder voorzien zijn van een bolletje, dat uit een kleve-

Fig. 10 — *Orchis maculata*, bloem, van ter zijde gezien en in de lengte door-
gesneden. — *hsp*, spoor. — *vb*, vruchtbegin. — De andere letters zooals in fig. 9. (Naar de Natuur).

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 11. — Stuifmeelklompje van *Orchis mascula*. — *p*, het eigenlijke stuif-meelklompje. — *c*, staartje. — *d*, schijf van het hechtkliertje. — *e*, kleverige stof. — (Naar Darwin).

Fig. 12. — *Orchis mascula*, top van den snavel, met het beursje *h*; dit beursje is geopend, en zijn lipvormige wand is naar beneden gedrukt. — *d*, schijf van een der hechtkliertjes. — *c, c*, staartjes. — (Naar Darwin).

Fig. 13. — *Orchis mascula*, snavel in de lengte doorgesneden. — *c*, staartje. — *d*, schijfje met de kleverige stof *e*. — *h*, beursje, gesloten. — (Naar Darwin).

rige zelfstandigheid bestaat: deze schijfjes met hunne kleve-rige stof (fig. 11, *e*) noemt men de *hechtkliertjes* (*retinacula*). De staartjes der stuifmeelklompjes zijn ieder met een der hechtkliertjes verbonden (fig. 12). Als de bloem ontluikt is
het beursje gesloten, maar bij de geringste aanraking wordt het geopend; er ontstaat daarbij een dwarse spleet (1), die juist gelegen is voor het kielvormig vliesje (fig. 9, vl) dat zich tusschen de twee stuifmeelzakjes bevindt. De wand van het voorste gedeelte van het zakje wordt aldus tot een soort van onderlip, die kan naar beneden gedrukt worden, waardoor de 2 kleverige lichaampjes ontbloot worden (fig. 12). Zodra de drukking ophoudt neemt de genoemde onderlip door haar eigen veerkracht, opnieuw haren oorspronkelijken stand in: aldus wordt het zakje opnieuw gesloten, en de hechtkliertjes worden opnieuw verborgen.

Fig. 14.

Fig. 15.

![Fig. 14](image1)

![Fig. 15](image2)

Fig. 14. — *Orchis mascula.* — Stuifmeellichaampjes door draden verbonden, kunstmatig van elkander verwijderd. — (Naar Darwin.)

Fig. 15. — a, stuifmeelklompje van *O. mascula*, aan de punt van een potlood gehecht. — b, Id. id. na de beweging. — (Naar Darwin.)

Laten wij thans onderzoeken op welke wijze dit ingewikkelde mechanisme in werking wordt gebracht. Een insect plaatst zich op de onderlip, die als *landingsplaats* dienst doet; het tracht met zijn kop in de spoor te dringen, en zoodoende zal het schier onvermijdelijk tegen het beursje stuiten, en de onderlip van het beursje naar beneden drukken. Indien het nu een van de aldus ontbloote hechtkliertjes aanraakt, zal dit kliertje, door middel van de kleverige stof, aan zijn kop gelijmd worden. Wanneer het insect nu tracht weer vrij te

(1) Misschien ontstaat deze spleet soms van zelf.
worden zal het niet alleen het hechtkliertje, maar ook het daarmede verbonden staartje en het geheele stuifmeelklompje met zich medevoeren. Daar de stuifmeelzakjes open zijn is de krachtinspanning, die daartoe gevorderd wordt, betrekkelijk gering. Soms neemt het insect de beide stuifmeelklompjes te gelijk met zich mede.

Dit alles kan men gemakkelijk nabootsen door middel van een pootlood dat men in de bloem voert.

Het insect verlaat nu de bloem met een stuifmeelklompje (als een horen) op zijn kop, en het bezoekt daarna een tweede bloem. Op welke wijze zal nu het stuifmeelklompje uit de eerste bloem op den stempel der tweede bloem gebracht worden? De stempel (st) bevindt zich aan de voorzijde van de stempelzuil, onder den snavel, boven den ingang der spoor. Zijne oppervlakte is kleverig en glanzig. Het ligt nu voor de hand (zie fig. 10) dat het stuifmeelklompje op de kop van het insect (of aan den top van het pootlood, zie fig. 15, a) in de tweede bloem juist op dezelfde plaats als in de eerste bloem (namelijk in het stuifmeelzakje, en niet op den stempel) zou gebracht worden, terwijl het insect op dezelfde wijze als in de eerste bloem in de spoor tracht te dringen (1). Zoodra echter het stuifmeelklompje aan den kop van het insect (of aan het pootlood) bevestigd is buigt zich het schijfje van de hechtklier op zulke wijze, dat het stuifmeelklompje naar voren gebogen wordt en den stand aanneemt die in fig. 15, b aangegeven wordt. Voert men nu de punt van het pootlood in de spoor, dan komt het stuifmeelklompje op de stempeloppermvlakte terecht. (De beweging van het stuifmeelklompje duurt gewoonlijk 30 seconden). De stempel nu is kleverig: daardoor wordt het stuifmeel gelijmd, en door de bewegingen van het insect of van het pootlood worden eenige der elastische draden,

(1) Of terwijl men de punt van het pootlood in de spoor voert.
die de verschillende deeltjes van het stuifmeelklompje met elkander verbinden (fig. 14), gebroken. Wanneer het insect de bloem verlaat wordt een gedeelte van het stuifmeel op den stempel achtergelaten, terwijl het overige op den kop van het insect blijft, en kan dienen om een of meerdere volgende bloemen te bevruchten.

Opmerkingen:
1° De kleverige lichaampjes der hechtkliertjes wordt hard als zij aan de lucht zijn blootgesteld, en worden aldus zeer stevig aan den kop van het insect gelijmd. Zoolang zij in het beursje opgesloten blijven zijn zij kleverig en vochtig, door eene vloeistof omringd.

2° De schijfjes der hechtklieren volbrengen hunne beweging zoodra zij aan de droge lucht zijn blootgesteld; zij liggen in het onderst gedeelte der stuifmeelzakjes (aan de achterzijde van het beursje) waar zij vochtig gehouden worden.

3° De onderlip van het opengegane beursje wordt opnieuw gesloten zoohaast de drukking ophoudt: indien het insect slechts één stuifmeelklompje heeft weggehaald wordt de hechtklier van het ander stuifmeelklompje aldus opnieuw ingesloten en tot een volgend bezoek vochtig gehouden.

4° Waarschijnlijk wordt, in de meeste gevallen, slechts één stuifmeelklompje bij ieder bezoek weggehaald, zodat de bloem gewoonlijk tweemaal moet bezocht worden om hare beide klompjes te verliezen (1).

Bezoekers:

(1) De hier gegeven beschrijving is vrij gevolgd naar Darwin, loc. cit., blz. 9-19.
sap te zuigen uit den wand der spoor, maar schijnt de hecht-klieren te vermijden. Talrijke exemplaren; geen enkele maal hebben wij stuifmeel op het lichaam dier kevers gezien. — Hymenopteren: kleine zwarte mieren loopen over de bloemen. Hare verrichtingen hebben wij niet kunnen ontdekken. Ardoye, 23. 6. 88.

194. *Orchis latifolia* L. Bloem met volkomen verborgen honig. — (*Fleur à nectar complètement cache*).

Stemt in hoofdzaak met *O. maculata* overeen, uitgenomen wat de kleur betreft.

195. *Orchis Morio* L. — Als voren. — (*Comme l’espèce précédente.*)

Stemt in hoofdzaak met *O. maculata* overeen, maar de kleur verschilt. De 2 zijdelingsche kroonslippen zijn niet afstaande, maar nemen aan de vorming van den helm deel. De spoor is horizontaal of meer of minder naar boven gericht.

Zie Darwin, fert. of orchids; — H. Müller, Alpenbloemen; — Kirchner, Flora.

(Zie Kirchner, Flora, blz. 171; Müller, Alpenblumen, blz. 70; Darwin, blz. 88).

De bloemen verspreiden een sterke geur, vooral 's nachts; zij zijn bleekgekleurd. De spoor is 13-21 mill. lang, en bevat een aanzienlijke hoeveelheid honig.

Deze plant wordt door nachtvinders bezocht: de stuifmeel-kloompjes worden aan weerszijden van den voet der slurf gelijmd, en draaien zich naar binnen en naar onderen, zodat zij in een volgende bloem terechtkomen op den stempel, die zich hier tusschen de beide hechtkliertjes bevindt. De stempel is voorzien van twee zijdelingsche uitsteeksels, die onder de hechtkliertjes liggen en den ingang der spoor nauwer maken.
199. **Platanthera montana** Rehb. fil. — Nachtvlinderbloem. — *(Fleur adaptée aux lépidoptères nocturnes)*. Zie Kirchner, Flora, blz. 171.

Bloemen groter dan bij *P. bifolia*, bijna reukloos. Staartjes der stuifmeelklompjes met de hechtkliertjes verbonden door een trommelvormigen voet. De nachtvinders, die de bloemen bezoeken, hechten de stuifmeelklompjes aan hunne oogen. De hechtklieren staan dieper aan den ingang der spoor; de spoor is 23-43 mill. lang, en rijkelijk met honig gevuld.

200. **Epipactis palustris** Crantz. Bloem met half verborgen honig? — *(Fleur à nectar partiellement caché?)* Zie Kirchner, Flora, blz. 176, en Darwin, blz. 95.

De bloemen staan horizontaal. Het voorste gedeelte der lip dient als landingsplaats; het is door een geleding met het basaal gedeelte verbonden, en elastisch beweegbaar. Het basaal gedeelte der lip heeft de gedaante van een napje (spoor) dat met honig is gevuld. Het onderste deel van den stempel is tweelobbig (1); aan zijn top bevindt zich een kleine, bijna kogelronde hechtklier, waarvan de voorzijde een weinig voor het bovenst gedeelte van den stempel vooruitspringt. Deze hechtklier is voorzien van eene weke, elastische membraan, die gemakkelijk kan verwijderd worden door een geringen naar boven en naar voren toegebrachten stoot; alsdan blijft een klein vierkant stompje aan den top van den stempel over. De helmknop gaat over zijn geheele lengte open, alvorens de bloem ontluikt; aldus worden de twee ovale ongesteelde stuifmeelklompjes blootgelegd. Het stuifmeel bestaat uit ronde korrels, die tot kleine lichaampjes vereenigd zijn. Deze lichaampjes zelve zijn verbonden door dunne, elastische draden (vergelijk met *Orchis mascula*, zie fig. 14). Deze draden zijn vereenigd tot bundels die aan de voorzijde van ieder stuifmeelklompje samenloopen in den vorm van eene bruine streep (waardoor het klompje schijnbaar in tweeën wordt gedeeld), die met de achterste lob van het vliezig omhulsel van het hechtkliertje verbonden is. Het bovenst gedeelte van den helmknop bevat geen stuifmeel, is een weinig naar voren gebogen (fig. 16, A) en hangt over den stempel. Een insect dat de bloem bezoekt plaatst

(1) Dit is in fig. 16, B niet duidelijk.
zich vooreerst op het voorste gedeelte der lip en drukt dit gedeelte naar beneden. De ingang wordt daardoor verwijd, en het insect kan dieper in de bloem dringen zonder het hechtkliertje aan te raken; intusschen heeft de eindlob der onderlip door haar eigene veerkracht opnieuw haren oorspronkelijken stand aangenomen, en het insect wordt daardoor gedwongen de hechtkliert aan te raken wanneer het de bloem verlaat. De stuifmeelklompjes worden op dezelfde wijze als bij Orchis, aan den rug of aan den kop van het insect gehecht. De beweging der stuifmeelklompjes die wij bij Orchis hebben leeren kennen (zie fig. 15) heeft hier niet plaats. Als het insect, met stuifieel op zijn kop (of op zijn rug) een nieuwe bloem bezoekt, zal de kleverige stempel, voor alle andere deelen der bloem, met het stuifieel in aanraking komen.

201. Epipactis latifolia All. — Wespenbloem? — (Fleur adaptée aux vespides?)

Deze soort stemt in hoofdzaak met de vorige overeen, maar de hechtkliert springt verder vooruit, en het bovenst gedeelte van den helmknop is minder naar voren gebogen. De eindlob van het lipje is kleiner en niet geleed, niet beweeglijk (zie Darwin, blz. 102).

Fig. 16. — Epipactis palustris.

202. **Listera ovata** R. Br. Bloem met blootliggende honig; sluipwespenbloem. — *(Fleur à nectar librement exposé, adaptée aux Ichneumonides.)* Zie Darwin, blz. 139 en Kirchner, Flora, blz. 178.

![Diagram of Listera ovata](image)

Fig. 17. — Listera ovata.

A. Bloem van ter zijde gezien. Al de bloembladen zijn afgesneden, uitgenomen de lip *l.* — *hg,* honigafsciehende groef. — *col,* top der stempelzuil. — *h,* helmknop. — *p,* stuifmeel. — *r,* snavel. — *st,* stempel. — *vb,* vruchtbeginsel.

B. Stempelzuil, onmiddellijk na de aanraking. — Het stuifmeel is weggeméeld, en de snavel *r* heeft zich meer naar onderen gebogen.

(Naar Darwin).

*De onderlip is lang, smal, aan haar voet ingesnoerd, en vertoont in 't midden een lange groef, waarin honig afgescheiden wordt. De snavel (rostellum, *r*) is groot, dun of bladachtig, van voren gewelfd, van achteren concaaf, aan zijn top toegespitst. Hij overwelft de*
stempelpoppervlakte. Van binnen is de snavel verdeeld in een aantal hokjes, die een kleverige vloeistof bevatten en bij de geringste aanraking deze vloeistof laten ontsnappen. De helmknop ligt achter den snavel, en wordt door een breed uitwas aan den top der stempelzuil beschut. Als de bloem volkomen onloken is liggen de stuifmeelklompjes (p) geheel vrij: zij bevinden zich tusschen de stuifmeelzakjes van achteren en de concave zijde van den snavel van voren: hun voorste, spits uiteinde rust op den top van den snavel. De stuifmeelkorrels zijn (evenals bij Orchis, zie fig. 14) door draden verbonden, maar deze draden zijn breekbaar, en aanzienlijke massas stuifmeel kunnen gemakkelijk afgebroken worden.

Als de bloem ontluikt is een geringe drukking voldoende om een druppel vloeistof uit den snavel te doen te voorschijn komen. Na 2 of 3 seconden wordt deze druppel hard, en hij neemt weldra een purper bruine kleur aan. (Men kan deze vloeistof doen uittreden door den snavel met een haar aan te raken, ofwel door de bloem gedurende nagenoeg eene minute aan chloroform-dampen bloot te stellen.)

Daar nu de spitse uiteinden der stuifmeelklompjes op het bovenst uiteinde van den snavel liggen, worden zij altijd door den uittredenden druppel bevochtigd, en deze vloeistof is zoo kleverig, en wordt zoo vlug hard, dat het zeer moeilijk is den snavel met de punt eener naald vlug genoeg aan te raken om niet de stuifmeelklompjes, die door de vloeistof aan de naald gelijmd worden, mede te voeren. Kleine insecten plaatsen zich op de lip, en likken honig; zoodoende kruipen zij langzaam naar omhoog, tot zij het bovenst uiteinde der honiggroef hebben bereikt: hun kop bevindt zich alsdan onder het gebogen uiteinde van den snavel. Als zij nu hun kop weder opheffen raken zij dit uiteinde aan: de vloeistof komt te voorschijn, wordt hard, en lijmt de toppen der stuifmeelklompjes aan den kop van het insect. Het insect verwijdert zich nu met de stuifmeelklompjes op den kop; in de volgende bloem zullen deze klompjes den stempel aanraken, en een gedeelte van het stuifmeel zal door de klevige stempelpoppervlakte gelijmd worden. — Op het oogenblik dat de snavel zijne vloeistof laat ontsnappen wordt hij nog meer naar voren gebogen; daarna wordt hij allengs opnieuw naar achteren gebogen (deze beweging duurt eenige uren of een dag), en daardoor wordt de toegang tot den stempel en zijne bestuiving bij een tweede insectenbezoek gemakkelijker gemaakt.

Tweede klasse: Tweezaadlobbigen (*Dicotylen*).

Fam. XVII. *Convolvulaceeëen*.

204. *Convolvulus arvensis* L. — Bloem wit, of wit met rose; honig volkomen verborgen. — (Fleur blanche ou en partie rosée, a nectar complètement caché).

De trechtrvormige bloemkroon is wit, of bleekrose, soms met witte en rose of bleekrose banden; de bodem der bloem is doorgaans geelachtig.

![Fig. 18. Convolvulus arvensis, var. met gebogen aanhangsels aan den voet der meeldraden. De gestippelde lijn duidt de plaats aan waar de kroon afgesneden werd om de inwendige deelen te laten zien. — X Gebogen aanhangselen der meeldraden. — ll. Meeldraad met 2 aanhangsels. — lll. Id. met een aanhangsel.](image-url)
De honig wordt afgescheiden door een ringvormige klier rondom den voet van het vruchtbeginsel. De 5 helmdragers (filamenten -der meeldraden) zijn aan hun voet verbreed, en de vijf verbrede gedeelten zijn boven het vruchtbeginsel vereenigd tot een soort van gewelf of honigdeksel; dit honigdeksel vertoont 5 interstaminale openingen, waardoor de honig kan bereikt worden. De helmknoppen gaan aan de buitenzijde open, en er zijn gewoonlijk 3 langere en 2 kortere meeldraden. Volgens Kirchner (Flora, blz. 548) zijn de bloemen homogaam. Volgens Schulz (Beitr. II, blz. 110) gaan de helmknoppen gewoonlijk open als de stempels reeds volkomen geslachtsrijp zijn; exemplaren met grottere bloemen zijn gewoonlijk (in Zuid-Tyrol) proterandrisch. Spontane zelfbestuiving schier altijd mogelijk: de helmknoppen der langste meeldraden bevinden zich gewoonlijk ongeveer op gelijke hoogte als de 2 divergerende stempeltakken, en daar deze takken zich meestal tusschen de helmknoppen bevinden komen zij met het stuifmeel in aanraking (zie fig. 18). Spontane zelfbestuiving is eveneens mogelijk als de kroon afvalt, of wanneer de bloem zich naar onderen neigt. In den hoogervermelden grootbloemigen vorm bereiken de helmknoppen gewoonlijk de basis der stempels niet.

Zie ook Müller, fertilis. blz. 423; Bürgerstein, Ber. deut. bot. Gesellsch. 1889, blz. 370; en Mac Leod, Bot. Jaarb. I, 1889, blz. 110. In de laatstgenoemde verhandeling hebben wij o. a. een variëteit beschreven wier meeldraden aan hun voet gebogen aanhangsels dragen (zie fig. 18); wij hebben ook de aandachtgeroepen op het feit, dat in de duinen (te Blankenberghe), de helmknoppen vaak onvruchtbaar worden (parasitaire ontmanning?). De bloemen dezer soort toonen veel verscheidenheid wat de kleur, de grootte, enz. betreft. Zij gaan 's nachts en bij regenachtig weder dicht.

BesoeKERS: Langtongige bijen: Apis mellifica L. ♂, 27. 6. 87; 14. 7. 87; Melle. — Lepidopteren: Pieris Napi, 6. 8. 86, Melle. Pieris sp., 16. 7. 87, Gent.

205. Convolvulus sepium L. — Witte vlinderbloem. (Fleur lépidoptérophihe blanche).

Stemt in hoofdzaak met de vorige soort overeen, maar de bloem is groter, geheel wit, en reukeloos; zij blijft bij regenachtig weder open. Volgens Kirchner is zij homogaam. Zelfbevruchting is moge-
lijk als de kroon afvalt, of als de bloem zich naar onderen neigt. Volgens Müller, Delpino en anderen worden de bloemen in de schemering door *Sphimx Convolvuli* bezocht.

(Zie Müller, fertilis. blz. 424; — Kirchner, flora, blz. 548; — Bürgerstein, Ber. deut. bot. Gesellsch., 1889, blz. 370; — Focke, Kosmos, 1884, I, blz. 291; — Schwarz und Wehsarg, Pringsh. Jahrb., XV.)

206. **Cuscuta Epithymum** L. — Witachtige bloemen met volkomen verborgen honig. — *(Fleurs blanchâtres à nectar complètement caché).*

Terwijl de soorten van het geslacht *Convolvulus* polycarpisch zijn en groote bloemen dragen, zijn de *Cuscuta*-soorten monocarpisch en hare bloemen zijn zeer klein.

Bij *C. Epithymum* wordt honig door het onderst, groenachtig gedeelte van het vruchtbeginsel afgescheiden; 5 bladachtige aanhangsels der bloemkroon zijn boven het vruchtbeginsel samengebogen, en beschutten den honig. De helmknoppen gaan aan de binnenzijde open (bij *Convolvulus* heeft het omgekeerde plaats). De stempels staan lager dan de helmknoppen; stuifmeel kan dus uit de helmknoppen op de stempels vallen, waardoor spontane zelfbestuiving verzekerd is. Homogaam, door insecten weinig bezocht (H. Müller, Weitere Beob., III, n° 502). — In ons gebied zeer zeldzaam.

207. **Cuscuta major** D. C. Bleekrose bloem met half verborgen honig? — *(Fleur d’un rose pâle à nectar partiellement caché?)*

Volgens Kirchner (Flora, blz. 550) stemt deze soort met de vorige overeen. De bloemen zijn iets groter, roodachtig; de aanhangsels der bloemkroon zijn niet samengeigend, maar nagenoeg rechtopstaande (Zie Cosson et Germain, Atlas flore Paris, 1882, pl. XIV).
De honig is dus minder volkomen verborgen dan bij de vorige soort. Deze soort is in ons gebied zeer zeldzaam.

![Fig. 19. Cuscuta Epithymum.](image)

1. Bloem in de lengte doorgesneden; de stamper is verwijderd. — *h*, helmknop. — *s*, schub aan de keel der bloemkroon.
Id. Bloem van ter zijde gezien. — *st.*, stempel.
(Naar Cosson en Germain, atlas flore envir. de Paris.)

Fam. XVIII. Borraginaceae.

+ 208. Cynoglossum officinale L. — Vuilpurpere bloem met volkomen verborgen honig. — *(Fl. d'un pourpre douteux à nectar complètement caché.)*
Waarschijnlijk niet inheemsch in ons gebied.

209. Lycopsis arvensis L. Blauwe (zelden witte of rose) bijenbloem. — *(Fleur méliittophile bleue, rarement blanche ou rose).*

Homogaam. Kroon trechtvormig, blauw met witte keelschubben die met korte, witte haren bezet zijn en de buis geheel afsluiten. Kroonbuis knievormig gebogen, omstreeks 6 mm, lang. Honigklier 4deelig, aan den voet van het vruchtbeginsel. De stempel steekt boven de helmknoppen uit, waardoor kruisbestuiving door insecten bevorderd wordt. Als de kroon afvalt, aan ’t eind van den bloei, komen de helmknoppen met den stempel in aanraking. *(H. Müller, fert. flowers, blz. 411; — Kirchner, flora, blz. 555).*

Heinsius heeft deze bloem uitvoerig beschreven; bij de door hem waargenomen exemplaren (in Nederland) was de stijl ongeveer evenlang als de meeldraden *(Heinsius, Bot. Jaarb. IV, 1892).*

210. Symphytum officinale L. — Witte of paarsrose
bijenbloem. (*Fleur méliittophile blanche ou purpurine-rosée*).

Fig. 20. — Symphytum officinale.

A, Bloem, geheel. — *B*, Id., onderst gedeelte, een gedeeltje der kroon is weggenomen, om den *kegel* te laten zien. *C*, Id., een der keelschubben weggenomen, ten einde 2 meeldraden te laten zien. — *st*, stijl. — *s*, schubben. — *m*, meeldraad.

De overhangende bloemen zijn homogaam. De samenneigende helmknoppen zijn rondom den stijl vereenigd tot een hollen kegel; de spleten tusschen de meeldraden worden gesloten door 5 hoekige keelschubben. De helmknoppen gaan aan de binnenzijde open, alvorens de bloem ontluikt: een gedeelte van het stuifmeel wordt onthast in den hollen kegel, dien de helmknoppen vormen, en het overige gedeelte blijft in de helmknoppen zitten. Honig wordt afgescheiden door een witte ringvormige klier aan den voet van het 4deelig vruchtbeginsel. De totale diepte der kroon bedraagt ongeveer 14 mill.; het basale, nauwer gedeelte is ongeveer 8 mill. lang. Als een insect zijne slurf tusschen de helmknoppen voert wordt de stuifmeelhoudende kegel geschud, en daarbij valt een zekere hoeveelheid stuifmeel op den kop van het insect. Daar de stempel voorbij de helmknoppen uitsteekt wordt hij vóór de helmknoppen aangeraakt, en aldus wordt bevruchting met stuifmeel uit een andere bloem bevorderd. Bij uitblijvend insectenbezoek is spontane zelfbestuiving mogelijk.
Volgens Müller zouden de 3hoekige keelschubben, waardoor de wijde openingen tusschen de filamenten der meeldraden gesloten worden, dienen om de insecten te dwingen hun slurf tusschen de helmknoppen (en niet tusschen de filamenten) heen in de bloem te voeren; de stekeltjes waarmede de schubben aan haar rand gewapend zijn dragen daartoe bij, daar zij door de bezoekers vermeden worden.

Insecten, wier slurf niet lang genoeg is om den honig op de normale wijze te bereiken, doorboren den wand der kroonbuis en stelen den honig zonder eenig nut voor de plant. Dit is onder anderen het geval met Bombus terrestris L., B. lapidarius L., B. pratorum L. Apis mellifica, enz. (Zie H. Müller, fertil. of flowers; — Kirchner, Flora; — Loew, Bestäubung Borragin. blz. 157. — Schulz, Beitr. Bestäub. II).

211. Echium vulgare L. — Bijenbloem, eerst rood, later blauw. — (Fleur mélittophile d'abord rouge, ensuite bleue).

Bloemen talrijk, in sierlijke rechtopstaande bloeiwijzen. Kroon wijd open Meeldraden aan hunne basis, over een lengte van +4 mill. met kroonbuis vergroeid; het vrij gedeelte hunner helmdragers (filamenten) ligt tegen den ondersten wand der bloemkroon aan. De
4 lange meeldraden steken nagenoeg 7 mill. buiten de bloemkroon uit, terwijl de bovenste, veel kortere meeldraad slechts tot aan den rand der bloemkroon reikt. De stijl is langer dan de meeldraden. Meeldraden en stijl zijn alle iets naar boven gebogen, en de stuifmeelzijde der helmknoppen is naar boven toegekeerd. Een insect (hommel b.v.) dat zich op den uitstekenden bundel van meeldraden en stijl nederzet, zal dus den stempel aanraken en tevens aan zijne buikzijde met stuifmeel bepoederd worden. Daar de stijl langer is dan de meeldraden, zal de stempel gewoonlijk vóór de helmknoppen aangeraakt, en met stuifmeel uit een andere bloem bevrucht worden. Als de bloem ontluikt is de stijl nog kort, en strekt hij zich niet verder uit dan de rand der kroon; zijn twee takken zijn nog niet open, terwijl de helmknoppen reeds opengaan. Later wordt de stijl langer, naar boven gebogen, en de twee stempeltakken komen van elkander los. Gedurende het eerste tijdperk is de bloem ♂; daarna wordt zij ♀, of ♀ indien de helmknoppen geledigd zijn.

Honig wordt afgescheiden door een vleezige klier aan de basis van het vruchtbeginsel, en in het onderst gedeelte der trechtervormige kroon verzameld. De weg die naar het honighoudend gedeelte der kroon voert wordt door den bovensten meeldraad in tweeën gedeeld (fig. 21, h.).

Behalve de exemplaren met ♀ bloemen komen ook vrouwelijke planten voor: bij haar is de bloem kleiner, de stijl korter; de meeldraden zijn korter met onvolmaakte helmknoppen. — Volgens Kirchner worden bloemen aangetroffen, waarin enkele meeldraden normaal, en de overige rudimentair zijn. — (Zie Müller, fertil., blz. 418; — Heinsius, Bot. Jaarb. 1892, blz. 108; — Kirchner, Flora; — Schulz, Beiträge, I).

annulata L. ♀, talrijk, smvtd., niet zuigend. 25. 7. 92. —

Hemitrope Dipteren: Eristalis pertinax Scop., ♀, 17. 7. 87.—
Lepidopteren: Plusia gamma, 25. 7. 92. — (Alle te Heusden).

212. Lithospermum arvense L. Witte bloem met volkomen verborgen honig. — (Fleur blanche à nectar complètement caché).

De kroonbuis is 4-5 mill. diep, en slechts 1 mill. breed in haar onderst gedeelte. De 5 korte meeldraden zijn op den wand der kroonbuis, onder het midden ingeplant, en de helmknoppen gaan aan de binnenzijde open, alvorens de bloem ontloken is. De stijl is 2 mill. lang, en voorzien van twee rondachtige stempellobben, waaronder zich een ring van stempeltepels bevindt; deze ring bevindt zich op gelijke hoogte als de helmknoppen, en sluit volkomen de opening die (tusschen de helmknoppen) naar den bodem der bloem voert. De honig wordt door het vruchtbeginsel afgescheiden en in het onderst gedeelte der kroonbuis verzameld. De meeldraden zijn aan hun bovenst uiteinde iets naar buiten gebogen, waardoor de slurf van een insect in het centrum gevoerd wordt, tusschen den stempel en de helmknoppen. In een jonge bloem zal een insect, dat reeds met stuifmeel uit een andere bloem beladen is, kruisbestuiving bewerkstelligen, en tevens zal zijne slurf met nieuw stuifmeel bepoederd worden. Daar nu het stuifmeel hoe langer hoe meer uit de helmknoppen treedt, wordt kruisbevruchting weldra moeilijker, en zelfbestuiving is eindelijk onvermijdelijk. (MüLLER, Fert. flow., blz. 417).

213. Myosotis palustris Rth. — Blauwe bloem met volkomen verborgen honig. — (Fleur bleue à nectar complètement caché) — Müller, fertil., blz. 416.

Middellijn der bloem: 10-12 mill. of minder. Kroonbuis 3 mill. diep. Rondom de keel vijf holle uitwassen (keelschubben, fig. 22, s) der kroon, die in 't centrum samen een gelen ring vormen (zie hooger, blz. 168), en tot honigmerk dienen. Vijf meeldraden op de kroon ingeplant, het vrij gedeelte hunner filamenten zeer kort, de helmknoppen iets naar het centrum toegeneigd, met hunne stuifmeelzijde grootendeels naar het centrum toegekeerd, op gelijke hoogte als de stempel. Aan zijn top draagt ieder helmknop een naar buiten omgebogen aanhangsel (fig. 22, 4 en 5): een insect, dat zijne slurf tusschen
den stempel en de helmknoppen in de bloem voert, zal aan de eene zijde met den stempel en aan de andere zijde met een of meerdere aanhangsels der helmknoppen in aanraking komen. Daar de helmknoppen schuin naar het centrum toe geneigd zijn wordt hunne stuifmeelzijde bij het invoeren der slurf gewoonlijk niet aangeraakt. Als de slurf uit de bloem getrokken wordt, nadat het insect honig heeft gezogen, zal zij onvermijdelijk met de stuifmeelzijde in aanraking komen. Dit blijkt duidelijk uit fig. 22, 2. Door die inrichting wordt kruising bevorderd. De honigklier heeft de gedaante van een meer of minder 8hoekigen, groenen ring, die het 4deelig vruchtbeginsel aan zijn voet omgeeft. Te oordeelen naar den stand der σ en Φ organen.

Fig. 22. — *Myosotis palustris.*

1. Bloem van boven gezien. In 't centrum de stempel. — h, helmknop. — s, keelschub.
2. Id. in de lengte doorgesneden: h en s als voren. — kl, kelk. — hg honigklier. — v, vruchtbeginsel.
3. Bloembodem. hg, honigklier. — n, een der 4 deelen van het vruchtbeginsel. — In 't centrum de basis van den stijl.
5. Id. schuin van de buitenzijde gezien.
(fig. 22, 2) kan spontane zelfbestuiving bij uitblijvend insectenbezoek slechts moeilijk plaats krijgen. Er komen exemplaren met kleinere ♀ bloemen voor. — Onder de inheemsche Myosotis-soorten is M. palustris alleen steeds ♀; de overige zijn ♂ of ⊙ (zeer zelden ♀). M. palustris heeft grottere bloemen en ontvangt meer insectenbezoek dan eenige andere inheemsche soort.

214. M. caespitosa C. F. Schulz. — Zooals n° 213. —

Comme le n° 213.

215. Myosotis intermedia Link. — Blauwe bloem met volkomen verborgen honig. — (Fleur bleue à nectar complètement caché).
Bloempjes kleiner dan bij *Myosotis palustris*, homogaam; de stempel staat op gelijke hoogte als de helmknoppen; helmknoppen, evenals bij *M. palustris*, aan hun top van een aanhangsel voorzien. Zoom der bloemkroon schotelvormig. Bij uitblijvend insectenbezoek heeft spontane zelfbestuiving plaats. (Kirchner, Flora).

Bezoekers: Allotrope Dipteren: *Siphona geniculata* Deg., zgd. 25, 6. 88, Ingelmunster.

216. *Myosotis arenaria* Schrad. — Blauw met verborgen honig. — (*Bleu, à nectar complètement caché*).

Bloemen homogaam. Kroonzoom schotelvormig, nagenoeg 2 mill. breed; kroonbuis 2 mill. diep. Meeldraden boven den stempel samennigend; zelfbestuiving bij uitblijvend insectenbezoek daardoor onvermijdelijk. De ingang der kroon is zeer nauw; de slurf der insecten wordt aldus juist in ’t centrum ingevoerd; 1/4 mill. onder den ingang bevinden zich de convergeerende en naar buiten omgebogen aanhangsels der helmknoppen (zie *M. palustris*), waardoor de slurf verder in de richting der as gevoerd wordt, zoodat zij onvermijdelijk den stempel aanraakt. Daarna wordt de slurf uit de bloem getrokken en (van onderen naar boven) over de binnenzijde de samenniegende helmknoppen gestreken, waardoor een versche voorraad stuifmeel opgenomen wordt. (Müller, weit. Beob., III).

Bezoekers: Lepidopteren: *Adela?*, 19. 5. 89, Gentbrugge.

218. *Myosotis versicolor* Sw. — Bloemen met volkomen verborgen honig, eerst geel, daarna roodachtig en eindelijk blauw. — (*Fl. à nectar complètement caché, successivement jaune, rougedtre et bleue*).

Als de bloem opengaat heeft zij nog niet hare definitieve grootte bereikt; de kroonbuis is nauwelijks 2 mill. lang; de helmknoppen gaan reeds open. De stil is bijna 3 mill. lang; de stempel is geslachtsrijp, en steekt boven de helmknoppen en zelfs een weinig buiten de kroonbuis uit. In dezen toestand zullen insecten bijna onvermijdelijk kruisbestuiving bewerken, daar de stempel vóór
de helmknoppen derzelfde bloem aangeraakt wordt. Bij uitblijvend insectenbezoek (dit is het gewone geval) is spontane zelfbestuiving volkomen verzekerd, want na het ontluiken der bloem wordt de kroon groter, en de kroonbuis langer; daardoor worden de helmknoppen, die op de kroon ingeplant zijn, op gelijke hoogte als de stempel gebracht. De helmknoppen staan nu dicht rondom den stempel en zelfbestuiving heeft plaats. Bloemen weinig in 't oog springend, weinig bezocht (MüLLER, Weitere Beobacht., III).

FAM. XIX. SOLANACEËN (1).

219. Solanum dulcamara, L. — Violette pollenbloem — (Fleur à pollen, violette).

Bloemen violet, zwak geurend, homogaam. In 't centrum der bloem een napvormige, blauwzwarte indieping, die glanzig is alsof zij door een laagje vloeistof overdekt ware. Aan den voet van ieder kroonslip 2 groene, witgezoomde, iets verheven vlekken, die de centrale violette indieping omringen. Uit het centrum van het napje verheffen zich de 5 meeldraden, waarvan de gele helmknoppen tot een kegel vereenigd zijn en door korte, stijve filamenten gedragen worden. In 't centrum de stijl; de stempel steekt boven de helmknoppen uit. Ieder helmknop gaat aan zijn top met 2 poriën open. Kruisbestuiving door insecten wordt door den stand der organen bevorderd, daar de stempel vóór de helmknoppen aangeraakt wordt. (KIRCHNER, Flora blz. 566).

(1) Solanum tuberosum (aardappel) is niet inheemsch. De bloemen zijn van honig verstoken en worden weinig bezocht.

220. **Solanum nigrum** L. — Witte pollenbloem. — *Fleur blanche, à pollen*.

Kroonslippen wit, soms met blauw, teruggeslagen, het centraal gedeelte der bloem soms geel of oranjegeel. Antheren weinig korter dan de stijl, laten bij hevig schudden stuifmeel ontsnappen. De korte stijve filamenten zijn bezet met afstaande, iets gekroesde haren, waaraan de bezoekende insecten zich kunnen vasthouden. 's Nachts zijn de bloemen gesloten. (Kirchner, flora, blz. 567).

Fam. XX. Scrophulariaceæën.

221. **Verbascum nigrum** L. — Pollenbloem, geel met violette haren op de meeldraden. — *(Fleur à pollen, jaune, avec des poils violets sur les étamines).*

De kroonbuis is kort; de 5slippige kroonzoom staat bijna verticaal. Onderste kroonlip lang, de 2 bovenste korter dan de 2 zijdelingsche. De meeldraden staan bijna horizontaal, iets naar omhoog gebogen en een weinig divergeerend; de bovenste meeldraad is de kortste, de 2 onderste zijn de langste. De helmknoppen staan dicht bij elkander; zij gaan aan hun buitenrand open; het stuifmeel is oranje. Stijl korter dan de onderste meeldraden, maar een weinig onder deze naar anderen gebogen. Insecten, die zich op de onderste kroonlip zetten, en de helmknoppen trachten te bereiken, raken gewoonlijk eerst den stempel aan, en aldus wordt kruisbevruchting bewerktd, ofschoon de helmknoppen en de stempel gelijktijdig geslachtsrijp zijn. — Honigdruppels worden somwijlen aan de binnenzijde van den wand der kroonbuis afgescheiden. — Bij uitblijvend insecten-bezoek is spontane zelfbestuiving mogelijk, daar stuifmeel gewoonlijk rechtstreeks uit de helmknoppen op den stempel kan vallen. — (Müller, fert. of flowers, blz. 429.)

Kroon geel, groot. Kroonbuis kort; kroonzoom 5slippig, niet volkomen regelmatig. De 3 bovenste meeldraden korter dan de beide onderste. De helmknoppen en ten deele ook de helmdragers der 3 bovenste meeldraden zijn behaard; de beide onderste meeldraden zijn kaal, en steken bijna even ver vooruit als de stempel. Stijl aan

Spontane zelfbestuiving wordt door volkomen vruchtbaarheid gevolgd.

+ 223. Scrophularia nodosa L. — Bruine Bijenbloem; wordt veel door Wespen bezocht. — (Fleur méliitophile brune; visitée abondamment par des Vespides)

Fig. 24.
1. Scrophularia aquatica, 1e stadium. — m, onvruchtbare meeldraad. — st, stempel. — (De meeldraden zijn nog van binnen in de ketelvormige kroonbuis verborgen).
2. Scr. nodosa. 2e stadium. — st, stijl, half verdroogd (niet naar onderen gebogen, zoaals daarentegen gewoonlijk het geval is; bij dit exemplaar was de stijl der bloemen in het eerste stadium korter dan in 1.) — m, onvruchtbare meeldraad. — De 4 vruchtbare meeldraden zijn rechtgebogen en hunne helmknoppen zijn open.
De bloemkroon is bijna kogelvormig, wijd open; op den bodem der bloem, aan de achterzijde van het vruchtbeginsel, bevinden zich twee groote honigdruppels, welke door de geelachtige basis van het vruchtbeginsel afgescheiden worden.

Gedurende het eerste tijdperk van den bloei, is de stijl uitgestrekt en de geslachtsrijpe stempel kijkt buiten de bloem uit, terwijl de meeldraden gebogen en de helmknoppen nog gesloten en van binnen in de bloem verborgen zijn. Als de stempel met vreemd stuifmeel bestoven is wordt hij naar onderen gebogen (niet altijd, zie fig. 24, 2); hij verslenst, en de 4 meeldraden worden nu rechtgebogen en buiten de bloem uitgestrekt en ontlust hun stuifmeel. Heeft de stempel geen vreemd stuifmeel ontvangen, dan blijft de stijl uitgestrekt en de stempel frisch, en de helmknoppen gaan dus boven den stempel open: een gedeelte van het stuifmeel valt op den stempel, en zelfbevruchting is aldus verzekerd. Bij uitblijvend insectenbezoek (bij koud, regenachtig weder) is de plant volkomen vruchtbaar.

De voortplantingsorganen liggen tegen de onderlip der kroon aan, en de insecten raken die organen met hunne buikzijde aan (en niet met de rugzijde, zooals daarentegen met de meeste Scrophularieneën en Labiaten het geval is). — Behalve de 4 vruchtbare meeldraden komt er bij Scrophularia nog een vijfde onvruchtbare meeldraad voor. Dit orgaan heeft den vorm van een zwartachtig blaadje, en is tegen den rugwand der kroon aangedrukt; somwijlen is deze meeldraad meer of minder vruchtbaar. (H. Müller, fert. flowers, blz. 434).

224. Scrophularia aquatica L. — Bruine bijenbloem; veel door wespen bezocht. — (Fleur mélithopile brune, abondamment visitée par des Vespides).

Stemt in de hoofdzaak met de vorige soort overeen.

Fig. 25. — *Linaria vulgaris*

1. Bloem in de lengte doorgesneden.
2. Bloem, waarvan de onderlip en het voorste gedeelte der spoor weggenomen zijn (de stippe lijn duidt aan waar den wand der kroon doorgesneden werd).

th, haren der onderlip. — *s*, stil. — *lm*, lange meeldraad met haren aan zijn voet. — *v*, vruchtbeginsel. — *hq*, honigklier. — *g*, gleuf waarin de honig vloeit. — *h*, haren die de gleuf *g* begrenzen.

Kroon maskervormig, geel; bult der onderlip oranjegeel; spoor 10-13 null. lang. Honigklier groen, schijfsvormig, aan de basis van het vruchtbeginsel, voornamelijk aan de voorzijde uitspringend. De honig vloeit in de spoor door een smalle gleuf, die aan weerszijden van korte stijve haren begrensd wordt. De gleuf loopt van de honigklier naar onderen, eerst tusschen de basis der twee lange meeldraden, en verder aan den achtersten wand der spoor: de top der
spoor wordt met honig gevuld. De stempel bevindt zich tusschen de helmknoppen der 2 lange en de der 2 korten meeldraden; meeldraden en stijl zijn tegen den achtersten wand der bloemkroon aangedrukt (zie fig. 25). Insecten die den honig willen bereiken moeten de onderlip naar beneden drukken en met het voorste gedeelte van hun lichaam in de bloem kruipen: aldus raken zij de helmknoppen en den stempel met hunne rugzijde aan, en daarbij kan zoowel zelfbestuiving als kruisbestuiving bewerkstelligd worden. Als het insect de bloem verlaat wordt deze weder gesloten, daar de bultvormige onderlip door haar eigen veerkracht opnieuw in beweging te brengen; de oranjegele kleur van den bult der onderlip kan beschouwd als een honigmerk, waardoor de plaats aangewezen wordt waar het slot der doos kan geopend worden.

Bij uitblijvend insectenbezoek grijpt spontane zelfbestuiving plaats, maar de bloem blijft daarbij gewoonlijk onvruchtbaar (zie hooger, blz. 181, proefnemingen van Darwin). — Dikwijls wordt de wand der spoor door hommels aangebeten en de honig op die wijze gestolen. (Müller, fert , blz. 431).

onderen naar boven in de richting der honigklier, 29. 9. 86, Melle.

228. **Linaria minor** Desf. — Bijenbloem, paars, wordt weinig bezocht. — (*Fleur méliitophile, violette, peu visitée*).

Door haren algemeenen bouw stemt deze soort met de vorige vorige overeen. — Bloemen klein (omstreeks 7 mill. lang met inbegrip der spoor). Bovenlip diep ingesneden, paars; onderlip bleekgeel, bijna wit; de bult is nauwelijks iets geler dan de 3 lobben, en vertoont op de middellinie en aan de zijde die tegen de bovenlip aangedrukt is een duidelijken inham, waardoor de bloemkroon (evenals bij L. origanifolia) (1) openstaat. Als de bloem ontluikt is de stempel geslachtsrijp, en tusschen de achterste deelen der helmknoppen der lange meeldraden gelegen. De genoemde helmknoppen gaan open, en bedekken den stempel met stuifmeel. Het stuifmeel der korte meeldraden speelt bij de zelfbestuiving geene rol en kan alleen door insecten op den stempel gebracht worden. (Müller, Weit. Beob. 1882.) Daar nu de plant door insecten zeer weinig bezocht wordt zijn de korte meeldraden bijna volkomen nutteloos. Bij de door ons onderzochte exemplaren zijn de achterste helmknoppen merkelijk kleiner dan de voorste, soms slechts 1/3 zoo groot als deze. Men mag dus aannemen dat deze organen op weg zijn om te verdwijnen, en het ware niet te verwonderen indien bloemen aangetroffen werden, waarin de korte meeldraden geheel onvruchtbaar of verdwenen zijn.

Bezoekers: Wij hebben de bloemen meermalen bij gunstig weder gadegeslagen, maar nooit bezoekers gezien.

229. **Linaria Elatine** Mill. — Bijenbloem, geslachtig wit met violet. — (*Fl. méliitophile d’un blanc jaunâtre, en partie violette*).

Bestuiving niet onderzocht.

Linaria Cymbalaria. Mill. — Bijenbloem; bovenlip en spoor lila, onderlip witachtig met twee oranjegele vlekken. — (*Fl. méliitophile; lèvre supérieure et éperon lilas, lèvre inférieure blanchâtre avec 2 taches d’un jaune orangé*).

Stemt in hoofdzaak met L. vulgaris overeen; spoor 3 mill. diep, met eene gleuf maar zonder haren; basis der 2 lange meeldraden behaard (Kirchner, flora). — Deze soort komt in ons gebied uitsluitend op oude muren enz. voor; wij beschouwen haar derhalve als niet inheemsch.

230. Veronica Chamaedrys L. — Blauwe bloem met volkomen verborgen honig. — *Fl. bleue à nectar complète-ment caché."

Fig. 26. — Veronica Chamaedrys.
1. Bloem van voren gezien.
2. Id., door Ascia podagrira bezocht.
(Naar Müller).

Kroonzoom blauw met donkere aderen (honigwijzers), bleek in 't centrum. Honig wordt afgescheiden door een geelachtige vleezige schijf aan den voet van het ovarium; hij wordt verzameld op den bodem der kroonbuis, en beschut door de haren, die op den wand der kroonbuis ingeplant zijn. De stijl is schuin naar onderen gericht, de 2 meeldraden divergeeren rechts en links, zoodat spontane zelfbestuiving onmogelijk is. Insecten (Ascia, enz.) zetten zich doorgaans op de onderste kroonslip, raken gewoonlijk eerst den stempel aan, en trachten daarna de keel der bloemkroon te bereiken. Te dien einde grijpen zij de dunne, buigzame basis der beide meeldraden vast, en buigen die organen naar binnen onder zich, waardoor hunne buikzijde met stuifmeel bepoederd wordt. De stijl is eveneens aan zijn voet verdund: ten gevolge daarvan kan hij, bijna zonder krachtinspanning, door het insect naar beneden gedrukt worden, en hij staat dus het insect niet in den weg. (Müller, fert., blz. 438).

Bezoekers: Korttongige bijen: *Andrena cingulata* F. ♂ 21. 5. 88, Moortzele. *Andrena minutula* K. ♀, 8. 6. 88,

231. **Veronica Beccabunga** L. — Zooals N° 230 — *(Comme N° 230).*

Stemt met de vorige soort overeen wat de honigklier, de honigmerken en de haren der kroonbuis betreft. Als de bloem ontluikt is de stempel geslachtsrijp, en de helmknoppen zijn nog gesloten. Stijl en meeldraden zijn recht naar voren gericht. Bij koud weder gaat de bloem slechts onvolkomen open; de helmknoppen blijven in aanraking met den stempel, en zelfbestuiving heeft plaats. Bij zonnig weder gaan de kroonslippen wijd open, de meeldraden divergeren meer en meer, en worden daardoor van den stempel verwijderd alvorens de helmknoppen opengaen; in die voorwaarden wordt zoowel kruisbestuiving als zelfbestuiving door insecten bewerkt. (MüLLER, *fert. flow.* blz. 439).

232. **Veronica Anagallis** L. — Bl. met volkomen verborgen honig, blauwachtig-lila. — *(Fl. à nectar complètement caché, lilas-bleuâtre).*

233. Veronica scutellata L. — Bloemen met volkomen verborgen honig, witachtig met roodachtige aderen. — (Fl. à nectar complètement caché, blanchâtre veinée de rose).

223a. Veronica officinalis L. — Bloem met volkomen verborgen honig, blauw. — (Fl. à nectar complètement caché, bleue).

De kroon is geaderd, en gaat niet zoo wijd open als bij V. Cha-

maedrys; honig en haren zooals bij deze. Bloemen homogaam of dichogaam.

In de homogame bloemen divergeeren de meeldraden een weinig, en raken zij den stempel niet aan; door insecten wordt zelf- of kruis-

bestuiving bewerkstelligd. Bij uitblijvend insectenbezoek heeft spo-

tane zelfbestuiving plaats: als de kroon begint te verwelken worden de meeldraden naar binnen en naar onderen gebogen, en de helm-

knoppen worden met den stempel in aanraking gebracht.

In de proterandrische bloemen staat de stempel bij het ontluiken der bloem boven de helmknoppen, waardoor spontane zelfbestuiving onmogelijk is.

In de proterogynische bloemen steekt de stijl met den geslachts-

rijpen stempel ongeveer 2 mill. buiten de nog gesloten bloemkroon uit; na het ontluiken blijven de helmknoppen nog eenigen tijd geslo-

ten; zij bevinden zich boven den stempel, evenals in de homogame bloemen.

Deze beschrijving is ontleend aan Kirchner, Flora, blz. 587. — Het ware belangrijk te onderzoeken of de drie hier beschreven vor-

men in België voorkomen.

234. Veronica serpyllifolia L. — Bl. met verborgen honig, blauwachtig bijna wit, geaderd. — (Fl. à nectar complètement caché, bleuâtre presque blanche, veinée).

Bloemen homogaam of proterogynisch. De meeldraden staan iets boven den stempel en aan weerszijden van deze; soms raken de helmknoppen den stempel aan, en in dit geval is spontane zelfbestui-

ving onvermijdelijk. In 't begin van den bloei, als de helmknoppen nog gesloten zijn (in proterogynische bloemen) kan kruising door insecten plaats grijpen. (Müller, fert. of flowers, blz 443).
235. Veronica hederaeftolia L. — Bloem blauw of blauwachtig, met volkomen verborgen honig. — *(Fl. bleue ou bleuâtre, à nectar complètement caché).*

Honig wordt afgescheiden en beschut zooals bij *V. Chamaedrys*. — De helmknoppen zijn van den beginne af met den stempel in aanraking, en zelfbestuiving is onvermijdelijk. Misschien divergeeren de meeldraden een weinig bij zeer gunstig weder. — Meeldraden aan hunne basis niet verdund; bloem schier nooit bezocht. *(MüLLER, fertil., blz. 442).*

236. Veronica agrestis L. — Bloem wit met blauw; honig volkomen verborgen. — *(Fl. blanche, en partie bleue ; nectar complètement caché).*

237. Veronica polita Fries. — Bl. met volkomen verborgen honig, blauw, geaderd, met geelachtig-wit centrum. — *(Fl. à nectar complètement caché, bleue, veinée, à centre d'un blanc jaunâtre).*

238. Veronica triphylllos L. — Bl. met volkomen verborgen honig, donkerblauw met donkerder aderen en een bleek centrum. — *(Fl. à nectar complètement caché, d'un bleu sombre, veinée, la partie centrale pâle).*

Bloemen betrekkelijk groot, homogaam. Meeldraden aan den voet
niet verdund; de blauwe helmknopen staan op gelijke hoogte als de stempel, zodat zelfbestuiving onvermijdelijk is als de bloem zich sluit, en dit grijpt 's namiddags en bij duister weder plaats. De haren in de kroonbuis zijn weinig ontwikkeld. (Kirchner, Flora, blz. 590).
— Wordt schier nooit bezocht.

239. Veronica arvensis L. — Zoals de vorige soort. — (Comme l'espèce précédente).

Opmerking: De monocarpische Veronica-soorten hebben alle kleine, weinig in 't oog springende bloempjes (uitgenomen V. triphylos), waarin zelfbestuiving de regel is; de bloemen zijn alleenstaande in de oksels van gewone stengelbladen, of aan het eind van den stengel in de oksels van schutbladen die naar onderen toe geleidelijk in gewone bladen overgaan. Onder de polycarpische soorten (Chamaedrys, Beccabunga, Anagallis, scutellata, serpyllifolia, officinalis; — scutellata niet onderzocht) zijn er verscheidene waarin de kans op kruisbevruchting vrij groot is, en over 't algemeen wordt kruisbevruchting, door rijker insectenbezoek of door dichogamie, meer bevorderd dan bij de monocarpische soorten; de bloemdragende takken zijn duidelijk gedifferentieerd, uitgenomen bij serpyllifolia.

240. Euphrasia Odontites L. — Vuil-rose (zelden witte of bijna witte) bijenbloem. — (Fl. méliophile d'un rose impur, rarement blanche ou Blanchâtre).

Aan den voet der onderlip 2-4 purpere vlekken. Honig afgescheiden aan de voorzijde van het vruchtbeginsel, door het onderste kaal (verdikt of bultvormig) gedeelte van dit orgaan. Kroonbuis 4-5 mill. diep, inwendig kaal; de ingang bijna geheel gesloten door de breede meeldraden. De meeldraden zijn van onderen bijna met elkander in aanraking, aan hunne binnenzijde met spitse uitsteekseljes bezet,
onder de helmknoppen daarentegen glad en meer van elkander verwijderd. De 4 helmknoppen zijn van achteren door haren met elkander verbonden, aan de binnenzijde opengaan met breede spleten die aan hun top beginnen en naar de basis voortschrijden. Ieder helmknop aan zijn top met twee spitse uitsteeksels. Een bij, die zich op de onderlip zet en haar slurf dicht onder de helmknoppen in de bloem voert raakt onvermijdelijk een of meerdere uitsteeksels der helmknoppen aan; aldus worden de 4 met elkander verbonden helmknoppen geschud, waardoor een zekere hoeveelheid droog, poederig stuißmeel op den kop (of op de slurf) der bij valt. Gewoonlijk kijkt de stijl reeds buiten de kroon uit alvorens de bloem ontloken is: kruisbevruchting kan dus onmiddellijk na het ontluiken plaats krijpen. Somwijlen wordt de stijl gedurende den bloei langer, zodat de stempel, ondanks de aangroeiing van kroon en meeldraden steeds op een zekeren afstand van de helmknoppen blijft (geen spontane zelfbevruchting). In andere gevallen behoudt de stijl, gedurende den

Figuur 27. — Euphrasia odontites.
2. — Korte meeldraad, binnenzijde.
3. — Id. Id. buitenzijde.
4. — Een lange en een korte meeldraad (eene helft van den «stuißmeelbehouder»), binnenzijde.
bloei, zijne oorspronkelijke lengte, of hij groeit zeer weinig aan, terwijl de kroon en de meeldraden aan lengte toenemen: het gevolg daarvan is, dat de stempel door de helmknoppen aangeraakt wordt (spontane zelfbestuiving, indien de stempel niet reeds verdroogd is). — In andere bloemen eindelijk kijkt de stijl niet buiten den bloemknop uit; bij het ontluiken raakt de stempel de helmknoppen aan, of hij staat er dicht bij (spontane zelfbestuiving zeer waarschijnlijk). Dikwijls worden verschillende bloemvormen aan één individu aangetroffen. De bloemen, waarin zelfbestuiving plaats grijpt, hebben, naar het schijnt, doorgaans een kleine honigklier, en soms in 't geheel geen honig; zij komen vooral op schaduwrijke plaatsen voor. (Zie H. Müller, fett. blz. 445, en vooral Schulz, Beiträge, II, blz. 121.) Wij weten niet in hoeverre die verschillende vormen ook in ons gebied voorkomen.

241. Euphrasia officinalis L. — Bijenbloem, wit met geel en paars. — (Fl. mélittophile, blanche, partiellement jaune et violette.)

Men vindt veel verscheidenheid wat den bouw, de afmetingen en de bestuivingswijze der bloemen betreft. — Honigklier zooals bij E. odontites. Kroonhuis 4-6 mill. lang, aan den ingang aanmerkelijk verwijd, zoodat een insect met een 4 mill. lange slurf den honig kan bereiken door zijn kop in het breed gedeelte der buis te steken. Oranje vlekken op de onderlip, en paarse aderen op de beide lippen wijzen
den weg naar den honig. Evenals bij de vorige soort is het stuifmeel droog en poederig, en het valt uit de helmknoppen op den kop der bezoekers, maar het mechanisme is iets verschillend. De helmknoppen zijn op een andere wijze met elkander verbonden. Bij *E. odontites* is ieder helmknop van 2 naar onderen gerichte punten voorzien, terwijl bij *E. officinalis* (volgens Schulz) de beide helften van den bovensten helmknop en de bovenste helft van den ondersten helmknop eene korte punt hebben, terwijl de punten der onderste helften der onderste helmknoppen veel langer zijn, en bijna alleen door de bezoekers aangeraakt worden (fig 28, 1). De filamenten der meeldraden zijn gebogen en op de middellinie door een breede ruimte gescheiden. Als een insect zijn kop tusschen de helmknoppen in de bloem steekt zal het bijna onvermijdelijk de lange punten der helmknoppen aanraken (zie fig. 28).

Fig. 28. — Euphrasia officinalis.

Müller beschrijft 2 vormen: 1° een grootbloemige vorm, waarin de stijl buiten de bloem uitsteekt alvorens de helmknoppen geslachtsrijp zijn, en dien stand tot het einde behoudt: kruisbevr. de regel, zelfbevr. onmogelijk. — 2° Een kleinbloemige vorm, waarin de stempel zich vooreerst boven en achter de helmknoppen bevindt, en dus door de bezoekers niet aangeraakt wordt; daarna wordt de stijl langer, en de stempel wordt naar voren en naar onderen gebracht op zulke wijze dat hij nu door insecten vóór de helmknoppen aangeraakt (kruisbevr.), terwijl stuifmeel uit de helmknoppen op den stempel kan vallen bij uitblijvend insectenbezoek (spont. zelfbest.). (H. Müller, fert., blz. 447).

Schulz (Beitr., II, blz. 121) onderscheidt bij deze soort ongeveer 7 vormen, door overgangen verbonden. De honigklier is meer of minder duidelijk, en de rijkdom aan honig zeer verschillend. Het insectenbezoek schijnt af te hangen van den rijkdom aan honig, en niet van de grootte der kroon.

In fig. 28 hebben wij twee bloemen afgebeeld: in fig. 28, 1, bevindt zich de stempel boven en iets voor de helmknoppen der lange meeldraden; — in fig. 28, 2 is de stijl omgebogen, de stempel bevindt zich onder de helmknoppen, en spontane zelfbestuiving is bij uitblijvend insectenbezoek verzekerd. Deze vorm schijnt in ons gebied het meest verspreid te zijn.

Deze soort wordt schier nooit bezocht. — Zie hooger, blz. 258.

De 4 helmknoppen zijn vereenigd tot een enkel stuifmeelbehoud, die opengemaakt wordt als een der spitse aanhangsels der lobben der helmknoppen aangeraakt wordt. Honigklier aan den voet van het vruchtbeginsel, aan de onderzijde, in den vorm van een witachtig lichaam met een honiggafscheidende groef aan weerszijden. Kroonbuis 14-15 mill. diep, van binnen met een ring van naar voren gerichte haren (honigdeksel). Van voren is de kroonbuis, over een lengte van 4 à 5 mill., wijd genoeg om den kop van een hommel binnen te laten; eene slurf van 10 à 11 mill. is dus lang genoeg om den honig te bereiken. De kroonbuis is over het grootste gedeelte van hare lengte tamelijk nauw en 3hoekig; aan den ingang wordt zij plotseling veel breeder. Aan weerszijden van den breeden ingang vertoonen de zijwanden een plooi (fig. 29, a) waardoor de breedte tot
De hoogte van den ingang wordt verminderd tot 1 à 2 mill. door twee bultvormige verhevenheden der onderlip (fig. 29, b), en door eene plooi die zich achter den vieren rand der bovenlip bevindt. Een hommel kan echter de vermelde plooien openbuijen en aldus met geweld zijn kop in de bloem steken, terwijl zwakke insecten met korte monddeelen door die plooien buitengesloten worden. In het nauw gedeelte der bloembuis zijn de helmdragers met haren wand vergroeid; in het wijd gedeelte worden zij vrij en stijf; zij stijgen schuin naar omhoog, en aan de binnenzijde zijn zij getand. De helmknoppen zijn door de bovenlip beschut. De 2 voorste meeldraden dragen bij om den ingang nog nauwer te maken. Als een bij hare slurf in de bloem voert tracht zij de aanraking met harde deelen te vermijden: zij houdt de middellinie, wegen de scherpe tanden die zich aan weerszijden bevinden, terwijl de weke haren der bovenlip haar niet hinderen. De stijl bevindt zich van boven op de middellinie, en is op zulke wijze gebogen, dat de stempel zich voor de helmknoppen bevindt. De slurf van een insect raakt vooreerst den stempel aan, en daarna de spitse, door wollige haren omgeven, naar onderen gerichte uitsteeksels, waarmede de helmknoppen gewapend zijn (en vooral de achterste uitsteeksels, die langer zijn dan de voorste). Daardoor worden de helmknoppen geschud, de stuifmeelbehouder gaat open, en droog stuifmeel valt op het insect. Kruisbevruchting door insecten is verzekerd.

Fig. 29. — Melampyrum pratense. — St, stijl. — h, helmknop. — m, meeldraad. — a, plooi van den zijdelingschen wand der kroonbuis. — b, bultvormige verhevenheid der onderlip. — Naar de natuur.
De stijl wordt hoe langer hoe meer naar onderen en eindelijk naar achteren omgebogen (nagenoeg zooals bij *Euphrasia*, fig. 28, 2): daardoor wordt de stempel onder de helmknoppen gebracht, en bij uitblijvend insectenbezoek is zelfbestuiving dus verzekerd. In bloemen die verkleurd zijn (aan 't eind van den bloei) heeft de stempel steeds den laatst beschreven stand. (Müller, fert., blz. 458).

244. **Rhinanthus minor** Ehrh. — Gele bijenbloem. — *(Fl. **mélittophile jaune**)*.

Bloemen kleiner, minder in 't oog springend, minder bezocht dan bij de vorige soort. Tanden der bovenlip doorgaans niet blauw; kroonbuis 7-8 mill. diep. De ingang der kroon is eene 6-7 mill. lange spleet, die tot 4 mill. verminderd wordt door de aangedrukte basis der onderlip. De meeldraden staan achter het vrij gedeelte der spleet: een bij kan haar slurf slechts onder de helmknoppen in de bloem voeren. De stijl wordt naar onderen gebogen, en wordt vóór de helmknoppen door de bij aangeraakt. Uitstrooings-mechanisme van het stuifmeel zoaals bij de vorige soort. — Bij uitblijvend insectenbezoek heeft spontane zelfbestuiving plaats: de ingang der kroon gaat wijder open, daar de onderlip iets naar onderen gebracht en de randen der bovenlip meer van elkander verwijderd worden. Tevens wordt de stijl langer en naar binnen omgebogen op zulke wijze dat de stempel onder de helmknoppen gebracht wordt: stuifmeel kan nu uit de helmknoppen op den stempel vallen (spont. zelfbest.). — *(MÜLLER, fertil., blz. 455)*. Volgens MÜLLER zijn de beide *Rhinanthus*-soorten slechts vormen van een en dezelfde soort.

245. **Pedicularis sylvatica** L. — Roode bijenbloem. — *(Fl. **mélittophile rouge**)*.

Evenals bij *Rhinanthus* en *Melampyrum* passen de helmknoppen met hunne randen bij elkander, en alle 4 te zamen vormen een stuifmeelbehouder die door de helmvormige bovenlip tegen regen enz. beschut wordt. Kroonbuis 10 à 14 mill. lang, zoo nauw dat een hommel er slechts het voorste gedeelte van zijn kop kan insteken. Honig afgescheiden door de groene klier aan de basis van het vruchtbeginsel. Basis der onderlip over een lengte van 3-5 mill. tegen bovenlip aangedrukt, waardoor de mond der bloem ten deele gesloten wordt. De bovenlip omsluit de helmknoppen, de top van den stijl kijkt schuin naar onderen buiten de bovenlip uit. De 3lobbige onderlip staat scheef, en vormt de landingsplaats voor insecten. Drukt men de onderlip zoover mogelijk naar beneden, dan vormt de mond der bloem een 8-10 mill. lange spleet, die slechts 1-2 mill. breed is, op een afstand
van 3 mill. van haar voorste uiteinde plotseling tot 4 mill. verbreed is, daarna opnieuw nauwer wordt, en eindelijk aan haar rand 2 spitse tanden draagt: door deze tanden wordt de spleetvormige ingang in een zeer klein voorste en een veel langer achterste gedeelte verdeeld. De stijl kijkt door het klein voorste gedeelte uit, terwijl het langer achterste gedeelte aan den kop der bij toegang verleent. Het breed gedeelte der spleet heeft gladde randen, terwijl het nauw gedeelte (tusschen het breed gedeelte en de basis der lippen) naar buiten opgerolde randen heeft en aan weerszijden met stekeltjes gewapend is. Aan weerszijden is de bovenlip voorzien van een roodachtigen verdikten band, die begint omtrent het breed gedeelte der spleet, naar achteren loopt en omtrent op dezelfde hoogte als de basis der onderlip verdwijnt.

De bij (hommel) komt met uitgestrekte slurf aangevlogen, en terwijl zij zich op de onderlip zet voert zij hare slurf in het breed gedeelte der spleet: zij vermijdt daarentegen de aanraking der stekeltjes aan den rand van het nauw gedeelte (vergelijk met Melampyrum, nr 242). Haar kop raakt hierbij den stempel aan, en door den scheeven stand der onderlip zal de kop der bij eveneens scheel gehouden worden. De bij steekt nu haar kop door het breed gedeelte der spleet in de bloem, en hierdoor worden de twee dikke banden (die niet buigzaam zijn), aan weerszijden naar buiten gedrukt: ten gevolge daarvan worden de beide punten, waar de genoemde banden en het bovenste uiteinde van den opgerolten rand samenloopen, van elkander verwijderd: de bovenste (voorste) hoek van de spleet wordt hierdoor geopend. De twee spitse tanden, die in den toestand van rust elkander bijna aanraken en de twee helften van den stuifmeelbehouder tegen elkander houden, worden nu ook uiteen gedrukt. De helmknoppen divergeeren nu van onderen, door de veerkrachtige spanning van hunne gebogen helmslapers, terwijl zij van boven vereenigd blijven. De stuifmeelbehouder gaat aldus (evenals de beide schalen eener mossel) van onderen open, en stuifmeel valt op den kop der bij, juist op de plaats die te voren den stempel had aangeraakt. — Heeft de bij een korte slurf, dan moet zij haren kop diep in de bloem steken, en zij drukt alsdan de onderlip een weinig naar beneden. — Als de bij de bloem verlaat wordt de bloem door de veerkracht der dikke banden weder dichtgemaakt, en de stuifmeelbehouder wordt gesloten. Een bij met een 10 mill. lange slurf kan
den honig bereiken. — De bloem is zelfsteriel. Wordt door hommels bezocht. (Beschrijving ontleend aan Müller, fert., blz. 450).

246. Pedicularis palustris L. — Roode bijenbloem. —
(Fl. *mélittophile rouge*).

Fam. XXI. Lentibulariaceeën.

247. Utricularia vulgaris L. — Gele bijenbloem. —

Als de bloem opengaat liggen meeldraden, stijl en stempel onder de bovenlip der kroon verborgen; de onderlip met de honighoudende spoor is tegen de bovenlip aangedrukt, en kan naar beneden gedrukt worden, zooals in fig. 30, 1 door de stippellijn aangeduid wordt. De onderlip vertoont aan hare bovenzijde een bultvormige verhevenheid (honigmerk; fig. 30, b); een insect dat den honig wil bereiken drukt de onderlip naar beneden (vergelijk met *Linaria vulgaris*): daarbij worden helmknoppen en stempel door den kop en den rug van den bezoeker aangeraakt. De beide helmknoppen worden door gebogen, brede filamenten gedragen, en vormen samen een kruis alvorens zij opengegaan zijn. Achter deze beide helmknoppen ligt het vruchtbeginsel: de stijl is langer dan de meeldraden, zoodat de stempel dichter bij den ingang der kroon ligt dan de helmknoppen, en dus vóór de helmknoppen door de bezoekers aangeraakt wordt. De stempel is 2lippig: zijn bovenlip is kort, tandvormig, tegen bovenlip der kroon aangedrukt, en zijn onderlip lang, tongvormig. Deze onderlip heeft een franje aan haren rand, en is aan hare bovenzijde (uitgenomen een smalle strook aan den rand) van stempeltepels voorzien. Vóór het opengaan der bloem is de onderste (tepeldragende) stempellip *recht* uitgestrekt; als de bloem en de helmknoppen opengaan
wordt de genoemde stempellip omgebogen, op zulke wijze, dat haar tepeldragende oppervlak het insect tegemoetgekeerd wordt (fig. 30, A). Wordt deze stempellip nu aangeraakt, \textit{zoo buigt zij zich naar boven}, en wordt aldus tegen de bovenlip der kroon aangedrukt (ware de kroon daar niet, dan zou de lip l zich nog verder ombuigen, zooals in fig. 30, 5 aangegeven wordt). Wanneer nu een insect de onderlip der kroon naar beneden drukt en vooruitkruipt om den ingang der spoor te bereiken, zal het voor eerst de stempellip os aanraken en met vreemd stuifmeel bevruchten, en daarna de helmknoppen aanraken. Terwijl het honig zuigt wordt de stempellip op de hooger beschreven wijze tegen de bovenlip der kroon aangedrukt, waaruit volgt dat het insect, als het achteruitkruipend de bloem verlaat, de tepeldragende zijde der stempellip os geen tweede maal aanraakt: zelfbestuiving heeft dus geen plaats. Spontane zelfbestuiving is door den stand der \(\sigma \) en \(\varphi \) organen onmogelijk. — Deze plant is vaak onvruchtbaar bij gebrek aan insectenbezoek.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig30.png}
\caption{\textit{Utricularia vulgaris}. (Naar Hildebrandt, loc. cit.)}
\end{figure}

1. Bloem, \(s \), spoor in den toestand van rust. — \(sp \), stand der spoor als de onderlip naar beneden gedrukt wordt. — \(b \), bult der onderlip.
2. Voortplantingsorganen, van ter zijde gezien, uit eene nog niet ontloken bloem. — \(os \), onderste stempellip. — \(bs \), bovenste id. — \(h \), helmknop.
3. Id. van achteren gezien. — \(m \), meeldaad. — \(os \), \(bs \) als in 2.
4. Voortplantingsorganen van ter zijde gezien, uit een ontloken bloem: de onderste stempellip \(os \) is naar onderen omgebogen (vergelijk met 2).
5. Stamper, van ter zijde gezien, na een insectenbezoek: de onderste stempellip \(os \) heeft zich naar achteren omgebogen.
6. Dezelfde stamper, van achteren gezien.

Fam. XXII. Gesneraceeën (Orobancheeën).

249. *Orobanche Rapum* Thuill. — Geelachtig-rose bijenbloem. — (*Fleur mélittophyle d’un rose jaunâtre*).

250. *O. minor*. Sutt. — Bijenbloem, witachtig met blauwachtig-paarse aderen. — (*Fl. mélittophyle, blanchâtre à veines d’un bleu lilas*).

Fam. XXIII. Plantaginaceeën.

251. *Litorella lacustris* L. — Windbloem. — (*Anémophile*).

Plant lhuizig; — ♀ bloem met 4 lange meeldraden, door een okselstandigen steel gedragen; — ♀ bloemen 1-3, zittend aan den voet van den steel der ♀ bloem. (♀ bloem na de ♀ opengaande?)

252. *P. lanceolata* L. Windbloemig. — (*Anémophile*).

Proterogynisch. Gedurende het 1e tijdperk steekt de stempel een paar millimeters aan den top der bloem naar buiten uit: kelk en kroon zijn nog gesloten en omsluiten volkomen de helmknoppen. Gedurende het 2e tijdperk is de stempel geheel of grootendeels verdroogd; de helmdraden nemen aan lengte toe; de 4 droogvliezige kroonslippen spreiden zich uit, en de 4 meeldraden worden recht gebogen, kijken 5-6 mill. buiten de bloemen uit, ontlasten hun stuifmeel, en vallen daarna af. De ontwikkeling der bloemen heeft in iedere aar van onderen naar boven plaats: men vindt b. v. aren waarin de onderste bloemen reeds in het 1e tijdperk getreden zijn, terwijl de bovenste hare stijlen nog niet vertoonden; — andere, verder gevorderde aren, die van onderen bloeimen in het 2e tijdperk, van boven bloeimen in het 1e tijdperk vertoonden; — andere nog, die van onderen geheel uitgebloeid (meeldraden afgevallen), in ‘t midden
σ en van boven ♀ zijn, enz. Gedurende het 1e tijdperk zijn de bloemen weinig in 't oog springend: zij doen zich alsdan (bij een oppervlakkig onderzoek) voor alsof zij nog niet ontloken waren. Filamenten der meeldraden dun; helmknoppen zeer beweeglijk; de meeldraden worden door den wind heen en weer bewogen, en aldus wordt het droge stuifmeel uitgestrooid. (Kirchner, Flora).

Bij P. lanceolata hebben wij (te Melle-bij-Gent, 20 Juni 1893) enkele zeer krachtige exemplaren met ♀ bloemen aangetroffen: de stijlen zijn veel langer dan bij de gewone exemplaren.

Er zijn ook gynomonoecische exemplaren bij dewelke ♀ en ♀ bloemen, alsook bloemen met enkele gereduceerde meeldraden, in dezelfde aar voorkomen. (Kirchner).

253. **Plantago major** L. — Windbloemig.

Proterogynisch. Gewoonlijk bruinachtige bloemkroon, witte helmknoppen en rood-bruine helmknoppen. Somwijlen zijn de helmknoppen geel of groenachtig-geel, iets groter en breder dan gewoonlijk; somwijlen zijn zij wit. (Kirchner, Flora). Stemt in hoofdzaak met Nr. 252 overeen.

254. **P. coronopus** L. — Windbloemig.

Fam. XXIV. Verbenaceeën.

gevoerd wordt, slechts weinig met het stuifmeel in aanraking gebracht, te meer daar de helmknoppen daarbij met hunne stuifmeelzijde nog meer naar den bodem der bloem toegekeerd worden. Als de slurf in tegenovergestelde richting uit de kroonbuis getrokken wordt, zal zij in de nauwe kroonbuis niet kunnen bewogen worden zonder aan de stuifmeelzijde der helmknoppen voorbijgestreken te worden, te meer daar de stuifmeelzijde der helmknoppen nu, door de beweging der slurf zelf, iets naar voren toegekeerd wordt. De top der slurf is nu met honig bevochtigd, en daardoor wordt het medevoeren van het stuifmeel nog meer bevorderd. Kruising door insecten is aldus verzekerd.

Als de bloem van 4 helmknoppen voorzien is staan de beide achterste helmknoppen zoo dicht bij den stempel, dat een gedeelte van hun stuifmeel van zelf op den stempel terechtkomt. Er dient onderzocht te worden of dit ook met 2helmige bloemen het geval is. — Wordt (volgens Müller) door kleine bijen (*Halictus*, enz.) bezocht.

Fam. XXV. Labiaten.

256. *Mentha aquatica* L. — Roodachtig-lila met verborgen honig. — (Fl. lilas-rougeâtre, à nectar complètement caché). (Kirchner, Flora, blz. 609).

Fig. 31. — Mentha aquatica.

1. Tweeslachtige bloem. Eerste (*♂*) stadium: de helmknoppen gaan open, de stempels zijn nog gesloten.

2. — *v*, vierdeelig vruchtbeginsel, *h*, honigklief. — *c*, plaats waar de kelk is afgesneden.
Honigklier vrij groot, aan den voet van het vruchtbeginsel; honig beschut door vrij lange haren die op den wand der kroon ingeplant zijn en bijna het midden bereiken. De ♀ bloemen zijn proterandrisch, met een 4-5 mill. lange en 2 mill. breede, klokvormige kroonbuis: in het ♂ stadium zijn de stempeltakken tegen elkander aangedrukt en de helmknoppen open; in het ♀ stadium divergeeren de 2 stempeltakken en de helmknoppen zijn geheel of ten deele geledigd. — De ♀ bloemen zijn kleiner, met korte in de bloem verborgen meeldraden en verkrompen helmknoppen. De ♀ en ♂ bloemen komen gewoonlijk op verschillende planten, zelden op hetzelfde exemplaar voor.

Stemt in hoofdzaak met de vorige soort overeen. — ♀ en ♂ exemplaren. — Kroonbuis der ♀ bloemen 3 mill., der ♂ bloemen 2 mill. diep.

258. *Mentha Pulegium* L. — *M. rotundifolia* L. —
M. sylvestris L. — In hoofdzaak als voren. *(Comme les espèces précédentes)*.

Verschillende *Mentha*-soorten vormen onderling bastaarden. De bastaard *aquatica × arvensis (?)* wordt in de flora’s onder den naam *M. sativa* beschreven. Deze plant is (o. a. te Bellem aan de oevers van den Kraenepoel) onvruchtbaar: hare helmknoppen zijn schier altijd ledig. Hare vegetatieve vermeerdering is daarentegen zeer actief.

259. **Lycopus europaeus L.** — Wit, met verborgen honig. — *(Fl. blanche, à nectar caché).* — Müller, fert. blz. 471.

Kroonbuis 3-4 mill. diep, 2 1/2 mill. breed aan de keel, 1 mill. breed aan den voet. Honigklier geelachtig, aan den voet van het vruchtbeginsel; honig beschut door haren van binnen in de kroonbuis (zoaals bij *M. aquatica*, zie Nr 256). Paarse vlekjes, vooral op de onderlip. Bloem proterandrisch. Als de helmknoppen opengaan is de stempel nog dicht; als de stempeltakken divergeeren zijn de helmknoppen ledig en de meeldraden verwelkt. — Spontane zelfbestuiving verhinderd door de proterandrie en door den stand der ♂ en ♀ organen (zie fig. 32). Behalve de 2 vruchtbare meeldraden, die buiten de bloem uitsteken, en wier stuifmeelzijde naar de middellinie toegekeerd is, komen nog twee zeer kleine geaborteerde meeldraden in de bloem voor.

De door ons onderzochte bloemen waren ten deele proterogynisch (soms divergeerden de 2 stempeltakken alvoren de kroonlippen geheel open waren); in andere gevallen waren zij onvolkomen proterandrisch, zoaals de bloem, in fig. 32 afgebeeld.

260. Thymus Serpyllum L. — Rose-paarse bloemen met verborgen honig. — (Fl. roses-purpurines, à nectar caché).

![Fig. 33. — Thymus Serpyllum.](image-url)

1. Tweeslachtige bloem. Eerste (♂) stadium.
2. Id. Tweede (♀) stadium.
(Naar Müller).
Honigklier, aan den voet van het vruchtbeginsel, veel groter dan het vruchtbeg. zelf. Kroonbuis boven het honighoudend gedeelte inwendig behaard, waardoor honig tegen regen enz. beschermd wordt. Drieërlei exemplaren: 1° met ♀, grootere, proterandrische bloemen (fig. 33); 2° met ♂, kleinere bloemen, waarin de meeldraden verkrompen en de helmknoppen ledig zijn; 3° met ♀ bloemen. — De 3° vorm in ons gebied nog niet aangetroffen. — Honig overvloedig en zeer aromatisch. Kroonbuis 2-4 mill. diep.

261. *Glechoma hederacea* L. — Blauwe (soms rose) bijenbloem. — (Fl. *mellitophile bleue, parfois rose.* — Kirchner, Flora, blz. 620; Müller, Fertil., blz. 484; — Oudemans, Ned. kruidk. archief, 1872. Kroonbuis van binnen aan de onderzijde behaard, ten gevolge waarvan de slurf der insecten langs de bovenzijde in de bloem gevoerd wordt, en met meer zekerheid helmknoppen en stempel aanraakt. In de groote ♀ bloemen is de kroonbuis 13-16 mill. lang, aan den ingang 2 1/2-4 1/2 mill. breed. Als de naar onderen opgaande helmknoppen hun wit stuifmeel vertoonden steekt de stijl voorbij de antheren en voorbij den rand der bovenlip uit, maar de 2 stempel-takken zijn nog gesloten. Later divergeren de stempeltakken, en de onderste tak buigt zich iets naar onderen. Spontane zelfbestuiving
is onmogelijk. In de kleinere ♀ bloemen is de kroonbuis 6 1/2-8 mill. lang en aan den ingang 1 1/2-2 1/2 mill. breed. Als de bloem opengaat is de stijl evenlang als de bovenlip, en zijn beide takken divergeeren wijd. De 4 meeldraden zijn rudimentair met ledige helmknoppen.

262. *Galeobdolon luteum* Huds. — Gele bijenbloem.—

(Fl. *mélittophile jaune*).

Homognaam. Kroon geel; donkervele vlekken op de onderlip; kroonbuis 8 mill. lang, aan den ingang verbreed, in haar bovenst gedeelte inwendig behaard, in haar onderst honighoudend gedeelte inwendig kaal. Korten tijd na het ontluiken der bloem divergeeren de beide stempeltakken: de top van den ondersten (naar onderen gericht) stempeltak ligt tusschen de helmknoppen en iets hooger dan hunne onderzijde, waaruit volgt dat hij door de bezoekers niet aangeraakt wordt (indien de bezoeker nochtans een groote hommel is worden de helmknoppen naar boven gedrukt, en de stempel wordt door den rug van het insect aangeraakt, maar niet door het gedeelte dat de helmknoppen aanraakt, dus gewoonlijk geen zelfbevruchting). Later steekt de top van den ondersten stempeltak tusschen de helmknoppen naar onderen uit, en hij wordt nu vóór de helmknoppen aangeraakt en dus met vreemd stuifmeel bevrucht. — Bij uitblijvend insectenbezoek is spontane zelfbestuiving mogelijk. (Müller, fertil., blz. 496).

Bezoekers: Langtongige bijen: *Bombus pratorum*
L. ♀ en B. agrorum F. ♀, 18. 5. 89, Melle. B. Rajellus K. ♀, 16. 5. 91, Poesele.

263. Lamium album L. — Witte bijenbloem. — (Fl. mélittophile blanche) (MULLER, fertil., blz. 493).

Bezoekers: Langtongige bijen: Bombus hortorum L. ♀, 17. 5. 91, 6. 6. 91, Nevel; 17. 5. 92, Laethem; 18. 5. 89, Gentbrugge. B. agrorum F. ♀, 8. 5. 89, Gentbrugge; 3. 5. 90, Melle; ♀, 27. 5. 86, Melle. B. arenicola Thoms, ♀, 21. 5. 90, Landeghem. B. pratorum L. ♀, 21. 5. 90, Landeghem, talrijk; ♀, 6 6. 91, Nevel. B. Rajellus K. ♀, 17. 5. 91, Nevel; 21. 5. 90, Landeghem. Psithyrus Barbutellus K. ♀, 17. 5. 91, Nevel. — Hemitrope Dipteren: Platychoris scutalus Meig. ♀, smvtrd. 9. 5. 89, Gentbrugge. Rhingia rostrata F. smvtrd., tracht daarna te zuigen, 19. 5. 89, Gentbrugge.
264. Lamium purpureum L. — Roode bijenbloem. — (Fl. mélittophile rouge).

265. Lamium amplexicaule L. — Zooals n° 264. — (Comme n° 264).

Kroonbuis 14-16 mill. lang, aan den ingang verbreed. Stemt in hoofdzaak met L. album overeen. Spontane zelfbestuiving mogelijk; wordt weinig bezocht. — Behalve de opengaande bloemen komen ook (vooral in het voorjaar) volkomen vruchtbare, niet opengaande (cleistogame) bloemen voor. Deze hebben het uitzicht van bloemknoppen: de stuifmeelbuizen worden rechtstreeks uit de helmknoppen (soms door den wand van den helmknop heen) in den stempel gedreven. (Zie HILDEBRANDT, Geschlechtervertheilung, blz. 74, figg.).

266. Lamium incisum Willd. — Zooals n° 264 — (Comme n° 264).

open. Bovenste stempeltak kort, bijna zonder stempelpopels. Onderste stempeltak in het begin iets boven en achter de helmknoppen; derhalve wordt hij na de helmknoppen aangeraakt, maar door een gedeelte van den rug van den hommel dat de helmknoppen niet heeft aangeraakt; daardoor wordt kruising bevorderd. Later wordt de stijl naar onderen gebogen, en zijn onderste tak steekt tusschen de bovenste helmknoppen (zie verklaring fig. 35) naar onderen uit: daardoor is zelfbestuiving verzekerd. — De twee convexe verhevenheden aan de basis der onderlip zijn als twee wegwijzers, waartusschen de kop der bij in de bloem gevoerd wordt. De gekleurde vlekken op de onderlip zijn honigmerken. (MULLER, f. b{}. 491).

268. Galeopsis ochroleuca Lam. — Bleekgele bijenbloem. — (Fl. mélittophile d'un jaune pâle).

De bloemkroon stemt in hoofdzaak met die der vorige soort overeen; kroonbuis 18-20 mill. lang, van boven verbreed, met gele honigmeren op de onderlip. Honigklier groter dan bij de vorige soort. De stempel bevindt zich voör de helmknoppen der lange meeldraden; de onderste stempeltak wordt dus voor de helmknoppen aangeraakt (kruising). Later wordt de onderste stempeltak naar onderen gebogen, op zulke wijze dat hij onder de voorste helft der helmknoppen der lange meeldraden komt liggen (spontane zelfbestuiving). (MÜLLER, f. b{}. 492).

269. Galeopsis versicolor Curt. — Bijenbloem, bleekgeel, de onderlip geel met violet. — (Fl. mélittophile, jaune pâle, lèvre inférieure jaune et violette). — (Müller, f. b{}. 493).

270. *Betonica officinalis* L. — Roode bijenbloem. — (*Fl. mélittophile rouge*). Inheemsch?

Kroonbuis 10-11 mill. diep. Honig afgescheiden door de dikke vlezige schijf, waarop het vruchtbeginsel rust, beschut door een ring van stijve haren die zich van binnen in de kroonbuis, 2-3 mill. boven haren bodem bevindt. Bovenlip betrekkelijk klein, maar groot genoeg om de voortplantingsorganen te beschutten; de onderlip dient tot landingsplaats. De volgende beschrijving naar Heinsius:

In het 1° stadium liggen alle helmknoppen nog tegen elkaar, en zijn die der kortste meeldraden gesloten, terwijl de buitenste meeldraden iets naar voren gebogen en hunne helmknoppen geopend zijn. De stempels zijn er nog geheel achter verborgen. — In het 2° stadium hebben zich de buitenste meeldraden op zijde gebogen en zijn 180° gedraaid, zoodat hun (reeds verwelkte en ledige) helmknoppen met de achterzijde naar binnen gekeerd staan. De binnenste zijn nu geopend, en naar voren, buiten de bovenlip gebogen. De stempels zijn nog weinig uiteengebogen en staan achter de helmknoppen, tegen de bovenlip aangedrukt. — In het 3° stadium zijn alle helmknoppen verwelkt, de helmdraden op zijde gebogen. De stempels staan nu wijd uiteen en door de kromming van den stijl zijn zij een eindweegs naar voren (naar onderen) gebracht. — De bloemen staan schuins naar boven gericht. — Gewoonlijk beginnen hommels en bijen, wanneer zij een inflorescentie bezoeken, met de onderste bloemen en begeven zich dan naar boven.

De door ons onderzochte exemplaren waren niet altijd zoo volkomen proterandrisch als door Heinsius beschreven wordt: de stempels waren reeds uiteengebogen (maar achter de helmknoppen) als de middelste helmknoppen nog bijna volkomen gesloten waren. Aan 't eind van den bloei zijn de meeldraden soms weinig op zijde gebogen.

![Diagram](image)

Fig. 36. — Stachys palustris.

Links: Einde van het 1e stadium: de buitenste meeldraden *(mk)* zijn reeds iets op zijde gebogen en open, de binnenste meeldraden *(ml)* zijn nog gesloten. De stempels divergeren reeds.

Rechts: Einde van het 2e stadium. De buitenste meeldraden zijn op zijde gebogen en verwelkt, de binnenste meeldraden *(ml)* zijn open en reeds iets op zijde gebogen. — De hier afgebeelde bloemen vertoonden een merkwaardige bijzonderheid: de zijlobben der onderlip *(zl)* zijn niet uitgespreid, zooals gewoonlijk het geval is, maar daarentegen onder de middellob der onderlip verborgen. In de jongere bloem *(links)* zijn de uiteinden der zijlobben *(zl)* onder den rand der middellob zichtbaar, en de middellob is nog niet geheel uitgespreid. In de oudere bloem *(rechts)* is de middellob der onderlip volkomen uitgespreid.

Bij onze exemplaren was de proterandrie soms niet zo volkomen als door Heinsius bij S. sylvatica beschreven wordt.

— Hemitrope Dipteren: Rhingia campestris Meig. 25. 8. 90, Drongen. — Lepidopteren: Pieris Rapae, 24. 7. 92, Gentbrugge.

273. Stachys arvensis L. — Kleine bleekroode bijenbloeem. — (Fl. melittophile, rouge-pâle, petite).

Bloemen klein, weinig in 't oog springend. Kroon bijna geheel in den kelk verborgen (kelkbuis 4 mill.; kelkslippen 3 mill.). Kroon uitwendig klierachtig behaard. Bovenlip 2 mill. lang; onderlip 3 mill., in 't midden daarvan een gleufvormige spleet, die naar den bodem der bloem voert en waarvan de beide randen behaard zijn. Kroonbuis 4 mill. Als de bloem ontluikt liggen de 4 zwarte helmknoppen 2 aan 2 boven elkander, onder de bovenlip. De helmknoppen der 2 binnenste meeldraden zijn aan 't uiteinde der filamenten op zulke wijze gedraaid, dat zij elkander met hun stuifmeelzijde op de middellinie aanraken. De stuifmeelzijde der 2 buitenste helmknoppen is naar onderen toegekeerd. De stijl ligt tegen den achtersten wand der kroonbuis aan: de divergerende stempels bevinden zich achter de beide binnenste helmknoppen of iets lager dan deze. In het eerste geval is spontane zelfbestuiving onvermijdelijk; in het 2e geval schijnt zij ook regelmatig plaats te grijpen. — Later worden de 2 buitenste meeldraden op zijde gebogen; de binnenste meeldraden verwijderen zich eveneens een weinig van elkander, en de stijl wordt naar voren gebogen, derwijze dat de stempel aan den ingang der bloem komt staan. In dit stadium zou kruising door insecten kunnen plaats grijpen, maar de bloemen worden zeer weinig bezocht, en er wordt gewoonlijk geen honig afgescheiden. (Kirchner, Beiträge, 1890, blz. 56-57. Waarnemingen gedaan in Würtemberg).
Opmerking: *St. palustris* en *sylvatica* zijn polycarpisch, met fraaie, honigrijke bloemen, die regelmatig kruisbevrucht worden; *St. arvensis* is monocarpisch met kleine, honiglooze bloemen, en zelfbevruchting is er de regel.

274. **Ballota foetida** Lmk. — Rose bijenbloem. — *(Fl. mélitophile rose)*.

Onderlip met witte strepen (honigmerken); kroonbuis 7 mill. lang, naar boven iets verbreed, genoeg om het voorste gedeelte van den kop van een honigbij binnen te laten. De vlezige schijf, waarop het vruchtbeginsel rust, is de honigklier. Een haarring, 2 mill. boven den bodem der kroonbuis, beschut den honig tegen ongenoode gasten, maar laat de dunne top eener bijenslurf door. — In het 1e stadium staan de 2 stempels, tegen elkander aangedrukt, achter de helmknoppen. In het 2e stadium is de stijl naar voren gebogen; de stempels zijn uiteengebogen en staan nu voor de helmknoppen: de bloem is dus een weinig proterandrisch. — Een gedeelte van het stuifmeel valt (bij uitblijvend insectenbezoek) op de lange wollige haren die de onderzijde der bovenlip bekleedt, en als de onderste stempel tusschen deze haren naar onderen gebogen wordt kan hij door dit stuifmeel bevrucht worden.

Volgens Schulz (Beiträge, I, blz. 85) komen exemplaren met kleinere, ♀ bloemen voor, en de ♀ exemplaren dragen soms enkele ♀ bloemen.

Bezoekers: Eutrope Hymenopteren: *Bombus* Sp? (niet gevangen), 28. 7. 92, St-Amandsberg.

275. **Marrubium vulgare** L. — Witte bijenbloem. — *(Fleur mélitophile blanche)*. Inheemsch?

276. **Scutellaria galericulata** L. — Blauwe bijenbloem, met vlinderdeur? *(Fl. mélitophile bleue, avec entrée spéciale pour les Lépidoptères?)*. — (MacLeod, Bot. centr., 1887, Bd. XXIX; Kirchner, Neue Beobacht., 1886, blz. 58).
Het middelste gedeelte der bovenlip is van ter zijde iets samengedrukt, iets snavelvormig, en vertoont van voren een nauwen ingang. De twee zijlobben der bovenlip zijn aan weerszijden tegen de vrij breed onderlip aangedrukt: tusschen de beide lippen bevindt zich een breede, lage opening, die van boven op de middellinie met den hoogervermelden ingang gemeenschap heeft. Helmknoppen en stempel door de bovenlip beschut, staan tegenover den bovensten ingang. De helmknoppen liggen 2 aan 2 achter elkander; zij zijn iets behaard, en brengen droog wit stuifmeel voort. De naar onderen gebogen top van den stijl fungeert als een stempel en ligt voor de 2 achterste helmknoppen: spontane zelfbestuiving onvermijdelijk.

![Diagram](image)

Fig. 38. Scutellaria galericulata.

Links: Bloem van voren gezien.
Rechts: Bloem van ter zijde gezien.
m, Helmknop. — (Naar de Natuur).

Een hommel die zijn kop in de bloem wil steken moet de bovenlip naar achteren drukken (scharnierbeweging: den top van een potlood in de bloem steken!); aldus worden helmknoppen en stempel ontbloot en aangeraakt. Als het insect de bloem verlaat keert de bovenlip door hare veerkracht tot haren vroegeren stand terug, en omsluit opnieuw de ♂ en ♀ organen. Een vlinder kan zijne dunne slurf door den bovensten ingang in de bloem voeren, en eveneens bestuiving bewerken. — Insecten kunnen zoowel kruis- als zelfbestuiving bewerken. — Honigmerken op de onderlip. Wordt (door hommels en vlinders) weinig bezocht.
277. Scutellaria minor L. — Rose bijenbloem, met vlinderdeur?? — (Fl. mélittophile rose, avec entrée spéciale pour les lépidoptères ??).

Gelijk op de vorige soort: het middelste gedeelte der bovenlip is niet zoo duidelijk van de zijdelingsche deelen gescheiden; bloem van voren wijder open; voortplantingsorganen minder volkomen verborgen; scharnierbeweging zeer onvolkomen. Wordt weinig bezocht.

278. Brunella vulgaris L. — Paarsblauwe bijenbloem.— (Fl. mélittophile, bleu-lilas), — (Müller, fert. blz. 489; — Mac Leod, Bot. Centralbl., 1887, Bd. XXIX; Schulz, Beiträge, I, 1888, blz. 85; — Kirchner, Neue Beob., 1886, blz. 58).

Zeer veranderlijk. In den vorm met groote & bloemen is de kroonbuis 7-8 mill. lang; filamenten der meeldraden aan hun top in tweeën gedeeld, de tak die naar de middellinie toegekeerd is met een 2lobbig gen helmknop; takken der korte meeldraden korter dan die der lange. Helmknoppen aan de onderzijde opengaande. De 2 stempeltakken divergeeren wijd, en bevinden zich tusschen de helmknoppen der lange meeldraden. De onderste stempeltak wordt door insecten vóór de helmknoppen aangeraakt: dus kruisbestuiving. — Bloemen homogaam of meer of minder proterandrisch. Volgens Schulz worden de stempeltakken zijdelings gekromd en raken daarbij de helmknoppen aan (spontane zelfbestuiving). — De bloemen zijn soms veel kleiner (vaak bleeker gekleurd), met den stijl evenlang als de korte meeldraden of nog veel korter; dergelijke bloemen blijven soms ten deele gesloten, met de voortplantingsorganen gebogen zooals in den bloemknop. Talrijke overgangsvormen. — Er komen (in

Fig. 39. — Brunella vulgaris, gewone tweeslachtige vorm. — Grootste breedte der bovenlip: 4,5 millimeters.
Vlaanderen zeer zelden)♀ exemplaren voor: bloemen kleiner dan in fig. 39, stijl even lang als of langer dan de bovenlip; stempeltakken breder dan in den ♀ vorm, wijd uiteenstaande of spiraalsgewijs opgerold; helmknoppen niet opengaande of nog meer geaborteerd.

279. Ajuga reptans L. — Bijenbloem, blauw, soms rose.— (Fl. mélittophile, bleue, parfois rose). — Müller, Fert., blz. 501. — Kirchner, Neue Beob., blz. 59; — Schulz, Beitr., I, blz. 87. — MacLeod, Bot. Centr. Bd. XXIII.

Er bestaat (volgens Kirchner en Schulz) veel verscheidenheid wat de lengte van meeldraden en stijl betreft: de stijl is soms korter dan de korte, soms langer dan de lange meeldraden, en tusschen deze uiterste gevallen allerhande overgangsvormen. De bloemen zijn homogaam, proterandrisch of proterogynisch. Naar gelang van die verschillen is spontane zelfbestuiving al of niet mogelijk. Wij hebben een vorm aangetroffen met grootere bloemen (kroonbuis 11-12 lang), waarin de stijl, in het 1e stadium gewoonlijk meer of minder naar achteren gebogen is en dus door de bezoekers niet kan aangeraakt worden. In het 2e stadium worden de korte meeldraden van elkander verwijderd; de stijl buigt zich naar voren (tusschen de meeldraden) en de meeldraden worden naar achteren gebogen: de stand der organen is dus verwisseld, (nagenoeg zooals bij Teucrium Scorodonia, maar veel minder duidelijk).

Kroonbuis 9-10 mill. lang. Honig wordt overvloedig afgescheiden door de honigklier aan den voet van het vruchtbeginsel. — In het 1e stadium liggen de meeldraden tegen den achtersten wand der kroon, recht uitgestrekt of iets naar voren gebogen. De 2 stempels staan reeds uiteen, maar bevinden zich achter de helmknoppen, zoodat zij niet aangeraakt worden. De helmknoppen gaan aan de voorzijde open en worden door den kop der bij aangeraakt. — Allengs worden de meeldraden naar achteren gebogen, terwijl de stijl (met de 2 stem-peltakken die nu nog meer divergeeren) daarentegen naar voren gebogen wordt. In het laatste stadium is de stand der organen ver-
wisseld: nu wordt de stempel door de bezoekers aangeraakt. Oude bloemen worden dus met stuifmeel uit jongere bloemen bevrucht. — Bewegingen der meeldraden vaak onregelmatig en asymmetrisch. — Terwijl de organen hunne bewegingen volbrengen komt stempel vaak met een der helmknoppen in aanraking: daardoor spontane zelfbestuiving. — De onderlip dient tot landingsplaats; bovenlip diep 2spletig, hare slippen met de onderlip vereenigd.

catum L., 4 ♂, 5 ♀, 22-23. 7. 87, Melle, Gentbrugge. Mega-
chile mantima K., ♂, 23. 7. 87, Melle. — Hemitrope dipte-
ren: Syrphus balleatus L., 31. 7. 87, Ingelmunster; 14. 8. 85, Melle; 11. 9. 88, Deurel. — Lepidopteren: Pieris Bras-
sicae, 5. 7. 89, 1. 8. 86, Melle.

281. Teucrium Scordium L. — Bijenbloem, purper of violet. — (Fl. méliittophile purpurine ou violette. — Niet onderzocht.

Fam. XXVI. Oleaceeën.

282. Ligustrum vulgare L. — Witte bloem met volko-
en verborgen honig. — (Fl. blanche, à nectar complète-
ment caché). (Müller, fert. blz. 393).

Kroonbuis 3 mill. diep; kroonzoom 4(-5) slippig. Honig in het diepst gedeelte der kroonbuis, afgescheiden door het vruchtbeginsel. Homo-
gaam. De stempel is meer of minder 2lobbig, aan den mond der kroonbuis. De 2 (zelden 3) helmknoppen worden aan de binnenzijde geheel met stuifmeel bedekt. Somwijlen staan de meeldraden wijd uiteen; in andere gevallen zijn zij naar binnen gebogen boven den stempel. In het eerste geval brengen insecten doorgaans kruising teweeg; in het tweede geval kunnen insecten zoowel zelf- als kruisbevruchting bewerkstelligen, en daarenboven is spontane zelf-
bestuiving bij uitblijvend insectenbezoek onvermijdelijk.

283. Fraxinus excelsior L. — Windbloemen. — (Ané-
mophile). — Kirchner, Flora.

Driehuizig. ♀ bloemen met helmknoppen die niet opengaan, en geen goed stuifmeel voortbrengen; de meeldraden vallen vroeg af. Zelden vertoont een ♀ boom enkele bloemen met goed ontwikkelde meeldraden. — ♂ boomen met bloemen die doorgaans een vroeg afvallenden stamper bevatten. — ♀ bloemen ten deele onvruchtbaar.

Fam. XXVII. Gentianaceeën.

284. Gentiana Pneumonanthe L. — Blauwe bijen-
bloem. — (Fl. méliittophile bleue). — Müller, Fert., blz. 403. — Kirchner, Flora, blz. 540.

spiraalgewijs gedraaid, en dit schijnt (evenals bij vele Sileneëën) een aanpassing tot bevruchting door vlinders te zijn.

287. *Erythraea pulchella* Fries. — Zooals Nr 286. — (Comme le N° 286.)

Volgens SCHULZ (Beitr., I, 1888, blz. 71), is de kortstijlliche vorm algemeen.

Kelk 5slippig, dik, uit een sponsachtig weefsel bestaande. Kroon- slippen 5, aan haar rand met een soort van franje, in 't midden met een donkerder gele streep, die zich naar beneden allengs verbreed. Op de grens tusschen buis en slippen draagt de kroon een krans van

De honigbij zet zich op een der kroonslippen en loopt langs de donkergele streep (honigwijzer) naar beneden, om honig te zuigen: de bij raakt daarbij in de kortstijlige bloemen de stempels met haar borst, de helmknoppen met haar achterlijf aan. In de langstijlige bloemen komt wel haar borst in aanraking met de helmknoppen, doch de stempels worden meestal niet aangeraakt. Somtijds begeeft zij zich ook midden in de bloem, zich vasthoudende aan den stijl, en dan komt haar achterlijf wel degelijk tegen de stempels aan. Wij zien hieruit dat de honigbij zich juist zóó gedraagt, als nodig is om legitieme bevruchting te bewerken (zie hooger, blz. 192). Lang- en kortstijlige planten komen dooreengemengd voor.

FAM. XXVIII. APOCYNACEEÆN.

Kroonbuis 11 mill. diep; 2 gele honigklieren, aan weerszijden van het vruchtbeginsel, tegen regen beschut door haren aan den ingang der kroonbuis. Stijl naar boven verdikt, met een horizontale eindplaat, die een haarbos in het midden draagt en een kleverigen rand heeft. De knievormig gebogen helmdraden zijn onder de stempelschijf op de kroon ingeplant en aan hunne binnenzijde behaard. De helmknoppen zijn aan hunne randen behaard; zij liggen dicht boven
de stempelschijf, springen aan de binnenzijde open en onlasten hun stuifmeel op den haarbos in ’t centrum van den stempel. Als een insect zijn langen dunnen zuiger in de bloem voert wordt hij met kleverige stof besmeerd, en bij het uittrekken beladen met stuifmeel, dat vervolgens door den kleverigen stempelrand eener 2e bloem gelijmd wordt. Zelfsteriel.

Fam. XXIX. Rubiaceën.

Bloemen ♂ en ♀, op dezelfde of op verschillende exemplaren.

♂ bloemen: kroonbuis nauw, 2 1/2 — 3 1/2 mill. diep. Honig afge- scheiden door een ringvormige vleezige klier aan den voet van den stijl. Als de bloem ontluikt gaan de helmknoppen open; eenigen tijd daarna buigen zij zich gewoonlijk iets naar buiten. De violette stempels bevinden zich gewoonlijk op gelijke hoogte als de helmknoppen (zelden hooger of lager); zij zijn doorgaans na de helmknoppen geslachtsriep. Somwijlen zijn zij ontwikkeld alvorens de helmknoppen verwelkt zijn: in dit geval kan zelfbestuiving somwijlen plaats grijpen.

In den herfst blijft de bloem vaak gesloten (spontane zelfbestuiving). ♀ bloemen doorgaans iets kleiner, met meer of minder gereduceerde of volkomen ontbrekende meeldraden.

Het ware belangrijk te onderzoeken of de hier beschreven vormen ook in ons land voorkomen. De door ons onderzochte exemplaren (te Philippine, Zeeland, 27 April 1886) waren ♀; in hun bloei kon men de volgende stadiën onderscheiden: 1e stadium: kroon nog niet geheel uitgespreid, de meeldraden staan rechttop, de helmknoppen zijn open, aan de binnenzijde met stuifmeel bedekt. De stijl is nog kort, en komt nauwelijks uit de kroonbuis te voorschijn, maar de stempels schijnen geslachtsriep te zijn. Spontane zelfbestuiving mogelijk, want stuifmeel kan uit helmknoppen op stempel vallen. — 2e sta- dium: kroonlippen geheel uitgespreid; de meeldraden beginnen zich naar buiten om te buigen; de stijl wordt langer; in de meeste
bloemen bereikt hij dezelfde lengte als de meeldraden, en de stempel komt soms in aanraking met een der helmknoppen (in dit geval spontane zelfbest.) In andere bloemen wordt de stijl langer dan de meeldraden. — 3e stadium: de kroonslippen worden nog meer uitgespreid, de meeldraden worden tusschen de kroonslippen naar buiten en naar onderen omgeslagen; de stempel blijft alleen in 't midden der bloem over. Kruisbevruchting door insecten is alleen mogelijk.

Sherardia gedijt voortreffelijk, vooral op iets kleiachtigen grond, en geeft bloemen van einde April tot September: voor cultuurproeven waren zij zeer geschikt. — In Algerië (Alger, 1887) wordt deze plant door insecten veel bezocht; wij hebben verzuimd in Algerië de bloemen te onderzoeken.

Honigklier in den vorm eener schijf, aan de bovenzijde van het (onderstandig) vruchtbeginsel, rondom de basis van den stijl. Zeer weinig honig. In het 1e stadium staan de stijlen en ook de meeldraden (zie fig. 41) rechtop; stempels tegen elkander aansluitend. In het 2e stadium divergeeren de stempels, en de meeldraden spreiden zich horizontaal uit en buigen zich eindelijk tusschen de kroonslippen naar onderen om. — De stempeltepels schijnen in het 1e stadium evengoed ontwikkeld te zijn als in het 2e, en de stempels zijn vaak reeds bestoven als zij nog tegen elkander liggen. Er is dus geen eigenlijke proterandrie. In den herfst komen bloemen voor, waarin de stempels van den beginne af open zijn: hierdoor wordt zelfbestuiving begunstigd. — Ofschoon de inflorescentiën zeer in 't oog springen hebben wij slechts weinig bezoekers gezien.

293. Galium verum L. — Geel, zooals nr 292. — (Jaune, comme le no 292).
Stemt in hoofdzaak met de vorige soort overeen, maar geel; er zijn groote en kleine bloemen, met overgangsvormen. Volgens SCHULZ (Beitr., 1888, blz. 67) komen talrijke overgangen tusschen proterandrie en homogamie voor.

294. **Galium uliginosum** L. — Wit, zooals nr 292. — (Blanc, comme le n° 292).

Stemt in hoofdzaak met de volgende soort (295) overeen. Te Halle komen in den herfst niet opengaaende bloemen voor (SCHULZ, Beitr., 1888, blz. 66).

Fig. 41. — Galium verum.
Links: 1e stadium.
Rechts: 2e stadium.

Fig. 42. Galium palustre.
Links: 1e stadium.
Rechts: 2e stadium.
(Naar de Natuur; Wenduyne, Juni 1892).
Honigklier zooals bij G. Mollugo. In het 1e stadium zijn de stempels nog vereenigd, de helmknoppen zijn open; de meeldraden zijn naar binnen gebogen, op zulke wijze dat stuifmeel uit de helmknoppen op de stempels kan vallen. In fig. 42 links hebben wij een bloem in dit stadium afgebeeld: er waren reeds enkele stuifmeelkorrels op de stempels te bespeuren. — In het 2e stadium divergeeren de stempels, en de helmknoppen zijn verdroogd, maar niet naar buiten gebogen, zoodat spontane zelfbestuiving nog mogelijk is.

296. **Galium Aparine** L. — Wit, zooals nr 292. — (Blanc, comme le no 292). — Kirchner, Flora, blz. 665.

Stemt in hoofdzaak met G. palustre overeen: de meeldraden buigen zich niet naar buiten aan 't eind van den bloei. Bloemen weinig in 't oog springend.

297. **Galium cruciata** Scop. — Geel, zooals nr 292. — (Jaune, comme le no 292). — Kirchner, Flora, blz. 666, en Neue Beob., 1886, blz. 65. — Schulz, Beitr., 1888, blz. 66.

Bloemen ♀ en ♂ op dezelfde plant. De ♀ bloemen stemmen in hoofdzaak met G. Mollugo overeen, onder anderen wat de beweging der meeldraden in het 2e stadium betreft. In de ♂ bloemen is de stamper geaborteerd. 3tallige bloemen, en bloemen met 1 of met 3 stempels zijn niet zeldzaam.

298. **Galium saxatile** L. — Wit, zooals nr 292. — (Blanc, comme le no 292). Niet onderzocht.

Fam. XXX. Caprifoliaceaeën.

Bloemen naar muskus riekend, weinig in 't oog springend, homogaam. Honig afgescheiden door een vleezigen ring die de basis der meeldraden omgeeft. Iedere meeldraad is tot aan zijn voet in tweeën gedeeld, met 2 helmknoppen. In de eindbloem van ieder inflorescentie is de stuifmeelsijde der helmknoppen naar boven, in de zijdelingsche bloemen naar buiten toegekeerd. Stempels 4-5. Insecten kunnen zoowel zelf- als kruisbestuiving bewerken.

300. **Sambucus nigra** L. — Witte pollenbloem. — *(Fl. blanche, à pollen)*. — Müller, fertil., blz. 290.

Bloemen homogaam, in bloemrijke tuilen, geurend, maar zonder honig. Meeldraden wijd divergeerend; stempels zittend op het vruchtbeginsel, in 't centrum der bloem. Door insecten zelf- en kruisbestuiving; bij uitblijvend insectenbezoek vaak spontane zelfbevruchting, door het vallen van stuifmeel uit de helmknoppen op de stempels. — Wordt weinig bezocht.

301. **Viburnum opulus** L. — Wit, met blootliggende honig. — *(Blanc, à nectar librement exposé)*. — Müller, fert., blz. 291.

Bloemen geurend, in bloemrijke tuilen. De randbloemen hebben rudimentaire voortplantingsorganen, maar hare kroon is zeer groot en daardoor maken zij den geheelen tuil in 't oog springend. De centrale bloemen zijn ☉, met kleinere bloemkroon. Honig ligt dicht onder den stempel op den bodem der bloem, en wordt door de bovenzijde van het vruchtbeginsel afgescheiden. Als de bloem ontluikt zijn de helmknoppen reeds ten deele open, en de stempels kunnen reeds stuifmeel lijmen. Later worden de helmknoppen rondom met stuifmeel bedekt, en de 3lobbige stempel blijft op den bodem der bloem, bijna zittend op het (onderstandig) vruchtbeginsel. Insecten bewerken zelf- en kruisbevruchting. Ofschoon de meeldraden divergeeren is spontane zelfbevruchting niet geheel onmogelijk, want de stempel bevindt zich soms onder een der helmknoppen.
302. **Lonicera Periclymenum** L. — Geelachtig-witte vlinderbloem. — (Fleur lépidoptéroophile d'un blanc jaunâtre).

Müller beschrijft als volgt de nauwverwante *L. caprifolium* (Fert. blz. 293): Kroonbuis ongeveer 30 mill. lang, scheidt in haar onderste vlezig gedeelte op de middellinie honig af. Over het grootste gedeelte harer lengte is de kroonbuis slechts 1-2 mill. wijd; zij wordt nog nauwer gemaakt door de tegenwoordigheid van den stijl, en is tot de helft harer diepte met honig gevuld. Insecten, wiér slurf een lengte van 15 mill. of meer bereikt (b. v. *Bombus hortorum*) kunnen *een gedeelte* van den honig zuigen, maar de honigbehouder kan alleen door vlinders met een langen zuiger geledigd worden. Meeldraden en stijl naar boven gebogen, de stijl steekt ongeveer 25 mill., de meeldraden 15-18 mill. buiten de kroon uit. Vlinders die, op de bloem zittend of in de lucht zwevend, honig zuigen, zullen den stempel vóór de helmknoppen aanraken, en aldus ondanks de homogamie der bloem, kruising bewerken. De bloemen ontluiken en geuren vooral 's avonds (aanpassing tot bestuiving door schemeeringvlinders).

L. periclymenum stemt hiermede in hoofdzaak overeen, maar de kroonbuis is slechts 22-25 mill. diep.

Bezoekers: 1° Op *L. caprifolium*: Eutrope Lepidopteren: *Deilephillus* Sp. 's avonds, 26. 6. 88, in een tuin te Ingelmunster. — 2° Op *L. periclymenum*: Eutrope Lepidop-

Fam. XXXI. Valerianacerën.

![Fig. 44. — Valeriana officinalis.](image)

1. Eerste (♂) stadium.
2. Tweede (♀) stadium.
(Naar de Natuur).

Kroonbuis 4-5 mill. diep; 1/2 mill. boven hare basis een kleine bult, waarvan de groene vleezige bodem honig afscheidt; de kroonbuis is aan haar keel verbreed, zoodat insecten hun kop een eindweegs in de bloem kunnen steken, en slechts een korte slurf behoeven om den honig te bereiken. Proterandrisch: in het 1e *stadium* kijken
de helmknoppen uit de kroon; de helmknoppen zijn rondom met stuifmeel bedekt, en de stempels zijn nog gesloten. In het 2° stadium zijn de meeldraden naar buiten gebogen en de stempels uitgespreid (helmknoppen vaak afgevallen). Kruising door insecten dus onvermijdelijk. Spontane zelfbestuiving onmogelijk, maar de stempel kan een helmknop van eene naburige bloem derzelfde inflorescentie aanraken (gigonogamie).

Honigbehouder en -klier zooals bij de vorige soort. 2huizig. In de ᵃ bloemen is de kroonbuis 2½-3½ mill. diep, naar boven verwijd; in de ᵇ bloem 1 mill. diep. Volgens Müller zijn er 4 soorten individuen: 1° met groote ᵃ bloemen, zonder eenig spoor van een ᵇ orgaan; 2° met iets kleinere ᵃ bloemen, met een rudimentaire stamper; 3° met nog kleinere, ᵇ bloemen, met duidelijke sporen van helmknoppen; 4° met zeer kleine ᵇ bloemen en nauwelijks zichtbare overblijfsels van helmknoppen. — Wij weten niet of deze 4 vormen ook in ons land voorkomen.

305. Valerianella olitoria* Moench. — Blauwachtig wit, zooals n° 303. — (Blanc bleuâtre, comme le n° 303). Kirchner, Flora, blz. 675.

Bloemen zeer klein, tot veelbloemige bloeiwijzen vereenigd en nochtans weinig in ’t oog springend. Kroonbuis van onderen nauwe-
lijks 1/4 mill. wijd, hooger plotseling tot 3/4 mill. verwijd; de 5-7-slippe kroonzoom is 2 mill. breed. Op den bodem van het wijd gedeelte der kroonbuis worden kleine honigdruppels afgescheiden. Na het ontluchen der bloem zijn de 3 meeldraden recht uitgestrekt, de helmknoppen open; de stempel is geslachtsrijp, lager dan de helmknoppen, reeds van enkele stuifmeelkorrels voorzien. De stijl wordt allengs langer, en daardoor wordt de stempel op gelijke hoogte als de helmknoppen gebracht. Door insectenbezoek is kruisbevruchting mogelijk. — Spontane zelfbestuiving onvermijdelijk.

306. **V. auricula** D. C. Zooals nr 303.
Niet nader onderzocht.

Fam. XXXII. Dipsaceëen.

Bloemen in groote, langwerpig ronde bloemhoofdjes, proterandrisch. De kroonbuis is volgens Heinius 6-11 mm. (volgens Müller 9-11 mill.) lang, bijna buisvormig; zij neemt naar boven allengs in wijdte toe en draagt 4 slippen. In den voet der kroonbuis verzamelt zich de honig, die door talrijke haren (op het benedendeel van den binnenwand der kroon en op dat van den stijl) beschermd wordt. De 4 helmknoppen zijn reeds opengesprongen als de stijl nog geheel in de kroon verborgen ligt. Wanneer de stijl zijne volle lengte heeft bereikt en de stempel rijp is zijn de helmknoppen veelal reeds van de helmdragers afgevallen of althans geheel verschrompeld en leeg. Bij de door Heinius onderzochte exemplaren was de stempel enkelvoudig, haakvormig naar boven gekromd; bij Müller's exemplaren was de stempel in 2 takken gespleten, waarvan de eene meer of minder (soms volkomen) geaborteerd was. (Zie over deze interessante verschillen: Heinius, loc. cit.). — De stijve puntige dekbladen steken boven de voortplantingsorganen uit: daardoor wordt het stuifmeelverzamelen, dat voor de bloem nadeelig is, aan die insecten,
welke dit met de buikharen doen (b. v. *Megachile*), geheel belet. Insecten, die over de hoofdjes kruipen en hun zuiger in de kroonbuis steken, komen in de jonge bloemen in aanraking met de helmknoppen, in oudere met den stempel. Zelfbestuiving is onmogelijk.

309. **Knautia arvensis** Coult. — Zooals n° 308. — (*Comme le n° 308*). — Muller, fert., blz. 309.

Duidelijk proterandrisch. Bloemen in hoofdjes: van het centrum naar den rand van ieder hoofdje worden de bloempjes groter, vooral door de aangroeiing der buitenste kroonslip. In het centrum van het hoofdje is de kroonbuis der bloempjes 3-4 mill., aan den rand 7-9 mill. diep. Nochtans kan de honig bereikt worden door talrijke insecten met korte monddeelen, daar de kroonbuis naar boven in wijdte toeneemt (des te meer naarmate zij dieper is) zodat insecten een eind wegs in deze buis kunnen kruipen. Honig wordt afgescheiden door de bovenste oppervlakte van het vruchtbeginsel, in den voet der kroonbuis verzameld, en door haren van binnen in de kroonbuis tegen regen beschut. In het 1e stadium is de stuifmeelzijde der helmknoppen naar boven toegekeerd, en de onrijpe stijl bevindt zich aan den ingang der kroonbuis. Later steekt de stijl met den geslachtsrijpen stempel 4-5 mill. voor den rand der kroon uit, en de meeldraden, met de geledigde helmknoppen, zijn meer of minder verschrompeld. In ieder hoofdje gaan de helmknoppen successievelijk van den rand naar het centrum toe open en dit duurt meerdere dagen; nadat alle helmknoppen hun stuifmeel hebben ontlast worden de stempels bijna te gelijker tijd in al de bloempjes van het hoofdje geslachtsrijp: aldus wordt kruising tusschen verschillende hoofdjes bevorderd.

Er komen ♀ exemplaren voor: de helmknoppen zijn meer of minder geaborteerd, gaan niet open en bevatten vaak misvormde stuifmeelkorrels. De ♀ hoofdjes zijn even in 't oog springend als de ♂, en gaan te gelijker tijd als deze open. Wij hebben deze plant binnen de grenzen van ons gebied nooit aangetroffen.

310. **Scabiosa succisa** L. — Blauw, zooals n° 308. — (*Bleu, comme le n° 308*).

Hoofdjes hemisphaerisch. Honig afgescheiden door een kleine vleezigen ring rondom den voet van den stijl, en verzameld in het onderste, kaal gedeelte der kroonbuis.
Kroonbuis 3-4 mill. lang, in haar niet honighoudend gedeelte inwendig behaard, aan den ingang circa 2 mill. wijd, zodat een insect zijn kop in de bloem kan steken. De honig kan dus door insecten met korte monddeelen bereikt worden. De bloem is volkomen proterandrisch, evenals bij de vorige soort. — Exemplaren met ♀ hoofdjes komen zelden voor; hare bloempjes zijn iets kleiner, hare helmknoppen meer of minder geaborteerd, soms (volgens Magnus) in kroonblaadjes veranderd.

![Diagram of Scabiosa succisa](image)

Fig. 45. — Scabiosa succisa.

Boven: Eerste (♂) stadium.
Onder: Tweede (♀) stadium.

m, meeldraad. — st, stempel — k, kelktanden (de kelk is grootendeels onder den bijkel verborgen). Naar de Natuur.

Bezoekers: Langtongige bijen: Bombus lapidarius L. 7. 9. 86, Melle; ♂, 3. 9. 87 en 9. 90, Gentbrugge. B. (silvarum?), 23. 9. 86, Melle. Psithyrus campestris Panz. ♂, 11. 9. 91, Meyghem. Apis mellifica, ♀, 7. 9. 86, Melle; 11. 9. 91, Meyghem. — Korttongige bijen: Halictus sexno-
tatus K., ♀, 20. 9. 88, Wetteren; ♂, 11. 9. 91, Meyghem.

Fam. XXXIII. Compositen.

De Compositen (1) zijn, over 't algemeen, gekenschetst door de volgende eigenschappen:

1° De bloempjes zijn vereenigd tot gezelschappen (bloem-korfjes): daardoor worden zij meer in 't oog springend gemaakt (en dit wordt nog vermeerderd door de buitengewone ontwikkeling van de kroon der randbloemen bij de Radvormigen (Corymbiferen), sommige Centaurea's, enz.); — een

(1) De volgende algemene beschouwingen over de Compositen hebben wij ontleend aan Müller, fert., blz. 315.
insect kan, bij een enkel bezoek, meerdere bloempjes bevrucht-
ten; — het omwindsel speelt de rol van een bloemkelk, en
de echte kelk is kunnen veranderd worden in een toestel tot
verspreiding der zaden, of is zonder nadeel kunnen verdwij-
nen (uitsparing van bouwstoffen).

2° De honig kan (gewoonlijk) gemakkelijk bereikt worden,
wordt overvloedig afgescheiden en volkomen tegen regen
beschut. Daardoor worden insecten uit alle groepen door de
meeste Compositen aangelokt.

3° Door een bijzonder stuifmeelmechanisme wordt kruising
door insecten bevorderd. De helmknoppen zijn vergroefd tot
een cylinder: zij gaan aan hunne binnenzijde open, en het
stuifmeel wordt van binnen in den cylinder ontlust, alvorens
het bloempje ontluikt. De 2 stempels sluiten tevens tegen
elkander aan, en de stijl drijft het stuifmeel uit den helmknop-
cyliner (aan het bovenst uiteinde van dien cylinder) naar
buiten. Daarna komen de stempels uit den helmknopcylinder
te voorschijn en kunnen zij bevrucht worden. (Zie fig. 46
en 50). In het 1° stadium is het bloempje dus σ, in het
2° stadium is het φ. — De stijl en de stempels zijn voorzien
van haren, die het uitborstelen van het stuifmeel (gedurende
het 1° stadium) bevorderen. Deze haren vertoonden veel ver-
scheidenheid: vergelijk b. v. Centaurea (fig. 46), Achillea
(fig. 52), Hieracium (fig. 54). De stempeltepels staan aan de
randen der stempels, of aan hunne binnenzijde. — Het uit-
borstelen van het stuifmeel wordt bij vele soorten bevorderd
door een bijzondere prikkelbaarheid der helmdragers (zie b. v.
Centaurea Cyanus). Zelfbevruchting is vaak mogelijk (zie b. v.
Taraxacum).

Enkele Compositen zijn windbloemig (b. v. Artemisia offi-
cinalis).

Voor iedere onderfamilie hebben wij een soort tot voor-
beeld gekozen en uitvoeriger dan de andere beschreven.
Onderfamilie I: Tubulifloren.
(Voorbeeld: *Centaurea Cyanus*, blz. 398).

311. **Centaurea Cyanus** L. — Blauw bloemengezelschap met volkomen verborgen honig. — *(Fl. associées, bleues, à nectar complètement caché).*

De *randbloemen* zijn veel groter dan de schijfbloemen, met een onregelmatige, trechternormige, knievormig naar buiten gebogen kroon, zonder eenig spoor van helmknoppen of stijl. Zij dienen (volgens de algemeen aangenomen theorie) om de hoofdjes meer in 't oog springend te maken.

De *schijfbloempjes* ontwikkelen zich van den rand naar het centrum toe (de centrale bloempjes zijn nog gesloten, als de bloempjes die zich aan den omtrek bevinden reeds ontloken zijn). De kroonbuis der schijfbloempjes is in haar onderst gedeelte, over een lengte van 5-6 mill., zeer nauw, en in haar bovenst gedeelte verwijd tot een 2-3 mill. lange klok, die aan haar rand 5 smalle, 3-4 mill. lange slippen draagt. Honig wordt (evenals bij alle Compositen) afgescheiden door een ringvormige klier, die de basis van den stijl omgeeft: deze vloeistof stijgt in het nauw gedeelte der kroonbuis naar boven, en wordt op den bodem van het klokvormig gedeelte verzameld. Als de bloem ontluikt heeft de stijl den stand, die in fig. 46,2 afgebeeld is.

De 2 stempels sluiten tegen elkander aan, en bevinden zich in het bovenst gedeelte van den helmknopcyliner. De stijl draagt, onder de plaats waar hij zich in 2 stempels deelt, een ring van schuin naar boven gerichte haren. Door deze haren wordt (als door een zuiger of *piston*) al het stuifmeel dat van binnen in den cylinder werd ontlast (1), in het bovenst gedeelte van den cylinder gedreven. De stempels zijn dus geheel in het stuifmeel gedompeld. Het bovenst, dunner gedeelte van den helmknopcyliner bestaat uit 5 aannahgels der helmbindsels, welke met hunne randen tegen elkander aansluiten, en waarvan de samenhebbende uiteinden te zamen boven de stuifmeelhoedende kamer een soort van kegelvormig (2), 5kleppig dak vormen.

(1) De helmknoppen gaan aan hunne binnenzijde open.

(2) Het bovenste gedeelte van den helmknopcyliner is doorgaans naar het centrum van het hoofdje toegebogen.
Fig. 46. — Centaurea Cyanus.

1. Bovenste gedeelte van een schijfbloempje. — h, helmdrager. — bc, onderste gedeelte van den helmknopcylinder, door de eigenlijke helmknoppen gevormd. — ab, bovenste gedeelte van den helmknopcylinder, door de aanhangsels der helmbindsels gevormd. — De stijl is nog van binnen in den cylinder verborgen.

2. Bovenste gedeelte (ab) van fig. 1, in de lengte doorgesneden. De 2 stempels zijn tegen elkander aangedrukt; aan hunne basis bevindt zich een haarring; boven den haarring bevindt zich het stuifmeel, waarin de stempels gedompeld zijn.

3. Stijl, in het 2e stadium; de stempels divergeeren. De haarring is nog met stuifmeelkorrels beladen; enkele stuifmeelkorrels kleven aan de binnenzijde der stempels.

4. Schijfbloempje, in de lengte doorgesneden, half-schematisch. wh, haarring van den stijl; ab, aanhangsels der helmbindsels; bc, eigenlijke helmknoppen. — h, helmdragers. — st, stijl. — k, kroonslip. — de, buisvormig gedeelte der bloemkroon. — Boven d, klokvormig gedeelte id. — De honigklier (niet afgebeeld) bevindt zich in e, rondom den voet van den stijl.
Wanneer nu de top van den helmknopcyliner (die ver buiten de bloempljes uitkijkt) aangeraakt wordt (door een insect, of met de punt van een potlood), *trekken de filamenten* (1) *der meeldraden zich samen*: hierdoor wordt de helmknopcyliner naar beneden getrokken, en tengevolge daarvan wordt het stuifmeel tegen het 5kleppig dak gedrukt. De 5 kleppen gaan open, stuifmeel komt aan den top van den cyliner voor den dag (2), en kan nu aan het insect kleven en medegevoerd worden. De stempels komen daarna op hunne beurt uit den cyliner te voorschijn. Zij zijn voor eerst gesloten; daarna gaan zij een weinig open, en hunne binnenzijde kan nu stuifmeel ontvangen. Kruising door insecten is dus bijna onvermijdelijk. (MüLLER, fertil., blz. 350).

(1) Die zich in het klokvormig gedeelte der kroonbuis bevinden.

(2) Gewoonlijk moet de helmknopcyliner verscheidene malen, met tusschenpoozen, aangeraakt worden alvorens al het stuifmeel onthast is. Telkens wordt een gedeelte van het stuifmeel naar buiten gedreven, en daarna schijnen de filamenten opnieuw genoeg gespannen te worden, om zich bij een volgende prikkeling opnieuw te kunnen samentrekken. Wordt een bloem tegen de aanraking van insecten beschut, dan gaan de eindkleppen (na 1 of 2 dagen) van zelf een weinig open, en een weinig stuifmeel komt aan den top te voorschijn. De filamenten hebben nu hunne *volle spanning* bereikt, en *één* aanraking is voldoende om *al* het stuifmeel uit te borstelen en om den stijl te doen te voorschijn komen.

Stemt in hoofdzaak met de vorige soort overeen. In ons gebied hebben wij nooit exemplaren met straalbloemen aangetroffen. Gynodioecisch.

Vrouwelijke hoofdjes: de bloempjes zijn kleiner, (vaak naar het rood zeeuwend), minder talrijk in ieder hoofdje; de helmknoppen zijn bruinachtig en ledig. — Volgens Müller komen ook zeer in 't oog springende σ hoofdjes (met stempels die nooit divergeeren) en minder in 't oog springende Φ hoofdjes voor, beide met groote geslachteloze straalbloemen. (Interessante beschouwingen over deze verschijnselen bij Müller, fert., blz. 348-349.

— Korttongige bijen: Dasypoda hirtipes F. σ, 17. 6. 89, Iseghem. Halictus sexnotatus K. Φ, 8. 9. 90, Gentbrugge. H. cylindricus F. Φ, id., Id. H. leucozonius K. σ, 6. 8. 86,

313. **Carlina vulgaris** L. — Geelachtig, zooals nº 311. — *(Jaunâtre, comme le nº 311).*

De binnenste om windselblaadjes zijn groot, bleekgeel; zij gelijken op straalbloemen en maken het doof gekleurd bloemhoofdje in 't oog springend. Klokvormig gedeelte der bloemkroon ongeveer 4 (?) mill. Wij twijfelen sterk of deze soort in ons gebied inheemsch is.

314. **Serratula tinctoria** L. — Purper, zooals nº 311. — *(Purpurin, comme le nº 311).*

Er zijn ♀ en ♀ exemplaren, met talrijke overgangsvormen tus- schen beide. Klokvormig gedeelte der kroon 3 1/2 (?) mill.

315. **Lappa communis** C. G. — Purper, zooals nº 311. — *(Purpurin, comme le nº 311).*
Het klokvormig gedeelte der kroonbuis is 3 mill. diep, met 1 mill. lange slippen. De stempels zijn uitwendig met korte haren, en aan de binnenzijde met kleurloze stempeltepels bezet. In het laatste stadium divergeeren zij wijd. Een haarring onder de basis der stempels. Het mechanisme stemt in hoofdzaak met nr 311 overeen.

316. **Carduus crispus** L. — Purper, zooals nr 311. — *(Purpurin, comme le no 311).* — Müller, fert., blz. 338.

Klokvormig gedeelte der kroon 21/2-3 mill. diep. Kroonslippen lijnvormig, 4-51/2 mill. lang. Stemt in hoofdzaak met *Cirsium arvense* overeen.

317. **Carduus nutans** L. — Purper, zooals nr 311. — *(Purpurin, comme le no 311).* — Kirchner, flora, blz. 723.

Klokvormig gedeelte der kroon 5 mill. diep; kroonslippen onge- lijk, 5-8 mill. lang. Onderste nauw gedeelte der kroonbuis 10 mill. lang. Stemt in hoofdzaak met *Cirsium arvense* overeen. Waarschijnlijk niet inheemsch in ons gebied.

Klok der kroonbuis 21/2 mill. diep. Stemt in hoofdzaak met *C. arvense* overeen.

Hoofdjes ♂ en ♀, op verschillende exemplaren. — Het klokvormig gedeelte der ♀bloempjes is slechts 1-1½ mill. diep, het nauw gedeelte der kroonbuis is 8-12 mill. lang. Kroonslippen smal, 4-5 mill. lang. Honigafscheiding zoaals bij n° 311. In het 1e stadium wordt een aan­zienlijke hoeveelheid stuifmeel aan den top van den helmknop­cyliner naar buiten geperst door den stijl, die langer wordt. Allengs komt de stijl zelf 2-2 ½ mill. boven den helmknop­cyliner uitkijken. De 2 stempels zijn nagenoeg 2 mill. lang, aan de buitenzijde met kleine haartjes bezet. Aan de basis der stempels is de stijl van een
haarring voorzien. Als de stijl uit den helmknopcylinder te voorschijn komt is de buitenzijde der stempels beladen met stuifmeel, dat door de insecten afgeborsteld wordt. De stempels zijn aan de binnenzijde en aan den rand van tepels voorzien: in het laatste stadium wordt

Fig. 47. — (Naar de Natuur). 1-3, Cirsium palustre.

1. Bovenste gedeelte van een bloempje; de helmknopcylinder is nog gesloten. — ab, bovenste gedeelte van den helmknopcylinder (aanhangsels der helmbindsels). — bc, onderste gedeelte id. (eigenlijke helmknoppen). — h, helmdragers. — Een der kroonslippen is afgesneden.

2. Id, Mannelijk stadium. Het stuifmeel komt aan 't uiteinde van den helmknopcylinder voor den dag (half-schematisch).

4. Cirsium arvense.

Bovenste gedeelte van een vrouwelijk bloempje. — m, ledige helmknoppen. — wh, onvolkomen ontwikkelde haarring van den stijl.

dezte tepeldragende rand naar buiten omgeslagen, maar de stempels divergeeren niet. Zelfbestuiving is mogelijk, indien de bloem niet bezocht wordt: in dit geval blijft stuifmeel aan de behaarde buitenzijde der stempels gehecht, en stuifmeelkorrels kunnen aldus met
de stempelranden in aanraking komen. Bezoekers talrijk; de honig kan door insecten met korte monddelen bereikt worden.

Bij de 2 exemplaren zijn de bloempjes kleiner, met iets bruinachtige, ledige helmknoppen.

Meig. ♀, 9. 9. 91, Bellem. *Syrphus balteatus* Deg., id. Id. en
S. cinctellus Zett, 21. 9. 88, Gentbrugge. *Syritta pipiens* L.
31. 7. 87, Ingelmunster. *Occemyia (Myopa) atra* F., 21. 8. 86,
Melle. — Allotrope Dipteren: *Chrysops coecutiens* L., 1. 8. 88,
Gentbrugge. *Odontomyia viridula* L., 23. 7. 87, Meirelbeke.
Echinomyia (Tachina) tesselata F., 3. 8. 86, Melle. *Miltogramma
(Tachina) conica* Fall., talrijk, 17. 7. 87, Gentbrugge.
Olivieria (Tachina) lateralis F., talrijk, 1. 8. 88, id. *Siphona
(Tachina) geniculata* Deg., 22, 7. 87, 31. 7. 87, Gentbrugge,
Ingelmunster. *Sarcophaga (Onesia) sepuicralis* L., 3. 8. 86,
27. 8. 87, Heusden, Melle. *Morinia melanoptera* Fall. 3. 8. 86,
Melle. *Pollenia (Musca) rudis* F., 29. 7. 86, Melle. *P. Ves-
pillo* F., 9. 9. 91, Bellem. *Hylemyia (Anthomyia) nigrimana

Lepidopteren: Pieris Brassicae, 16. 7. 87, Gentbrugge.
P. Napi. 5. 7. 89, 16. 7. 87, 22. 7. 87, 1. 8. 88, Melle,
Gentbrugge; 9. 91, Deurel. *Vanessa Urpticae*, 17. 7. 87,
Heusden. *Pararge Megaera*, 3. 8. 86, Melle. *Epinephelr (Hipp-
parchia) Janira*. 29. 7. 86, 1. 8. 88, Melle. *Hesperia (lineola?)*,
16. 7. 87, Heusden.

Coleopteren: *Trichius fasciatus*, 20. 7. 86, Melle. *Rhago-
nycha fulva* Scop., 17. 7. 87, 24. 7. 92, 1. 8. 86, Melle,
Gentbrugge.

321. *Cirsium oleraceum* Scop. — Geel of geelachtig,
zooals Nr 311. — (Jaune ou jaunâtre comme N° 311).

Onderfamilie II: Corymbiferen.

(Voorbeeld: *Achillaea Millefolium*, blz. 422).

322. *Eupatorium cannabinum* L. — Bleekrose bloem-
mengezelschap met volkomen verborgen honig, tot bevruchting
door vlinders aangepast. — *(Fl. associées, d’un rose pâle à nectar complètement caché, adaptées à la fécondation par les lépidoptères).* — Zie H. Müller, fert., blz. 318.

Fig. 48. — Eupatorium cannabinum. (Naar de Natuur).

2. Id., tweede stadium. — *ab*, behaard gedeelte der stijlen — *bc*, onderste gedeelte der stempels, zonder haren, maar met stempeltepels aan de randen. Dit gedeelte was, in het eerste stadium, van binnen in den helmknopcylinder verborgen.

Hoofdjes 4-5bloemig, in groot aantal tot een tuil vereenigd. Nauw gedeelte der kroonbuis 2 1/2 mill., klokvormig gedeelte 2 mill. lang. Honigafscheiding zooals bij *C. Cyanus* (Nr 311). Schutbladen met een rooden rand. Stempeltakken 5 mill. lang: over een vierde hunner lengte zijn zij aan de randen van stempeltepels voorzien; de overige drie vierden zijn rondom met haren bezet. In het *eerste stadium* blijft het onderst tepeldragend gedeelte der stempels van binnen in den helmknopcylinder verborgen, terwijl hun behaarde uiteinden uitsteken en divergeeren, op zulke wijze dat de insecten, die de bloemen bezoeken, onvermijdelijk deze behaarde uiteinden aanraken, en de stuifmeeldkorrels, die tusschen de haren zitten, met zich medevoeren,
In het *tweede stadium* komen de onderste, tepeldragende gedeelten der stijlen op hunne beurt uit den helmknopcyliner en tevens uit de kroonbuis voor den dag; zij divergeeren nu wijd, zoodat zij op hunne beurt met het lichaam der bezoekers in aanraking komen en kunnen bestoven worden. Indien het insectenbezoek in het 1e stadium voldoende is geweest om al het stuifmeel van het behaard gedeelte der stijlen te verwijderen, is kruisbestuiving in het 2e stadium onvermijdelijk. Indien er daarentegen stuifmeelkorrels aan de behaarde deelen der stijlen zijn gehecht gebleven zal een insect in het 2e stadium, zoowel zelfbestuiving als kruisbevruchting kunnen bewerkstelligen. Bij uitblijvend insectenbezoek is zelfbestuiving, en zelfs kruising tusschen verschillende bloemen derzelfde inflorescentie, geenszins onmogelijk, daar de stempeltakjes vaak in aanraking komen met de stuifmeeldragende stijlen van naburige bloemen.

323. **Tussilago Farfara** L. — Geel bloemengezelschap met volkomen verborgen honig. — (*Fl. jaunes, associées, à nectar complètement caché*). Müller, fert., blz. 333.

In 't centrum van ieder hoofdje 30-40 σ bloempjes, en daarom heen circa 300 φ bloempjes. — σ bloempjes: vruchtbeginsel met een gaborteroerde zaadknop; rondom den voet van den stijl een vleezige, gele, ringvormige honigklier. Nauw gedeelte der kroonbuis 4 mill. lang, bovenste kegelvormig gedeelte 1 mill. diep. Stempeltakken bijna tot aan hun top vereenigd, van boven en aan de buitenzijde met korte veegharen bezet. — φ bloempjes met goed ontwikkelde zaadknop; kroonbuis 3 mill. lang, zonder honig; kroonlint 6-8 mill; stempeltakjes zeer kort, aan de binnenzijde met tepels, aan buitenzijde en aan top met (nutteloze) haren. — Verdeling van den arbeid: centrale bloempjes σ en honigafscheidend; randbloempjes φ, zon-
der honig, maar in 't oog springend. De stempels der randbloemen zijn geslachtsrijp alvorens het stuifmeel uit de helmknopcyllinders der centrale bloempjes te voorschijn komt: dus kruising tusschen verschillende hoofdjes. — Bij uitblijvend insectenbezoek is spontane zelfbevruchting onmogelijk. — Vermeerdering door onderaardse uitloopers.

Hoofdjes in trossen. — ☞ planten met kleinere bloeistengels en een samengedrongen bloeiwijze. Ieder hoofdje met 20-40 ☞ bloempjes (soms met 2-3 ♀ bloempjes). Zaadknop doorgaans verkrompen, stijl onder zijn vertakking met eene iets samengedrukte, behaarde verdikking; stempels weinig divergeerend, uitwendig kort behaard, zonder papillen aan de binnenzijde. Kroonbuis honighoudend (honig 21¿ mill. diep) met teruggeslagen slippen. — ♀ planten met eene langere, ijler bloeiwijze; ieder hoofdje met ± 140 ♀ bloempjes en 1-3 ☞ bloempjes in 't centrum. Kroon der ♀ bloempjes honigloos, kroonbuis lang en nauw, met eene breedere en een smallere lip; meeldraden 0. Stijl draadvormig, de 2 stempels aan de binnenzijde met papillen, aan de buitenzijde kort behaard. De centrale ☞ bloempjes honighoudend, met eenen weinig of niet verdikten stijl, 2 stempels en veegharen; helknooppen ledig. — Vermeerdering door onderaardse uitloopers.

325. Erigeron acris L. — Schijfbloemen geel, straaltbloemen paars, soms wit; zooals Nr 323. — (Fl. du disque jaunes, fl. marginales violettes ou blanches; comme le № 323).

Bloemhoofdjes 8-10 mill. breed. — Straalbloemen 30-40, ♀, met een 3-4 mill. lange kroonbuis en eene 3-4 mill. lang lint. — Daarop volgt
(aan den omtrek der eigenlijke schijf) een groot aantal ♀ bloempjes, die witachtig zijn, met een 3 mill. lange buis, zonder lint. Eindelijk, in 't midden der schijf staan 6-12 (of meer) gele, ♀ bloempjes; na den bloei worden de ♀ bloempjes vuil donkerrood. (Kirchner, Beiträge, 1890, blz. 65). Vruchtpluizen zeer lang.

Bij Erigeron alpinus (Müller. Alpenblumen, blz. 445) komen eveneens in ieder hoofdje drieërlei bloempjes voor: de ♀ bloempjes scheiden honig af, brengen stuifmeel voort, en zijn waarschijnlijk zelfvruchtbaar bij uitblijvend insectenbezoek.

(Erigeron canadensis: Hoofdjes klein. Randbloempjes ♀; schijfblóempjes alle ♀. Weinig in 't oog springend. Spontane zelfbestuiving schijnt niet plaats te krijgen.)

326. Bellis perennis L. — Schijfbloemen geel, straalbloemen wit; zooals Nr. 323. — (Fl. jaunes et blanches; comme le Nr. 323). Müller, fert., blz. 321.

Schijfbloemen ♀, 1-2 mill. lang, met korten, breed eivormigen stijl; in zijn bovenst gedeelte is de stijl aan zijne buitenzijde voorzien van haren, die het stuifmeel uit den helmknopcyliner borstelen als de stijl in de lengte groeit, en later het stuifmeel behouden totdat het door insecten is weggehaald. De stempels zijn slechts over een klein gedeelte hunner lengte (tusschen hun breedst gedeelte en hunne basis) aan de randen van stempeltepels voorzien. Na de bevruchting worden de stempels opnieuw in de kroonbuis verborgen, zoodat zij geen stuifmeel meer kunnen ontvangen.

Randbloemen ♀, zonder meeldraden, met een 5 mill. lang lint. De 2 stempels over hunne geheele lengte aan de randen van stempeltepels voorzien. Stijlen zonder veegharen.

Bezoekers: Langtongige bijen: Apis mellifica, 19. 4. 86, Melle; 16. 7. 87, Bellem

Korttongige bijen: Andrena Gwynana K. ♀, 8. 4. 86; ♀, 19. 4. 86, Melle. A. extricata Smith. ♀, 26. 4. 86; ♀ 30. 4. 88; ♂, 20. 5. 88, Melle, Gentbrugge. A. albicans Müll. ♂, 12. 4. 86; ♀, 19. 4. 86; ♂, 22. 4. 88; ♀, 29. 4. 89; ♀, 30. 4. 88, Melle, Gentbrugge. A. parvula K. ♂, ♀, 12. 4. 86; ♂, ♀, 19. 4. 86; ♂, 6, 5. 88; Heusden, Melle. A. propinqua Schenck ♂, 29. 4. 89, Destelbergen. A. fulvicrus K. 2 ♂,

Allotrope Hymenopteren: *Cephus pygmaeus* L. ♂, 21. 5. 90, Landeghem; ♂, 23. 6. 88, Ardoye.

Moortzele. *Id.*, 18. 5. 90, Bellem. *Id.*, 19. 5. 89, Gentbrugge.

Hoofdjes talrijk, betrekkelijk klein, in een verlengde infloresentie. Straalbloempjes doorgans 5 à 7 in getal, lintvormig, zonder meeldraden, de stempels met tepels aan de randen der binnenzijde over de geheele lengte: veegharen bijna 0. — Schijfbloempjes ♀. De stijlen dezer ♀bloemjes hebben denzelfden bouw als die van *Chrysocoma*: de stempeltakken zijn 1 1/2 mill. lang, en dragen aan hunne beide randen, in hun onderste gedeelte, eene rij stempeltepels. In hun bovenst gedeelte zijn zij breeder, aan de buitenzijde en aan de randen met haren bezet. In het 2e stadium (zie Achillaea, n° 338) laten zij op halver hoogte van elkander los, terwijl hunne toppen vereenigd blijven.

328. Pulicaria dysenterica Gaertn.
— Geel, zooals Nr 323. — (Jaune, comme le Nr 323). Müller, fert., blz. 324.

Ieder schijfbloempje heeft een 4 mill. lange kroonbuis, die van boven wijder is; de honig kan door insecten met vrij korte mondeelen bereikt worden. In het 1e stadium komt het stuifmeel uit den helmknop-cylinder voor den dag; in het 2e stadium komen de divergeerende stempels op hunne beurt te voorschijn. Hunne binnenzijde is geheel met stempeltepels bezet, terwijl de buitenzijde in haar bovenst gedeelte voorzien is van korte haren, die bijdragen om het stuifmeel gedurende het eerste tijdperk uit den helmknop-cylinder te drijven. Volgens Müller (fert., blz. 324) zijn de randen der 5 drie-hoekige kleppen aan den top van den helm-

Fig. 40. — Pulicaria dysenterica.
Bloempje, vrouwelijk stadium. (Naar de Natuur).
knopcylinder voorzien van haren, die het stuifmeel vasthouden als het uit den cylinder geperst wordt. Deze haren hebben wij niet kunnen ontdekken (microscoop gebruikt); misschien vallen zij vroegtijdig af. Randbloemen: buis 2-3 mill. lang. Stijl zooals in de schijfbloemen, eveneens voorzien van haren die echter nutteloos zijn, daar de meeldraden geheel ontbreken.

Gewoonlijk hebben de randbloemen geen straldend kroonlint. De bloempjes gaan in ieder hoofdje van den rand naar het middelpunt toe open; als de randbloempjes opengaan zijn de centrale nog onder de dekblaadjes (1) verborgen, en de middellijn van het hoofdje bedraagt ca. 5 mill.; bij 't einde van den bloei is het hoofdje ca. 12 mill. breed geworden. Nauw gedeelte der kroonbuis 1 1/2 mill., breed klokvormig gedeelte eveneens 1 1/2 mill. lang, en 1 mill. breed. In het 1° stadium draagt de helmknopcylinder, die ca. 1 mill. buiten de kroonbuis uitkijkt, een hoopje stuifmeel aan zijn top. De twee stempels zijn in den helmknopcylinder verborgen en tegen elkander aangedrukt. Iedere stempel is aan zijne uiteinde voorzien van haren; de beide behaarde deelen vormen samen een kegelvormig borstel, waardoor het stuifmeel uit den helmknopcylinder

(1) D. w. z. de schubben die op den bloembodem tusschen de bloempjes staan.
geveegd wordt. — In het 2e *stadium* divergeerden de stempels; over de twee onderste derden hunner lengte zijn zij aan de binnenzijde met tepels bezet: stuifmeel uit hetzelfde bloempje kan aan den rand van het tepeldragend gedeelte der stempels gekleefd blijven (spont. zelfbestuiving). Kruisbestuiving door insecten wordt door de prote-rand drie bevorderd.

Fig. 50. — Bidens tripartitus. (Naar de Natuur).

1. Bloempje, mannelijk stadium. De helmknopcyliner kijkt buiten de bloem- kroon uit en is aan zijn top opengegaan.
2. Id. Begin van het vrouwelijk stadium. De stempels kijken buiten de bloem uit; de helmknoppen zijn bijna geheel in de bloemkroon teruggetrokken.
3. Id. Vrouwelijk stadium, verder gevorderd dan 2. De stempels divergeeren.
4. Stempel, bij het einde van het vrouwelijk stadium, naar onderen omgebogen.

Bezoekers: Langtongige bijen: *Bombus lapidarius* L., ♀, 4. 9. 91, Meirelbeke. *Andrena nigroaenea* K. (gestylopi-seerd), ♂, 12. 9. 91, Deurel.

331. *F. arvensis* L. id.
332. *F. minima* Fries. id.
De bloemen dezer drie soorten zij zeer weinig in 't oog springend.
— Weinig door insecten bezocht.

333. **Gnaphalium silvaticum** L. — Geelachtig wit. —
KIRCHNER, Beiträge, 1890, blz. 66.

De bloemhoofdjes zijn tot eene aarvormige bloeiwijze vereenigd, weinig in 't oog springend, langwerpig, 5-6 mill. lang, 1 1½-2 mill. breed. Ieder hoofdje met talrijke (doorgans 60-70) ♀ bloempjes, in 't centrum enkele (doorgaans 3-4) ♂ bloempjes. De ♀ en de ♂ bloempjes hebben een vruchtbeginsel met een zaadknop, een vruchtpluis, een kraagvormige honigklier aan den voet van den stijl en een 4 mill lange kroonbuis.

De kroon der ♀ bloemen is witachtig, met onduidelijke slippen en zeer dun. De stijl is kaal; de stempels zijn dun, betrekkelijk lang, boogvormig uiteenverspreid, boven den ingang der kroon.

De kroon der ♂ bloemen is iets wijder, van boven geel gekleurd, met duidelijke slippen, de 2 stempels zijn aan hun uiteinde van veegharen voorzien; de overige deelen van den stijl zijn kaal. Als de stijl het goudgele stuifmeel uit den hemknopcylinder geveegd heeft divergeeren de 2 stempels, ongeveer 1 mill. boven den ingang der kroon, en hunne tepeldragende binnenzijde ligt bloot.

Wordt weinig bezocht.

334. **Gnaphalium uliginosum** L. Geelachtig wit. —
KIRCHNER, Beiträge, 1890, blz. 67.

335. **Gnaphalium luteo-album** L. — Oranjegeel. —
Niet onderzocht.

336. **Antennaria dioica** Gärtn. — Omwindsel wit of rose; bloemengezelschappen met volkomen verborgen honig. — *(Involucre blanc ou rose; fleurs associées à nectar complètement caché.)* — Volkomen of bijna volkomen uitgeroeid in ons gebied? — **KIRCHNER, Flora, blz. 703.**

Tweehuizig. De ♂ en de ♀ bloemen honighoudend. — ♂ bloemen: stamper zonder zaadknop, met 2 stompe stempels zonder stempelte-
Het bovenste deel van de stijl is geheel bezet met haren, die aan den top der stempels het langst zijn. Kroon van onderen buis-, van boven klokvormig met 5 teruggeslagen slippen. De filamenten der meeldraden zijn prikkelbaar (zie *Centauraea Cyanus*, Nr. 311) en krommen zich als zij aangeraakt worden; hierdoor wordt de helmknopcyliner naar onderen getrokken, en uit zijn bovenst uit-einde komt alsdan, onder medewerking der stijlharen, een weinig stuifmeel te voorschijn.

♀ bloemen: kroonbuis lang en dun. De takken van den stijl zijn aan de buitenzijde slechts aan den top kort behaard; aan de binnenzijde bevindt zich aan weerszijden een strook met stempeltepels.

Vegetatieve vermeerdering door uitloopers, die aan hun top wortels en bladrozetten vormen.

De bloemhoofdjes zijn bruinachtig, klein, maar zeer talrijk. Ieder hoofdje met centrale ♀ bloempjes en ♀ Randbloempjes.

Randbloempjes: Kroonbuis nauw, den stijl nauw omsluitend, met 5 slippen; stempels lang, aan de binnenzijde met stempeltepels bezet, uitgenomen op de middellinie.

Schijfbloempjes: Kroonbuis van onderen cilindrisch en nauw, van boven klokvormig met 5 omgebogen slippen. In het 1e stadium kijkt de helmknopcyliner buiten de bloemkroon uit; hij gaat aan zijn top open, en het stuifmeel wordt eruit geperst. De 5 helmknoppen dragen ieder aan hun top een stijf, haarvormig aanhangsel. Deze 5 aanhangsels vormen samen een tijdelijke verblijfsplaats voor het geel, *droog*, poedervrij stuifmeel. Door den wind wordt het stuifmeel uit dien stuifmeelbehouder geblazen (1). In het 2e stadium komen de

(1) Vergelijk deze inrichting met de wijze waarop de zaden van *Orchideën* en sommige andere planten door den wind uit de opengaande doosvrucht verwijderd worden.
stempels op hunne beurt uit den helmknopcyliner voor den dag. Vooreerst zijn zij tegen elkander aangedrukt (zooals zij te voren, van binnen in den helmknopcyliner, waren): aan hun uiteinde zijn zij voorzien van tepelvormige haren, en zij

![Fig. 51. — Artemisia vulgaris. (Naar de Natuur).](image)

h, aanhangsels der helmknoppen. — s, stempels.

1. Schijfbloempje, 1ᵉ stadium. — h, aanhangsels der helmknoppen, die te zamen den stuifmeelbehouders vormen.

2. Schijfbloempje, begin van het 2ᵉ stadium. De helmknoppen zijn ten deele in de kroonbuis teruggetrokken; de stempels kijken buiten de bloem uit, maar zij zijn nog tegen elkander aangedrukt, en hunne behaarde uiteinden zijn tot een stuifmeelwisscher vereenigd.

4. Randbloempje.

vormen te zamen een soort van « wisscher » (1) die uitnemend geschikt is om, in het 1ᵉ stadium, het stuifmeel uit den helmknopcyliner te vegen. Eindelijk divergeeren de stempels: hunne tepeldragende binnenzijde wordt daardoor ontbloot,

(1) Men noemt aldus den borstel, dien men gebruikt om een kanon van binnen schoon te maken.
en kan nu stuifmeel ontvangen. Spontane zelfbestuiving is waarschijnlijk bijna onmogelijk.

De volgende kenmerken, die zich bij Artemisia vulgaris voordoen, zijn kenschetsend voor de windbloemen:

1° Het stuifmeel is droog en poederig.

2° De stempels zijn betrekkelijk groot (verg. b. v. met Achillaea millefolium, fig. 52, die veel kleiner stempels heeft en door insecten bevrucht wordt).

3° De bloem is voorzien van een tijdelijke bewaarplaats voor het stuifmeel (vergelijk met Triglochin en Potamogeton), in den vorm van 5 aanhangsels van den helmknopcyliner. Dergelijke aanhangsels (1) ontbreken bij de insectenbloemige Compositen, daar het stuifmeel bij deze vochtig en meer of minder kleverig is, en bij gevolg geen behouder noodig heeft.

4° De bloemen zijn weinig in 't oog springend.

De bloemhoofdjes zijn klein, maar in groot aantal tot een tuil vereenigd. Daardoor kan een insect, binnen korten tijd, een groot aantal hoofdjes bezoeken, en de geheele inflorescentie springt meer in het oog dan indien de hoofdjes alleen stonden.

Schijfbloempjes: nauw gedeelde der kroonbuiss 2 mill., klokvormig gedeelte 1 mill. lang, met 5 hoekige tanden. Honigklier ringvormig, rondom den voet van den stijl; de afgescheiden honig wordt verzameld in het klokvormig gedeelte der kroon, en kan door insecten met zeer korte mondeerlen bereikt worden. Als het bloempje opengaat zijn de twee stempels tegen elkander aangedrukt; zij zitten in het onderste gedeelte van den helmknopcyliner, die met stuifmeel is gevuld. Aan

(1) Deze aanhangsels zijn verlengsels der helmbindsels. In morphologisch opzicht stemmen zij overeen met de aanhangsels der helmbindsels die bij Centaurea (nr 311) enz. het bovenste gedeelte van den helmknopcyliner vormen.

![Diagram](image.png)

Fig. 52. — Achillaea Millefolium (Naar de Natuur).

Hun behaard uiteinde wordt daarentegen naar onderen omgebogen: indien er nog enkele stuifmeelkorrels aan de haren zijn blijven han-
gen, zal er op die wijze weinig kans bestaan dat zij nu door insecten medegevoerd worden. Als de stempels divergeren wordt de helmknopcylinder, door de samentrekking der helmdragers, in de kroonbuis teruggetrokken. In het eerste stadium zal het lichaam der insecten met het stuifmeel, in het tweede stadium met de stempels in aanraking komen, en aldus zal kruising tusschen verschillende bloemen bewerkt worden. Gewoonlijk vindt men in ieder hoofdje te gelijker tijd bloempjes in de verschillende stadiën van den bloei.

Randbloempjes: lint betrekkelijk groot. Helmknoppen 0. Stem- pels zonder wischharen, maar aan de bovenzijde met stempeltepels bezet.

Bloomhoofdjes groter en minder talrijk dan bij No 338. Schijfbloempjes hoogstens 2 1/2 mill. lang. Stemt in hoofdzaak met No 338 overeen.

Bezoekers: Hemitrope Dipteren: *Eristalis aeneus* Scop., 31. 7. 87, Ingelmunster. — Allotrope Dipteren: *Anthomyia aestiva* Meig., ♂, 10. 9. 91, Poezele.

Stemt in hoofdzaak met *Pyrethrum leucanthemum* en *Matricaria Chamomilla* overeen.

341. *Anthemis Cotula* L. — Als voren. — *Comme l'espèce précédente.*

Stemt in hoofdzaak met *Pyrethrum Leucanthemum* overeen. De bloembodem is convex, en wordt meer en meer gewelfd naarmate de ontwikkeling der bloempjes van den rand naar het centrum toe voortschrijdt.

Schijfbloempjes: kroon hoogstens 3 mill. lang, het klokvormig honighoudend gedeelte 1 mill. In het 1e stadium komt het stuifmeel, in het 2e stadium komen de stempels buiten den helmknopcyliner te voorschijn, zooals bij Achillaea. De stempels zijn aan hun uiteinde voorzien van haren, die het stuifmeel uit den helmknopcyliner vegen terwijl de stijl in de lengte groeit; aan hun binnenzijde zijn zij met stempeltepels bezet, uitgenomen op de middellinie. Ook de randen der stempels zijn voorzien van tepels, die met stuifmeel bepoederd worden (zelfbestuiving) indien niet al het stuifmeel (gedurende het eerste stadium) door insecten is weggehaald.

Randbloempjes: meeldraden geaborteerd. Stempels zooals in de schijf bloemen, maar de haren aan den top der stempels zijn nutteloos en derhalve korter.

345. **Tanacetum vulgare** L. — Geel, zooals N° 338. — *(Jaune, comme le N° 338).* Müller, fert., blz. 332.

Bloemhoofdjes zonder straalbloemen, in groot aantal tot eene vlakken tuil vereenigd. Daardoor kan een insect vele bloemhoofdjes zonder verlies aan tijd bezoeken, en dit is vooral belangrijk voor stuifmeelverzamelende bijen en stuifmeelvretende vliegen. Klokvormig gedeelte der kroon slechts 1 mill. diep. Mechanisme in hoofdzaak zooals bij *Achillaea* (N° 338).

346 **Cineraria palustris** L. — Geel, zooals Nr 338. — (Jaune, comme le N° 338).

347. **Senecio Jacobaea** L. — Geel, zooals Nr 338. — (Jaune, comme le N° 338).

Schijfbloempjes: buisvormig gedeelte der kroon 2 1/2-3 mill., klokvormig gedeelte eveneens 2 1/2-3 mill. lang. Mechanisme in hoofdzaak zooals bij *Achillaea* (N° 338).

348. **Senecio vulgaris** L. — Geel, zooals Nr 338. — (Jaune comme le N° 338).

Onderfamilie III: Ligulifloren.

Voorbeeld: Taraxacum, nr 362.

353. Lampsana communis L. — Geel bloemengezelschap met volkomen verborgen honig. — (Fl. associées, à nectar complètement caché, jaunes). — Kirchner, Flora, blz. 733.

Hoofdjes klein, 's morgends open, 's namiddags dicht. Kroonbuis 1½ à 2½ mill., kroonlint 4-6 mill. Het gedeelte van den stijl, dat boven den helmknopcylinder uitsteekt, is aan de buitenzijde met veegharen bezet. De stempels zijn kort, en aan de binnenzijde de tepeldragend. Zij worden naar buiten omgebogen, en de tepelzijde kan aldus met de veegharen in aanraking komen (zooals in fig. 54, a). Indien het stuifmeel niet te voren door insecten weggehaald werd is spontane zelfbestuiving aldus mogelijk.

354. Arnoseris minima Lk. — Zooals Nr 353.
355. Thrincia hirta Roth. — Zooals Nr 353.

Hoofdjes bij regenachtig weder gesloten. Kroonbuis 2 1/2-3 mill. diep; kroonlint 7-12 mill.

De honig stijgt in het breed gedeelte der kroonbuis. De stijl is aan zijne buitenzijde voorzien van veegharen, en aan de binnenzijde der stempeltakken met tepels bezet. De stempels komen doorgaans niet volkomen van elkander los. Bij deze soort kunnen de bloempjes niet gelijker tijd stuifmeel uit andere bloempjes ontvangen, en de insecten met hun eigen stuifmeel bepoederen. Indien er genoeg insectenbezoek plaats grijpt om al het stuifmeel van de haren van den stijl te verwijderen alvoren de stempels divergeeren is kruisbestuiving alleen mogelijk. In het tegenovergesteld geval is zelfbestuiving door insecten mogelijk. Bij uitblijvend insectenbezoek is spontane zelfbestuiving niet uitgesloten, daar de tepeldragende rand der stempels naar buiten omgeslagen wordt, en aldus met de veegharen in aanraking komt.

357. Leontodon hispidus L. Zooals Nr 353.
358. Picris hieracioides L. Zooals Nr 353.

359. Tragopogon pratensis L. — Zooals Nr 353.

Gaat 's morgens bij zonnig weder open. Kroonbuis der centrale bloemen 5 mill., der randbloemen 6-7 mill. lang. Bij 't einde van den bloei worden de 3 mill. lange stempels naar onderen omgebogen; zij beschrijven daarbij verscheidene omgangen (vergelijk met fig. 54, a), zoodat hunne binnenzijde met de veegharen in aanraking komt: bij uitblijvend insectenbezoek heeft spontane zelfbestuiving aldus plaats. (Kirchner. Flora, blz. 737).

360. Hypochaeris radicata L. — Zooals Nr 353.

Kroonbuis 5-8 mill. De stempels wordt niet genoeg naar onderen gebogen om spontane zelfbestuiving (zie Nr 359) mogelijk te maken. (Kirchner, Flora, blz. 739).

361. Hypochaeris glabra L.
— Zooals Nr 353.

Kroonbuis 3-7 mill. lang. 's Nachts en bij regenachtig weder zijn de hoofdjes gesloten. De honig stijgt tot in het bovenste gedeelte der kroonbuis, en kan door insecten met korte monddeelen bereikt worden. De helmknoppen gaan aan de binnenzijde open, en het stuifmeel wordt dus in den helmknopcyliner ontlast. Het gedeelte van den stijl, dat boven den helmknopcyliner komt uitkijken, is aan zijn
buitenzijde bezet met haren, waaraan de stuifmeelkorrels, die door den stijl uit den helmknopcylinder geveegd worden, gehecht blijven (vergelijk met fig. 54). Stempels 1 1/2 à 2 mill. lang, over hunne geheele binnenzijde met stempeltepels bezet. Zij worden zoover naar onderen gebogen dat hun top 1 1/2 omgang beschrijft: bij uitblijvend insectenbezoek heeft spontane zelfbestuiving aldus plaats (zoaals bij Nr 359).

'Hemitrope Dipteren: *Eristalis tenax*, 12. 9. 91, Deurel. *E. pertinax* Scop, 6. 5. 88, Heusden; 5. 7. 89 Melle. *E. intricarius* L., 17. 5. 91, Nevel. — Allotrope Dipteren: *Empis
livida L., 29. 5. 87, Drongen. *Empis Purio* Egger, ♀, 27. 4. 90, Melle; ♀, 4. 5. 90, Bellem. *Onesia sepulcralis* L. 17. 5. 91, Nevel; 29. 5. 87, Heusden. *Onesia dispar* L., 17. 5. 91, Nevel. *Lucilia Sylvarum* Meig. id. *Anthomyia aestiva* Meig., 3 ♂, 1 ♀, 17. 4. 90, Melle; 20. 4. 89, Wondelghem; ♀, 22. 4. 89, Gentbrugge; ♂, 29. 4. 89, Destelbergen; ♀, 8. 5. 89, Gentbrugge. *A. aestivalis* Meig., 17. 4. 90, 27. 4. 90, Melle. *A. antiqua* Meig. ♂, 8. 5. 89, Gentbrugge. *Hylemyia cinerella* Meig. 6. 5. 88, Heusden. *Scatophaga merdaria* F., 17. 4. 90, Melle; 24. 4. 89, Gentbrugge; 20. 5. 88, Id.

Coleopteren: *Phyllobius Pyri* L., 25. 4. 86, 27. 4. 85, Melle. *Limonius (Elater) aeruginosus* Oliv. (*cylindricus* Pk.), tracht te zuigen, 8. 5. 89, Gentbrugge.

Kroonbuis ongeveer 10 mill. lang. Stijl en stempels aan de buitenzijde met zwartachtige veegharen; de stempels zijn hoogstens 1 mill. lang en worden half-cirkelvormig naar onderen omgebogen (KIRCHNER, Flora, blz. 745).

Kroonbuis 8-12 mill. De stempels worden zoo verre naar onderen

367. **Barkhausia foetida** C. D. — Zooals Nr 353.

368. **Crepis biennis** L. — Zooals Nr 353.

369. **Crepis virens** Vill. — Zooals Nr 353.

Kroonbuis 3-6 mill., kroonzoom 4-8 mill. Hoofdjes bij regenachtig weder gesloten. De stempels worden naar onderen omgebogen en gewonden: zelfbestuiving bij uitblijvend insectenbezoek is dus onvermijdelijk. (fig. 54, a). — Wordt veel bezocht.

372. *Hieracium vulgatum* Fries. — Geel, zooals Nr 371. — *(Jaune, comme le No 371).*

B e z o e k e r s: Langtongige bijen: *Bombus pratorum* L. ♂, 11. 9. 88, Deurel. — Korttongige bijen: *Halictus cylin-

Kroonbuis 3-5 mill, kroonslip 8-16 mill. Bloempjes groter wordend van het centrum naar den rand toe. Stempels 2½ mill. lang, worden naar onderen omgebogen en daarbij gewonden: aldus komt een gedeelte van hunne tepeldragende binnenzijde in aanraking met de behaarde (met stuifmeel bepoederde) buitenzijde, en bij uitblijvend insectenbezoek grijpt zelfbestuiving plaats (zooals in fig. 54 a).

374. Hieracium Auricula L. — Zooals Nr 372.

375. H. boreale Fries. — Zooals Nr 327.

Fam. XXXIV. Campanulaceeën.

Bloempjes klein, talrijk, vereenigd tot een hoofdje. Bloemkroon blauw, tot aan den voet in 5 slippen gedeeld, waaruit volgt dat de honig door insecten met korte monddeelen kan bereikt worden. Honig afgescheiden door de bovenzijde van het vruchtbeginsel. De meeldraden zijn, aan de basis der antheren, vereenigd tot een ring die den stijl omgeeft; de honig wordt door de meeldraden beschut.

In het eerste stadium zijn de kroonslippen aan haar top nog ver-
eenigd; de stijl is dicht omgeven door de 5 helmknoppen, en het stuifmeel uit deze helmknoppen wordt op het bovenste, behaard gedeelte van den stijl onlast. Later laten de kroonlippen van elkander los; de stijl neemt aan lengte toe, en zijn bovenste, behaard gedeelte, dat met stuifmeel beladen is, steekt nu boven de kroonlippen uit; de geledigde helmknoppen spreiden zich uit. In het *tweede stadium* vallen de haren van den stijl (en ook het stuifmeel) af, en de twee stempels gaan open. De bloempjes zijn dus volkomen proterandrisch en spontane zelfbestuiving is onmogelijk.

Fig. 55. — *Jasione montana* (Naar de Natuur).
1. Bloempje, eerste (*♂*) stadium. — s, stempel, gesloten, met stuifmeel beladen. — h, helmknoppen. — h¹, k², kelkslippen. — v, onderstandig vruchtbeginsel. — (Een kelkslip en een kroonslip zijn afgesneden).
2. Id. tweede (*♀*) stadium. — s, stempel, geslachtsrijp. — h, uitgespreide helmknoppen. — h¹, kelkslip. — h, afgesneden kroonlip. — v, vruchtbeginsel.

Bezoekers: Langtongige bijen: *Bombus terrestris* L., ♂, 5. 7. 89, Melle; ♀, 24. 7. 92, Laethem. *B. lapidarius* L.

Proterandrisch. Kroon blauw (zelden wit). Honig afgescheiden door een gele, vleezige schijf aan de bovenzijde van het (onderstandig) vruchtbeginsel, rondom den voet van den stijl. De honig wordt beschut door de onderste gedeelten der 5 meeldraden: deze 5 gedeelten zijn verbreed, en boven de honigkliert tot een gewelf vereenigd. De honig wordt daaronboven tegen ongenoode gasten beschut door haren, die op de randen der verbreede gedeelten der 5 helmdragers ingeplant zijn. In den bloemknop zijn de stempels vereenigd tot een cylinder, die aan de buitenzijde met lange afstaande haren is bezet.

Fig. 56. — Campanula rotundifolia (Naar de Natuur).
1. Bloemknop. — h, basis der afgesneden bloemkroon. — s, behaarde stijl. — h, helmknop. — m, helmdrager van een der meeldraden; de helmknop is afgesneden om den stijl te laten zien. — hr, behaarde randen van de onderste bloekige verbreede gedeelten der helmdragers.
2. Bloem, 1e stadium. — s, stijl; de stempels zijn nog gesloten. — h, helmknop (geledigd). — m, onderste verbreed gedeelte der helmdragers (honigdeksel). — hr, behaarde randen van het onderste verbreed gedeelte der helmdragers. — v, vruchtbeginsel.
3. Bloem, 2e stadium. — s, geslachtsrijpe stempels. — h, verwelkte helmknoppen. — m en hr, zie 2.

Deze cylinder wordt omgeven door de 5 helmdknoppen, die te zamen een holle buis vormen. De helmdknoppen gaan aan de binnenzijde open, en onlasten hun stuifmeel op de haren van den stijl. Daarna (als de bloem ontluikt) verwelken de meeldraden; zij worden meer of minder gedraaid, en liggen in het onderste gedeelte der bloem (fig. 56, 2). Het stuifmeel waarmede de stijl beladen is, wordt aldus ontholt, en kan nu door insecten weggehaald worden. In het laatste stadium laten de 3 stempels van elkander los en worden zij naar
buiten gebogen: hunne binnenzijde met de stempeltepels kan nu door insecten aangeraakt worden. Kruising door insectenbezoek is dus verzekerd: oudere bloemen worden met stuifmeel uit jongere bloemen bevrucht. Bij uitblijvend insectenbezoek kan (volgens Kirchner) zelfbestuiving bij de soorten van het geslacht *Campanula* plaats vinden, daar de stempelsz over omgebogen worden dat hunne tepelzijde met het stuifmeel in aanraking komt. Bij de door ons onderzochte exemplaren van *C. rotundifolia* worden de stempels, bij ’t einde van den bloei, verder naar onderen omgebogen dan in fig. 56,3 aangegeven wordt, maar nochtans niet genoeg om met zekerheid zelfbevruchting te bewerken. Daar de bloem overhangt kan pollen wellicht uit den stuifmeelborstel op de randen der stempels vallen. — Bloemen overhangend; men vindt veel verscheidenheid wat de grootte betreft. — Algemeen in ons gebied, wordt weinig bezocht.

Bezoekers: Langtongige bijen: *Bombus terrestris* ♀, zgd. svzd., 19. 8. 93, Melle. — Allotrope Dipteren: een kleine vlieg, geheel in de bloem, zgd ? id. Id.

Stemt in hoofdzaak met N° 377 overeen.

Proterandrisch; stijlborstel zooals bij *Campanula rotundifolia*. Spontane zelfbestuiving grijpt plaats als de bloem zich sluit (’s nachts en bij koud weder). Als dan worden de randen der kroonslippen teruggebogen, en hare middelnerven worden tusschen de takken van den
stempel gebracht, waardoor zij stuifmeel van de buitenzijde van den stijl op de stempels doen vallen. Zelfvruchtaar. (Kirchner, Flora, blz. 654). — Nooit bezoekers gezien.

Fam. XXXV. Lobeliaceën.

Fam. XXXVI. Primulaceën.

382. Anagallis arvensis L. — Roode (soms blauwe) stuifmeelbloem. — (Fl. à pollen, rouge, qfois bleue).

Kroonslippen aan den voet vergroeid. Bloem bij zonnig weder wijd open, doorgaans in een bijna verticaal vlak, 10-12 mill. breed. De 5 meeldraden, rondom het vruchtbeginsel ingeplant. Stijl tusschen de meeldraden, doorgaans naar de onderzijde gebogen, zoodat een insect dat zich op het onderste gedeelte der bloemkroon zet en de helmknoppen wil bereiken, eerst den stempel en daarna de helmknoppen aan-
raakt (kruisbevruchting). Homogaam. Helmknoppen rondom met stuifmeel bedekt. De helmdragers zijn bekleed met teedere haren: vliegen kuuden deze haren tusschen hare mondwerktuigen, waarschijnlijk wegens het sap dat zij bevatten. — Als de bloem zich sluit (omstreeks 3 ure 's namiddags) wordt de stempel met de 3 onderste helmknoppen in aanraking gebracht (spontane zelfbestuiving) (Müller, fertil., blz. 390.) Wordt schier nooit bezocht.

383. **Lysimachia vulgaris** L. — Gele pollenbloem. — *(Fl. à pollen, jaune)*. MüLLER, Fert., blz. 389. — Mac LEOD, Arch. de Biologie, 1886, blz. 156.

Men vindt bij deze soort veel verscheidenheid, vooral wat de grootte en de kleur der bloemen betreft.

1° vorm: Kroonslippen 10-11 mill. lang, geel, aan de basis roodachtig, aan den top omgebogen als de bloem volkomen opengegaan is. Helmdragers rood, aan de basis geel. — Doorgaans 2 lange en 3 kortere (vaak ongelijke) meeldraden. Een der korte meeldraden is soms zeer kort. Het is schier onmogelijk 2 bloemen aan te treffen waarin de relatieve lengte der meeldraden juist dezelfde zijn. De stijl is doorgaans nagenoeg even lang als de lange meeldraden: als de helmknoppen omgekanteld worden komt het stuifmeel schier altijd met den stempel in aanraking (spontane zelfbestuiving). In enkele bloemen bevindt zich de stempel 1 mill. boven de helmknoppen.

Overgangen tusschen de beide hier beschreven vormen komen veel voor. Spontane zelfbestuiving is bijna altijd volkomen verzekerd, maar de bloemen blijven vaak onvruchtbaar. (In 1893 hebben wij te Melle vele planten met goed ontwikkelde vruchten aangetroffen, hetgeen misschien aan den buitengewoon warmen zomer van dit jaar moet toegeschreven worden).

Volgens Müller zou de stempel van den grootbloemigen vorm
verscheidene millimeters voor de helmknoppen uitsteken, zoodat zelfbevruchting niet gemakkelijk zou plaats grijpen. Gevallen van dien aard hebben wij niet gevonden. — Wordt weinig bezocht.

Bezoekers: Korttongige bijen: Macropis labiata Panz. ♀, smvzd, 3 exemplaren, 22. 7. 87, Gentbrugge. (Müller heeft de ♀ dezer bijensoort schier uitsluitend op de bloemen van L. vulgaris aangetroffen.)

Bloemen vrij groot, goudgeel, van binnen met bruinachtige stippels (klieren); meeldraden van ongelijke lengte. Veel verscheidenheid. Zelfbestuiving mogelijk. Bloemen schier nooit vruchtbaar; vegetatieve vermeerdering zeer actief, door wortelende takken. — Nooit bezoekers gezien.

Bloemen betrekkelijk klein, dooiergeel. Meeldraden van gelijke lengte, divergeerend; stempel lager dan de helmknoppen en van deze verwijderd. Vegetatieve vermeerdering door wortelende zijtakken. — Geen bezoekers gezien.

Proterogynisch.

387. Primula elatior Jacq. — Gele bijenbloem. — (Fl. melittophile jaune).

De volgende beschrijving naar Kirchner (Flora, blz. 533-534): Bloemen bleekgeel, met dooiergele keel, ongelijkstijlig. Honig door de basis van het vruchtbeginsel afgescheiden, op den bodem der kroonbuis verzameld.

Kortstijlige vorm : kroonbuis 15-17 mill. lang, 12-13 mill. boven haren bodem verwijd. Aan de binnenzijde van dit verwijd gedeelte zijn de 5 meeldraden ingeplant: de helmdragers zijn zeer kort, aan

den voet verbreed; de helmknoppen zijn samenneigend, aan den ingang der kroonbuis. Kroonzoom vlak. Stijl nagenoeg half zoolang als de kroonbuis, betrekkelijk dik; stempel enkelvoudig, breeder dan hoog; stempeltepels klein, kort.

Fig. 57. — *Primula officinalis* (Naar Hildebrandt; half-schematisch)
1. Langstijlige bloem, in de lengte doorgesneden.
2. Kortstijlige bloem, id. id.

Langstijlige vorm: Kroonbuis 12-14 mill. lang, 4-5 mill. boven den bloembodem verwijd, naar boven toe allengs ver nauwd. Meeldraden op halver hoogte ingeplant. Stuifmeelkorrels nagenoeg half zoo groot als die der kortstijlige bloemen. De stijl bereikt den ingang der kroonbuis (of kijkt even buiten de kroonbuis uit); hij is in zijn bovenste gedeelte dunner; stempel kogelvormig, stempeltepels nagenoeg 5maal zoolang als in de kortstijlige bloemen.

Bezoekers: Langtongige bijen: *Apis mellifera*, bezoekt afwisselend *Primula* en *Anemone nemorosa*. Waarschijnlijk is de slurf der honigbij te kort (6 mill.) om den honig van *Primula* te bereiken; 18. 4. 86. *Anthophora pilipes* F., ♂, 12. 4. 86. *Bombus hortorum* L. ♀, 1. 5. 89. *B. hortorum* var. *runderatus* F. ♀, 18. 4. 86. *B. terrestris*, de kroon van ter zijde doorborend en den honig stelend. April 1880. — Korttongige bijen: *Andrena Gwynana* K. ♀, 2 exemplaren, den kop en de voorste ledematen in de bloem stekend, stuifmeel verzamelend in de kortstijlige bloemen. Bezoekt eveneens de langstijlige bloemen, maar verlaat die onmiddellijk, daar zij de helmknoppen niet kan bereiken; op die wijze wordt nochtans legitieme kruising bewerkt. 22. 4. 88. (Alle te Melle).

Ongelijkstijlige. Honig afgescheiden door het vruchtbeginsel. In de beide vormen is de kroonbuis 4-5 mill. diep; de organen van het eenegeslacht staan aan den ingang, die van het ander geslacht steken 3-4 mill. boven den ingang uit. Middellijn der stuifmeelkorels van den langstijlgemen vorm 11-14 μ; id. van den kortstijlijgen vorm 18-23 μ. Stijl van den langstijlige vorm 7-9 mill.; id. van den kortstijlige vorm 4-5 mill. De stempeltepels der lange stijlen zijn veel groter dan die der korte stijlen; dit verschil kan met de loupe waargenomen worden. Honigzuigende insecten zullen, met hetzelfde gedeelte van hun lichaam, de helmknoppen der lange meeldraden en de stempels der lange stijlen aanraken, en met een ander gedeelte van hun lichaam de korte voortplantingsorganen, die in de beide vormen aan den ingang der kroonbuis staan. Aldus wordt legitieme kruising bewerkt. Stuifmeelzoekende insecten behoeven hun kop in de kroonbuis der kortstijlige bloemen niet te steken, en komen dus nooit met de korte stempels in aanraking; in de langstijlige planten raken zij daarentegen helmknoppen en stempel aan. De langstijlige
bloemen zullen aldus dikwijls illegitiem bevrucht worden. H. Müller heeft bevonden, dat illegitieme kruising van langstijlige bloemen, bij Hottonia, nagenoeg dezelfde resultaten oplevert (wat de vruchtbaarheid betreft) als legitieme kruising, — terwijl de resultaten der illegitieme kruising bij kortstijlige planten daarentegen veel minder gunstig zijn. De planten groeien gewoonlijk in groepen van denzelfden vorm bijeen: al de individuen van eene groep zijn waarschijnlijk door vegetatieve vermeerdering uit een enkele plant gesproten.

De physiologische rol der 5 witte gebogen aanhangselen, die tus-schen de kroonlippen op de kroon ingeplant zijn, is ons niet bekend. — Insecten zouden, ten gevolge van den stand der ♂ en ♀ organen, veeleer zelf- dan kruisbevruchting bewerken. Nooit bezoe-kers gezien. Volkomen vruchtbaar.

Fam. XXXVII. Ericaceeën.

Kroonbuis bijna kogelvormig, aan de keel vernauwd, waaruit volgt dat insecten hun kop in de bloem niet kunnen steken (aanpassing tot bevruchting door langtongige bezoekers). Bloemen weinig in 't oog springend, maar rijk aan honig. Honigklier in den vorm van een witte schijf aan de bovenzijde van het (onderstandig) vrucht-beginsel, rondom den voet van den stijl. De stempel kijkt even buiten de kroonbuis uit, en komt dus met den kop der bezoekers in aanraking. — Bloem iets proterandrisch Het mechanisme stemt in hoofdzaak met dat van E. tetralix overeen.

Bezoekers: Langtongige bijen: Bombus agrorum F. ♀, 3. 5. 90, Melle.

Fig. 58. — Calluna vulgaris (Naar de Natuur).
2. Een der bovenste meeldraden, buitenzijde (dit fig. is te groot in verhouding tot 3).
3. Een der onderste meeldraden, van ter zijde gezien.
4. Viercellige stuifmeelkorrel (tetrade).

Kroon klokvormig, 2-3 mill. diep, 4slippig. Honig afgescheiden door 8 zwartachtige klieren, op den bodem der bloem, met de meel-
draden afwisselend; de honig kan door insecten met korte monddelen bereikt worden. Kelksslippen vrij groot, rood; zij dragen meer bij dan de kroon om de bloem in 't oog springend te maken. Bloem bijna horizontaal; meeldraden en stijl naar boven gebogen. Insecten kunnen slechts langs het onderste gedeelte der bloem den honig bereiken, en worden van boven met stuifmeel bepoederd. Zware insecten (hommels en honigbijen) houden zich aan de bloem vast, doen haar door hun gewicht overhangen, en worden met stuifmeel bepoederd, juist op dezelfde wijze alsof de stijl en de helmknoppen (zoals bij *E. tetralix*) centraal waren.

Als de bloem ontluikt gaan de helmknoppen open. Hun stuifmeel is droog, en iedere helmknop is voorzien van 2 naar buiten gerichte aanhangsels, die met ruwe haren zijn bezet. Deze aanhangsels worden door de bezoekers onvermijdelijk aangeraakt; daardoor worden de helmknoppen geschud, en stuifmeel valt op het insect (vergelijk met *Euphrasia, Melampyrum*, enz.)

De stijl, die reeds in den bloemknop voor de helmknoppen uitsteekt, neemt na het ontluiken aanzienlijk aan lengte toe, evenals de bloem zelf. Gewoonlijk bereikt de stijl zijne volle lengte en is de 4lobbige stempel volkomen ontwikkeld als de helmknoppen reeds geledigd zijn. De stempel kan nochtans reeds stuifmeelkorrels lijmen als de bloem ontluikt. Kruising wordt vooral door den stand van den stempel (fig. 58) bevorderd. Spontane zelfbestuiving onmogelijk. Bezoekers zeer talrijk. Deze plant was vroeger in Vlaanderen veel meer verspreid dan thans. In 't begin dezer eeuw bestonden er nog een aantal uitgestrekte « heiden » (1) (b. v. te Eekloo, Maldeghem, Maaie, Aelter, Ruddervoorde, enz., enz.) die thans echter bijna alle verdwenen zijn. — *C. vulgaris* wordt door de honigbij veel bezocht.

(1) In West-Vlaanderen *velden* genoemd.
gibbus L. ♂, 7. 9. 86, Melle; ♀, 9. 9. 91, Bellem. — Allo-
trope Hymenopteren: Ammophila sabulosa L. ♀, 12. 9. 91,
Deurel. Melinus arvensis L. ♀, zonder gegons van de eene
bloem naar de andere vliegend, waarschijnlijk jacht makend
op insecten, zeer talrijk, 9. 9. 91, Bellem. — Hemitrope Dip-
tereren: Eristalis tenax. 20. 8. 86, 10. 9. 86, Melle; 29. 8. 88,
Bellem; 7. 9. 86, Deurel. E. arbustorum L., 29. 8. 88, Bel-
lem; 7. 9. 86, 8. 9. 92, 9. 9. 91, 11. 9. 88, Melle, Deurel,
Bellem. E. nemorum L., 20. 8. 86, Melle. Helophilus pendu-
9. 86, Deurel. S. vitripennis Meig., 9. 9. 91, Bellem. Mela-
nostoma mellina L., 20. 8. 86, Melle; 29. 8. 83, 9. 9. 91,
Bellem. Platycheirus pellatus Meig., ♀, ♂, 9. 9. 91, Bellem.
Syritta pipiens, 7. 9. 86, Melle. Conops quadrifasciatus Deg.
9. 9. 91, Bellem. — Allotrope Dipteren: Sarcophaga carna-
via L., 9. 9. 91, Bellem. Onesia sepulcralis L., 29. 8. 88,
9. 9. 91, Bellem. Pollenia rudis F., 20. 8. 86, Melle. Antho-
myia aestiva Meig. 9. 9. 91, Bellem. — Lepidopteren: Pieris
8. 86, 7. 9. 86, 11. 9. 88, Melle, Bellem, Deurel. Polyom-
natus Phlaeas, 8. 9. 91, 12. 9. 91, 19. 9. 86, Melle, Deurel.
Coenonympha Pamphilus, 20. 8. 86, 8-9. 9. 91, Melle, Bel-
lem. Pararge Megaera, 31. 8. 86, Melle. Pararge Egeria,
talrijk, 30. 8. 90, Somerghem. Epinephele (Tithonus?), 31.
8. 86, Melle. Eene Pterophoride, 19. 9. 86, Melle.

392. Erica tetralix L. — Bijenbloem, rose, soms wit;
wordt voornamelijk door hommels bezocht. — (Fl. métit-
ophile, rose, qqfois blanche). Müller, fert., blz. 376.

Bloem overhangend, geurend; kroon aan de keel ingesnoerd, 7
mill. diep, 4 mill. wijd, aan de keel 2 mill. wijd. Rondom den
voet van het vruchtbeginsel een donkergedrukte, ringvormige
honigklier. Stijl centraal; stempel vochtig, zwartachtig, even buiten
de bloem uitstekend. Een insect dat aan de bloem hangt en zijne
slurf in de kroonbuis voert, moet het voorste gedeelte van zijn kop in aanraking brengen met den stempel, en bijgevolg met kleverig vocht besmeerd worden, en tevens den stempel met vreemd stuifmeel bevruchten. De 8 helmknoppen bevinden zich rondom den stijl, een weinig boven den stempel (in de overhangende bloem). Ieder helmknop is aan de buitenzijde voorzien van 2 lange, spitse, divergerende aanhangselen, die met den wand der bloemkroon in aanraking zijn. Een honigzuigend insect raakt vooreerst den stempel aan; het voert daarna zijne slurf in de bloem, tusschen den wand der bloemkroon en de helmknoppen heen, en hierbij worden de aanhangselen der helmknoppen onvermijdelijk aangeraakt. Daardoor worden de helmknoppen geschud, en het droge stuifmeel wordt op den kop van het insect uitgestrooid. Kruising door insecten is dus verzekerd. — Bij uitblijvend insectenbezoek is spontane zelfbestuiving mogelijk, daar stuifmeel van zelf op den kleverigen stempel valt.

393. Erica cinerea L. — Paarse bijenbloem. — *(Fl. méliittophile violette).* — Groeit o. a. te Tillegem bij Brugge.

Stemt in hoofdzaak met *E. tetralix* overeen.

Fam. XXXVIII. HYPOPITYACÉEÉN.

394. Monotropa Hypopitys L. — Bleekgele bijenbloem. — *(Fl. méliittophile d’un jaune pâle).* Kirchner, Flora.

Homogaam. Kroonbladen aan hun voet bultvormig, bijna gespoord. Eindbloem 5tallig, zijbloemen 4tallig. Aan de basis van het vruchtbeginsel 8-10 langwerpige honigklieren, die in de holle uitstulpingen (honigbehouders) der kroonbladen zitten en daarin haren honig afscheiden. Kroonbladen rechtopstaande, ongeveer 15 mill. lang en
zijdelings tegen elkander aangesloten. Ingang 4-5 mill. wijd, wordt door den breeden stempelkop bijna geheel gesloten, zoodat slechts een nauwe spleet rondom den stempel overblijft. De slurf van het insect moet ten minste 10 mill. lang zijn om den honig te kunnen bereiken. Stempelkop met een centrale indieping, en daarom heen een verheven, ringvormige stempelring; aan zijn ondersten rand is de stempelkop voorzien van witte haren, waardoor het stuifmeel der bloem verhinderd wordt den stempel te bereiken. Op gelijke hoogte als deze haren, iets onder de stempeloppervlakte, bevinden zich de 8-10 helmknoppen, die aan de buitenzijde met een sikkelvormige spleet opengaan en wit stuifmeel ontlasten. Bezoekerende insecten moeten vooreerst met kop en slurf den stempel aanraken, en worden aldus met kleverige stof besmeurd; daarna bereiken zij het stuifmeel. Kruisbestuiving is dus verzekerd. Spontane zelfbestuiving schijnt onmogelijk te zijn.

395. Pirola minor L. — Witte of bleekrose pollenbloem. *(Fleur à pollen, blanche ou rose-pâle).* Kirchner, Flora ; Müller, Alpenblumen.

(Het tweede gedeelte dezer verhandeling, met een résumé in 't Fransch, zal in het VIe Jaarboek, 1894, verschijnen).
OVER DE BEVRUCHTING DER BLOEMEN IN HET KEMPISCH GEDEELE VAN VLAANDEREN,

DOOR

J. Mac Leod.

TWEEDE DEEL.

(Het eerste deel dezer verhandeling is verschenen in het Botanisch Jaarboek, V, 1893, blz. 156-452, met 58 figuren.)

FAM. XXXIX. — BETULACEEÆN.

396. Betula alba L. Windbloemig, eenhuizig (énémophile, monoïque). Bloeit Maart-Mei. (Fig. 59).

De ♂ katjes worden reeds in den herfst aangelegd en overwinteren naakt. Zij bevinden zich aan den top der twijgen, gewoonlijk 1-3 bijeen.

De ♀ katjes zijn alleenstaande; zij worden door korte zijdelingsche twijgjes gedragen en komen eerst in het voorjaar, te gelijker tijd als de nieuwe bladen, voor den dag (fig. 59, 1).

De mannelijke katjes zijn groter dan de ♀; hun spil is buigzaam, dicht bezet met schubvormige schutbladen, die volgens 5/13 of 8/21 zijn geplaatst. Ieder schub (b) draagt aan hare binnenzijde en aan weerszijden eene secundaire schub (steelblaadje van den eerste rang, α en β) die met haar vergroeid is: achter ieder der 3 schubben α, b en β bevindt zich eene kleine bloem (1, 2, 3). In ieder bloem zijn de meeldraden ten getale van 2, ieder meeldraad bijna tot aan zijn voet in tweeëns gespleten, iedere helft met een eenhokkigen helmknop, zoodat het schijnt alsof er 4 meeldraden waren. Ieder bloempje heeft een 4deelig bloemdek; de 2 zijdelingsche bloemdek-
blaadjes (d₃ en d₄) en ook het achterste (d₂) ontbreken gewoonlijk, zooals in fig. 59 aangewezen wordt.

Fig. 59. — Betula alba.

1. Bloeiend takje, met 2 φ en 2 φ katjes. (Naar de Natuur).
2. Diagram van 3 φ bloemen, die zich in den oksel van een schubvormigschutblad bevinden; H, as van het katje; — b, schutblad; α en β steelblaadjes van den eersten rang; 1, 2, 3, drie bloempjes; — d₁, voorste bloemdekblad; — d₃, d₄, zijdelingsche bloemdekblaadjes. — De kruisjes duiden de plaats der ontbrekende meeldraden aan (vergel. met Alnus). — Naar Eichler. Blüthen-diagramme.

De katjes worden door den wind in beweging gebracht (hetgeen door de buigzaamheid der spil bevorderd wordt) en aldus wordt het droog, poederig stuifmeel uitgestrooid. Daar de katjes met hun top naar beneden hangen is de buitenzijde van ieder schubvormig schutblad naar boven gekeerd, terwijl zijne binnenzijde met de 3 bloempjes naar onderen kijkt. Het stuifmeel dat (bij windstil weder) uit de helmknoppen valt komt dus terecht op de buitenzijde van het schutblad of van de schutbladen die er zich onmiddellijk onder bevinden, en die aldus een tijdelijke bewaarplaats voor het stuifmeel vormen. Als nu het katje door den wind in beweging wordt gebracht, wordt het stuifmeel uit zijne tijdelijke verblijfplaatsen geschud en
medegevoerd. (Vergelijk met Potamogeton, Triglochin, enz. — Zie Kerner, Pflanzenleben, II, blz. 144).

De Φ katjes zijn, evenals de σ, staartvormig, maar zij hebben een kortere, minder buigzame spil, die dicht bezet is met schubvormige schutbladjes (welke volgens 5/13 of 8/21 zijn geplaatst). Ieder schutblad b draagt aan zijne binnenzijde twee steelbladjes α en β, die tijdens den bloei aan den voet van b staan, maar later met b vergroeien. Achter ieder der 3 schubben b, α en β staat een bloempje. Ieder dezer 3 bloempjes bestaat uit een naakt 2hokkig vruchtbegin-sel met 2 groote stempels.

De σ en Φ katjes worden in den herfst aangelegd en overwinteren naakt. σ katjes doorgaans aan 't uiteinde der vruchtbare takken, Φ katjes door een of meerdere lager gezeten zijtwijgjes gedragen. De katjes bloeien alvorens de bladen te voorschijn komen (Fig. 60, 1).

De σ katjes hebben een vrij lange, buigzame spil, die met talrijke schubvormige schutbladen (welke gewoonlijk volgens 8/21 staan) is bezet. Ieder schutblad heeft een nagelvormigen steel (5, S), en draagt aan zijne binnenzijde 2 steelbladjes van den 1* (α, β) en 2 steelbladjes van den 2* (β', β') rang, en 3 bloempjes. Ieder bloempje heeft gewoonlijk een 4 deelig bloemdeksel en 4 helmknoppen die tegenover de bloemdeksbladjes staan; de helmknoppen gaan aan de binnenzijde open. Het schutblad b en de steelbladjes α, β', β', β zijn aan hunne basis vergroeid (dit wordt, althans wat α en β betreft, in fig. 60, 5 aangewezen); hunne uiteinden zijn daarentegen vrij. Deze uiteinden zijn verbreed en verdikt, en vormen samen een soort van bruinachtig schild (zie fig. 60, 4), dat (in het hangend katje) nagenoeg verticaal staat en naar buiten gekeerd is. Dit vijf-deelig schild wordt volledig door een zesde stuk n, hetwelk door een verdikt gedeelte van een der bloemdekslippen der middelste bloem (fig. 60, 2, n en 4, n) wordt gevormd.

Gedurende den winter blijven de zesdeelige schilden met hunne randen tegen elkander aangesloten, en zij vormen aldus rondom het katje een pantser, waardoor de teedere helmknoppen enz. tegen regen en wind beschut worden. Tijdens den bloei laten de schilden van elkander los. Zij zijn vaak iets onregelmatig.
Fig. 60. — Alnus glutinosa.

1. Bloeiend takje, met σ^* en Q katjes. — *b*, bladknop (Naar de Natuur).

2. Diagram van een drietal σ^* bloempjes: H, as van het katje; *b*, schubvormig schutblad; — α en β, steelpadjes van den eersten rang; — β_1, β_1, id. van den tweeden rang; — α_1, α_1, plaats van twee ontbrekende steelpadjes van den tweeden rang; — a_3, achterste dekslip van het middelste bloempje (dezelfde slip wordt in fig. 60, 5 door a_3 aangewezen); — *n*, voorste dekslip van het middelste bloempje (dezelfde slip wordt in fig. 60, 4, door *n* aangewezen). — (Naar Eichler, *Blüthendiagramme*).

3. Diagram van een Q bloemengroepje: H, as van het katje; — *b*, α, β, β_1, β_1, α_1, α_1, als voren; — *, plaats van het ontbrekend middelste bloempje (Naar Eichler, *Blüthendiagramme*).

4. Schild, gevormd door de verdikte uiteinden van *b*, α, β, β_1, β_1, en door de buitenzijde van *n*. — Letters als in fig. 60, 2. — (Naar de Natuur.)

5. Bovenzijde van eene schub *b*, met de steelpadjes α en β en de daarbij behorende σ^* bloemen: a_1, a_1, a_2, a_2, bloemdekslippen der zijdelingsche bloemen; — a_3, achterste bloemdekslip van het middelste bloempje; — *h*, helmknoppen (gedeeltelijk verborgen); — *S*, steel van *b*. — (Naar de Natuur).

6. Vrouwelijks bloemengroepje, aan de binnenzijde gezien (vergel. met fig. 60, 3): *b*, α, β, β_1, β_1, als in fig. 60, 3; — *st*, stempels; — de vruchtbeginsels der Q bloemen zijn tijdens den bloei nog niet volkomen ontwikkeld. — (Naar de Natuur).
In fig. 60, 5 wordt de bovenzijde (1) van een der schubben b, met de steelblaadjes (α en β) en de daarbij behorende bloemen afgebeeld. Het bloemdekk (a₁, a₁, a₂, a₂) der 2 zijdelingsche bloemen vormt aan weerszijden van den steel S een soort van gespleten vleugel, waaronder de helmknoppen h, h grootendeels verborgen zijn. De middelste bloem is onder den steel S verborgen en vertoont slechts een van hare bloemdekslippen (α₃; zie ook fig. 60, 2, α₃). De deelen a₁, a₁, a₂, a₂, α, β vormen samen een soort van zadel, die in het midden een weinig uitgehold is, en (evenals bij Betula) als stuifmeelbehouders dienstdoet: het stuifmeel, dat uit ieder drietal σ bloempjes valt, blijft grootendeels liggen op de behouders die er zich onder bevinden, en wordt daaruit verwijderd telkens het katje door den wind in beweging wordt gebracht.

De ♀ katjes (3, diagram) zijn veel kleiner dan de σ; zij hebben in hoofdzaak denzelfden bouw als deze, maar ieder bloemengroepje bestaat slechts uit 2 bloempjes (het middelbloempje ontbreekt). Ieder bloempje (fig. 60, 6) bestaat uit een naakt vruchtbeginsel met 2 stempels (st), die tijdens den bloei boven de schub b uitsteken, zooals bij Betula. Tijdens den bloei zijn de vier steelblaadjes (α, β', β', β) nog klein; later worden zij groter; zij vergroeven met het schutblad b en vormen samen met dit (als de vrucht rijp is) een houtachtig plaatje.

Volgens Kirchner (Neue Beob., 1886) komen de stempels der ♀ katjes eerst voor den dag nadat de σ katjes van denzelfden boom geledigd en uitgedroogd zijn: daardoor zou kruising tusschen verschillende soorten plaats grijpen. Volgens onze waarnemingen (Februari 1894) zijn de σ en de ♀ katjes gelijktijdig geslachtsrijp. (Nader te onderzoeken).

Fam. XL. — Corylaceëen.

♂ Bloemen in katjes, vaak 2-3 ♀ katjes bijeen, door een kort

(1) Hetgeen hier, met betrekking tot het hangend katje, bovenzijde wordt genoemd, is, uit een morphologisch oogpunt, de buitenzijde van het beschouwde orgaan.
steelte gedragen; worden in den herfst aangelegd, overwinteren naakt. De spil van het katje is buigzaam, bezet met schubvormige schutbladen (die meestal volgens 8|21 staan). Aan zijne binnenzijde draagt ieder schutblad b een enkel bloempje (fig. 61, 3) met 2 steelblaadjes α en β, die, evenals het bloempje, met het schutblad b vergroeid zijn. Bloemdek 0; 4 meeldraden die tot aan hunne basis in tweeën gespleten zijn, iedere helft met een halven helmknop (dus schijnbaar 8 meeldraden).

De Ψ inflorescentiën zijn knopvormig (zij gelijken op de bladknoppen): ieder knop (fig. 61, 2) begint met twee schubben die zich aan weerszijden en iets aan de achterzijde bevinden. Daarop volgen een groot aantal tegen elkander aangedrukte schubben, die moeten beschouwd worden als paren steunbladjes, waarvan de buitenste niet, de binnenste wel een blad vergezellen. In 't hart van den knop eindelijk komen 4 à 8 schubvormige schutbladen voor: ieder schutblad draagt 2 bloemen in zijn oksel (fig. 61, 4). Tijdens de bestuiving bestaat ieder Ψ bloem bijna alleen uit hare 2 stempels; weldra wordt het vruchtbeginsel, met het bloemdek en het „napje” zichtbaar. Het bloemdek bestaat uit 4-8 zeer kleine onregelmatige tanden aan den top van het vruchtbeginsel, en verdwijnt later volkomen. Het napje, dat het vruchtbeginsel aan zijn voet omgeeft, neemt daarentegen aan grootte toe en vormt rondom de rijpe hazelnoot het bekende, onregelmatig omhulsel. Het napje bestaat eigenlijk uit 3 steelblaadjes (fig. 61, 4). — Ieder Ψ inflorescentie geeft slechts 1 of een klein getal volkomen ontwikkelde vruchten: al de overige gaan ten gronde.

Tijdens den bloei steken de roode stempels, tot een bundeltje vereenigd, buiten den knop uit (fig. 61, 1, 2).

De schubben (schuttbladen en steelblaadjes) der σ katjes dienen tot tijdelijke verblijfsplaats voor het stuifmeel, op dezelfde wijze als bij Betula (zie hooger, Nr 396).

De plant is homogaam (σ en Ψ katjes gelijktijdig ontloken), proteandrisch of proterogynisch. — Volgens HILDERBRANDT (Engler's Bot. Jahrb., Bd. II.) zouden jonge boomen alleen Ψ bloemen dragen; volgens KIRCHNER (Neue Beob., 1886, blz. 12), zou dit niet altijd het geval zijn. Planten uit zaden en uit stekken gesproten gedragen zich in dit opzicht misschien niet op dezelfde wijze. Nader te onderzoeken!

Volgens MEEHAN (Bot. Centralblatt, Bd. XVI, blad. 338) zouden
de σ^\prime bloemen haar stuifmeel loslaten alvorens de φ bloemen geslachtsrijp zijn, indien het voorjaar warm is. Is het voorjaar koud,

![Diagram](image)

Fig. 61. — Corylus Avellana.

1. Bloeiend takje. — σ^\prime, mannelijke katjes; — φ, vrouwelijke bloeiwijze; — $\delta\delta$, bladknop. — (Naar de Natuur).
2. Vrouwelijke bloeiwijze, met het lidteken van een afgevallen blad aan hare basis. — (Naar de Natuur).
3. Diagram eener σ^\prime bloem: H, as van het katje; — b, Schutblad; — α, β, Steelblaadjes (Naar Eichler, *Blüthendiagramme*).
4. Diagram van een φ bloemengroepje: H, as van de bloeiwijze; — b, schutblad; — α, β, steelblaadjes van den eersten rang; — α_1, α_1, β_1, β_1, id. van den tweeden rang (de steelblaadjes vormen een noppie rondom iedere bloem); — st, stempel; — bd, bloemdekslip; — \times, ontbrekende middelbloem (naar Eichler).

dan gaan σ^\prime en φ bloemen gelijktijdig open. In het eerste geval weinig of geen vruchten, in het laatste geval daarentegen een goed vruchtjaar. Nader te onderzoeken!

399. **Carpinus Betulus** L. — Eenhuzig, windbloemig. (*Monoïque, anémophile*). — Bloeit April-Mei.

De σ^\prime en de φ katjes komen te gelijkertijd als de bladen te voor­schijn; de φ bevinden zich doorgaans boven de σ^\prime (bij *Betula* en *Alnus* is het anders om).

De buigzame spil der σ^\prime katjes is bezet met schubben (schutbladen), die volgens 2/5 of 3/8 staan. In den oksel van iedere schub staan 4-10 meeldraden, die bijna tot aan hun voet in tweeën gespleten
zijn, en waarvan het moeilijk te zeggen valt of zij tot eene of tot meerdere bloemen behoren. — Randen der schubben, as van het katje en helmknoppen behaard. De bovenzijde der schubben convex, uitgenomen het basaal gedeelte dat vlak is. Het stuifmeel, dat bij windstil weder uit de helmknoppen valt, blijft op dit vlak gedeelte liggen en wordt daarenboven ten deele door de hoogervermelde haren opgevangen; slechts een klein gedeelte valt rechtstreeks op den grond (vergelijk met Alnus, enz.).

De schubben (schutbladen) der ♀ bloemen staan eveneens volgens 2/5 of 3/8. Aan de binnenzijde van iedere schub staan 2 bloempjes. Ieder bloempje bestaat uit één vruchtbeginsel met 2 stempels, en is voorzien van een steelblaadje van den eersten rang en van 2 steelbladjes van den tweeden rang. Tijdens den bloei zijn de stempels en het vruchtbeginsel (niet de eitjes) volkomen ontwikkeld. Na den bloei vormen de steelbladjes (α, α1, α1, β, β1, β1) te zamen het 3lobbig vleugelvormig nappje (de bekende vleugel der vrucht), dat aan de binnenzijde open is. Het vruchtbeginsel draagt aan zijn top de 6-10 kleine slippen van het bloemdek.

Fig. 62. — Carpinus Betulus. (Naar Eichler).
Diagram van een ♀ bloemengroepje: H, as van het katje; — b, schub (schutblad); — α, β, steelbladjes van den eersten rang; — α1, α1, β1, β1, id. van den tweeden rang; — d, bloemdek; — X, ontbrekende bloem.

FAM. XLI. — CUPULIFEREN.

400. Quercus Robur L. (sessiliflora en pedunculata).
— Windbloemig, eenhuizig. (Anémophile, monoïque).

De bloeiwijzen komen te gelijkertijd als de bladen te voorschijn. De ♀ bloeiwijzen bevinden zich doorgaans dichter bij de toppen der takken dan de σ katjes.

De dunne, losse, onderbroken, hangende σ katjes hebben een buigzame spil met talrijke bloemen. Ieder bloem bevindt zich in den
oksel van een schubvormig schutblad; zij heeft geen zichtbare steelblaadjes, een onregelmatig, 5-8slippig bloemdek en 5-8 meeldraden.

De ♀ bloemen zijn ten getale van 1-5, bij Q. sessiflora dicht bijeen en zittend, bij Q. pedunculata iets losser, gesteeld. Ieder ♀ bloem

bevindt zich in den oksel van een schubvormig schutblad, en wordt aan haar voet omgeven door een napje; zij bestaat uit een vruchtbeginsel met 3 2zadige hokjes en 3 stempels. Het vruchtbeginsel draagt aan zijn top een 6slippig bloemdek. Tijdens den bloei is het onderst gedeelte van het vruchtbeginsel nog zeer onvolkomen: de stempels alleen zijn alsdan reeds goed ontwikkeld. De vrucht is een 1zadige noot (eikel).

De buigzame ♀ katjes worden door den wind in beweging gebracht en aldus wordt het droge, poederige stuifmeel uitgestrooid.

401. Fagus sylvatica L. — Eenhuizig, windbloemig (Monoïque, anémophile). Bloeit in Mei.

De bloemen komen te gelijkertijd als de bladen voor den dag. De zijtakken dragen gewoonlijk slechts ♀ inflorescentiën; de einde-lingsche scheut is doorgaans ♀, met ♀ bloemen boven de ♀ bloemen. De inflorescentiën beider geslachten zien als gesteelde hoofdjes uit, de ♀ hangend, de ♀ recht overeind staande. De steeltjes zijn naakt of van 1-2 afvallende schubbetjes voorzien.

De ♀ hoofdjes doen zich voor alsof de bloempjes rechtstreeks uit
den gemeenschappelijken steel ontsprongen. Ieder bloempje heeft een doorgaans scheef, klokvormig bloemdek met 4-7 ongelijke slippen en 8-12 meeldraden, waartusschen zich meestal een draadvormig overblijfsel van den stamper bevindt.

De ♀ hoofdjes zijn tweeënbloemig; de beide bloempjes worden omgeven door een gemeenschappelijk napje, dat van den beginne af diep 4deelig is, aan de buitenzijde met weke stekeltjes is bezet, en aan zijn voet door een krans van afvallende schubbetjes (steelbladjes) omgeven wordt. Ieder ♀ bloem bestaat uit een 3hoekig, 3hokkig vruchtbeginsel met 3stempels en met een 6slippig bloemdek aan zijn top; zelden komen overblijfsels van helmknopen in de ♀ bloemen voor. Tijdens den bloei kijken de stempels boven het napje uit. De vrucht is een 3hoekige eenzadige noot. Daar de ♂ hoofdjes een buigzamen steel hebben worden zij door den wind heen en weer geschud, waardoor het stuifmeel uitgestrooid wordt.

Fam. XLII. Myricaceeën.

402. *Myrica Gale* L. — Windbloemig. (*Anémophile*).

Bloeit in Maart-April.

Tweehuizig. Bloemen in katjes. De katjes in de oksels van afgevallen bladen, boven de bladknoppen, doorgaans vele bijeen tot een soort van eindelingsche, samengestelde aar vereenigd. Ieder katje begint met 2 transversale schubben, waarop een aantal spiraalsgewijze, 1bloemige schubbvormige schutbladen volgen. Ieder ♂ bloem bestaat uit 4 (soms 2, 3 of 5) meeldraden zonder bloemdek; ieder helmknop heeft 2 stuifmeelhokjes die aan de buitenzijde opengaan. Ieder ♀ bloem bestaat uit een stamper met twee transversale schubben, die tijdens den bloei zeer klein en bodemstandig zijn, maar later met de rijpende vrucht naar boven groeien. Vruchtbeginsel 2bladig, 1hokkig, met 1 zaadknop. Stempels 2, betrekkelijk groot, tijdens den bloei boven de schutbladen uitstekend.

De ♂ katjes zijn veel meer in 't oog springend dan de ♀; de ♀ katjes maken bijna den indruk alsof het nog niet ontloken ♂ katjes waren. Stuifmeel droog. De schubben der ♂ katjes dragen aan de buitenzijde vele gele glanzige stippen (sterk riekkende balsemkliertjes).
De gewelfde schubben der ♂ katjes zijn aangedrukt, en vormen samen een soort van peperhuisje, waarin het stuifmeel dat uit de helmknoppen valt behouden blijft zolang de plant niet in beweging gebracht wordt (vergelijk met *Potamogeton, Triglochin*, enz.). Als de plant door den wind of door voorbijgaande dieren geschud wordt ontsnapt een geel stuifmeelwolkje uit de peperhuisjes. Dit wordt bevorderd door de buigzaamheid en de veerkracht der takken. De takken zijn echter dun en tijdens den bloei van bladen verstoken: daaruit volgt dat zij weinig wind vangen, en slechts door een vrij sterken wind tot schommelen kunnen gebracht worden. De katjes zelve zijn in den beginne weinig buigzaam; later worden de schubben horizontaal (en zelfs schuin naar onderen) afstaande en de spil van het katje wordt langer en slapper, maar alsdan is het stuifmeel gewoonlijk reeds uitgestrooid.

Vegetatieve vermeerdering actief: op sommige plaatsen (b. v. in sparrebosschen te Bloemendael, Vlaanderen) behoren honderden naast elkander groeiende exemplaren tot dezelfde sekse, waarschijnlijk omdat zij alle door ongeslachtelijke vermeerdering uit een enkele plant gesproten zijn.

Fam. XLIII. — Salicineën.

403. — *Salix*-soorten. — Gewoonlijk tweehuizig. Al de inheemsche wilgen worden door insecten bevrucht. (*Ordinairément dioïques ; toutes les espèces indigènes sont fertilisées par des insectes*).

Bloemen in katjes; ieder katje bestaat uit eene spil, die talrijke schubvormige, gaafrandige, oningesneden schutbladen draagt; ieder schutblad met één bloem in zijn oksel. Er komen soms katjes voor die deels ♂, deels ♀ zijn.

Ieder ♀ bloem bestaat uit een zittend of kortgesteeld vruchtbeginsel, met talrijke zaadknoppen. Stijl doorgaans kort, met 2 enkelvoudige (of meer of minder 2-4deelige) stempels. Aan den voet van het vruchtbeginsel bevinden zich 1 of 2 honigklieren. Bij de *Salices serotinae* (d. w. z. de soorten welker bloemen opengaan als de bladen te voorschijn komen, fig. 64, 6 en 8) zijn er doorgaans 2 honigklieren, nl. één aan de rugzijde en één aan de buikzijde van het vruchtbeginsel. Bij de *Salices praecoces* (d. w. z. de soorten die
bloeien alvorens de bladen voor den dag komen, fig. 64, 3, 4, 5, 7) is er doorgaans 1 honigklier aan de rugzijde der bloem. (1)

Fig. 64. — Salix.

1. σ^* bloem van *Salix cinerea* (binnenzijde = bovenzijde): b, schubvormig schutblad; — h, honigklier (vergel. met diagram 3). — (Naar de Natuur).

2. Φ bloem van *S. cinerea* (binnenzijde = bovenzijde): b, h, als voren; — v, gesteeld vruchtbeginzel; — s, stempel (vergelijk met diagram 7). — (Naar de Natuur).

3. Diagram, σ^* bloem, *S. Caprea* (Naar Eichler).

4. b , b , *S. purpurea* (b b).

5. b , b , *S. triandra* (b b).

6. b , b , *S. pentandra* (b b).

7. b , Φ bloem, *S. Caprea* (b b).

8. b , b , *S. alba* (b b).

H, as van het katje; — h, honigklier; — st, stempel; b, schutblad.

Populus.

9. Diagram, σ^* bloem, *P. tremula*; H en b, als voren. (Naar Eichler).

Ieder σ^* bloem bestaat uit 2-12 meeldraden (gewoonlijk 2; somwijlen zijn de twee meeldraden vergroeid, zodat er in den oksel van

(1) Bij de *Salices serotinae* staan de stempels zijdelings; bij de *praecoces* staan zij dikwijls op de middellinie. Vergelijk fig. 64,7 en 64,8.
iedere schub schijnbaar slechts 1 meeldraad voorkomt; (fig. 64, 4), en 1 of 2 honigklieren. Deze stemmen in hoofdzaak met de honigklieren der ♀ bloemen overeen.

De wilgen zijn insectenbloemig. De ♂ katjes zijn meer in 't oog springend dan de ♀, hetgeen vooral door de gele kleur der helmknoppen wordt veroorzaakt.

Vele Salix-soorten bloeien vroeg in het voorjaar, als er weinig geurende, honigrijke bloemen voorhanden zijn: zij worden door insecten zeer veel bezocht. Naar het ons geschenen heeft worden de ♂ katjes in veel gevallen meer bezocht dan de ♀, in andere gevallen nagenoeg evenveel als deze. Dit hangt wellicht af van de honigafscheiding, die zelve grootendeels van de weersgesteldheid en van het uur van den dag afhangt. Is de honigafscheiding gering, dan zullen weinig insecten door de ♀ katjes aangelokt worden, terwijl de ♂ katjes wegens hun stuifmeel door talrijke insecten zullen bezocht worden. Wordt daarentegen veel honig afgescheiden, dan zullen de ♀ katjes evenals de ♂ veel insecten aanlokken.

— Korttongige bijen: *Andrena ovina* Kl. (*pratensis* Nyl.) ♂ en ♀, talrijk op ♂ en ♀ katjes, 22. 4. 88, Melle; ♂ op ♂ katjes, 30. 3. 90, Meirelbeke; talrijk, ♂ op ♂, 29. 4. 89, Destelbergen; ♂ op ♂, 27. 4. 89, Lovendeghem; ♂ op ♂, 1. 4. 90, Westdorp. *A. praecox* Scop. ♂ op ♂ en ♀ katjes, talrijk, 22. 4. 88, Melle; ♀ op ♀, 27. 4, 89, Lovendeghem en 30. 4. 88, Gentbrugge; ♀ op ♂, 30. 3. 90, Meirelbeke; ♀ op ♂, svzd. en zgd., 4. 5. 90, 7. 5. 90, Bellem. *A. varians* K. ♀ op ♂ katjes, 22. 4. 88, Melle. *A. fulva* Schranck, ♀ op ♀ katjes, 30 3. 90, Meirelbeke; ♂ op ♂ katjes, 22. 4. 89, Gentbrugge. *A. Clarkella* K., ♀ op ♂, 29. 4. 89, Destelbergen. *A. tibialis* K., ♂ op ♂ katjes, 1. 4. 90, Westdorp en
Katjes, 22. 4. 89, Gentbrugge. Anthomyia aestiva Meig., ♂ op ♀, 22. 4. 88, Melle. A. antiqua Meig., ♂ op ♀, 7. 5. 90. Bellem. A. aestivalis Meig., ♀ op ♂, smvrd., 4. 5. 90, Id. A. fulgens Meig., ♂ op ♀, 27. 4. 89, Lovendeghem. Scatophaga merdaria F., op ♂, 1. 4. 90, Westdorp; op ♀, 20. 4. 89 en 22. 4. 89, Wondelghem en Gentbrugge; op ♂, 22. 4. 88, Melle. Sc. stercoraria L., op ♀, 22. 4. 89, Gentbrugge; op ♂ en ♀, 30. 4. 88, Gentbrugge; 23. 4. 91, Melle. Exorista dubia Fall., op ♂, 22. 4. 88, Melle. — Coleopteren: Limonius (Elater) aeruginosus Oliv. (cylindricus Paypul) op ♂, talrijk, zgd., 4. 5. 90, en op ♀, 7. 5. 90, Bellem. Epuracea (Nitidula) aestivalis L. op ♂, talrijk, zgd., op de bloemen gepaard, 4. 5. 90, Bellem. — Lepidopteren: Een kleine nachtvlinder, op ♀, 24. 4. 88, Gentbrugge.

2° Salix-soorten waarvan de bloemen te gelijk met de bladen voor den dag komen (Laatbloeiers, b. v. S. amygdalina): Langtongige bijen: Apis mellifica op ♂ katjes, 8. 5. 87, Bellem. — Korttongige bijen: Andrena ovina Klug. (pratensis auct.) op ♂ katjes, id. Id. A. praecox Scop. ♀ op ♂ katjes, 4. 5. 90, Bellem. Halictus aloipes F., ♀ op ♂, id. Id. — Hemitrope Dipteren: Myopa buccata L., 8. 5. 87, Bellem. Eristalis pertinax Scop. op ♂, id. Id. Helophilus pendulus L., op ♂, id. Id. Cheilosia pulchripes Löw, 8. 5. 87, Bellem. Ch. fasciata Egger, op ♂, 4. 5. 90, Bellem. Melanostoma mellina L., 8. 5. 87, Bellem. — Alltrope Dipteren: Bibio Marci L., ♂ op ♂, id. Id. Rhamphomyia nigripes F., id. Id. Pollenia vespillo F., op ♂, id. Id.

Tweehuizig. Bloemen in katjes, komen voör de bladen voor den dag. Ieder katje bestaat uit eene spil, die talrijke schubben draagt. Ieder schub heeft een getanden rand, en draagt een enkele bloem in haren oksel.
Q bloem: een enkelvoudig, veelzadig vruchtbeginsel, aan zijn voet omgeven door een kort, scheef-bekervormig orgaan (bloemdek?), dat waarschijnlijk met de honigklieren van Salix overeenstemt, maar geen honig afscheidt. Er zijn 2 tweedelige stempels.

σ bloem: 4-30 meeldraden, schijnbaar zonder orde geplaatst, door een scheef bekervormig orgaan (bloemdek?) gedragen (fig.64,9).

De schubben der σ katjes dienen tot tijdelijke verblijfplaats voor het stuifmeel (zooals bij Betula, zie Nr 396).

Fam. XLIV. Urticaceeën.

405. Urtica dioica L. — Windbloemig (Anémophile). ¶

406. Urtica urens L. — Id. (Id.) ⊗

U. dioica is 2huizig; de σ en de Q bloeiwijzen hebben dezelfde gedaante, en zijn langer dan de bladstelen.

U. urens is 1huizig; σ en Q bloemen gedragen door dezelfde okselstandige bloemtakken, die doorgaans korter zijn dan de bladstelen. Draagt veel zaad; de zaden worden spoedig rijp. In de oksels van het eerste paar bladen worden reeds bloemen voortgebracht, en het bloeien duurt van de eerste lentedagen tot den herfst. (Naar Kirchner, Flora).

De σ en de Q bloemen hebben een 4tallig bloemdek, bij U. dioica met 2 zeer kleine steelblaadjes, welke bij U. urens doorgaans ontbreken. De 2 binnenste bloemdekbladen zijn in de Q bloem veel groter dan de 2 buitenste, en worden na den bloei nog groter.

In de σ bloemen 4 meeldraden die tegenover de bloemdekbladen staan, en in 't centrum een overblijfsel van den stamper. Helmknoppen aan de binnenzijde opengaaande. — In de Q bloemen geen spoor van helmknoppen; een enkelvoudig 1bladig vruchtbeginsel, met een penseelvormigen stempel en 1 eitje. (Eichler, Blütendiagrammen).

In den σ bloemknop zijn de filamenten der meeldraden naar binnen gebogen met gesloten helmknoppen. Bij het ontsluiken der bloemen wordt het stuifmeel plotseling weggesneld. Wie dit zonderling verschijnsel wil waarnemen moet voor eene groep brandnetels (bij voorkeur U. dioica) post vatten, op een heldere zomermorgen, als er geen dauw op de planten ligt, eenige oogenblikken voor zonsopgang. Zoodra de eerste zonnestralen op de bloemen vallen ziet men hier en daar een klein bleek stofwolkje boven de donkergroene
planten opstijgen. Die stuifmeelwolkjes worden weldra talrijker, en het maakt bijna den indruk alsof er tusschen de brandnetels een klein vuurwerk afgeschoten werd. Van lieverlede wordt het getal der ontploffingen opnieuw geringer, en na ongeveer een half uur is het schouwspel afgebroken. Een aandachtig onderzoek leert dat ieder wolkje voortgebracht wordt door het openspringen van één ♂ bloemknop: daarbij worden de helmdragers schielijk rechtgebogen en uitgestrekt, en tevens gaan de helmknoppen open. Het poederig stuifmeel wordt aldus weggesneld en in de lucht verspreid (vergel. met de uitstrooiing der zaden bij Impatiens enz.): enkele korrels worden door de penseelvormige stempels opgevangen, de meeste gaan verloren (Kerner, Pflanzenleben, II, blz. 134).

Bij de meeste Urticaceeën grijpt de bestuiving op de hier beschreven wijze plaats: in den plantentuin te Gent kan de ontploffing der bloemen zeer fraai waargenomen worden bij Pilea callitrichoides, een Urticacee die haar stuifmeel wegsnelt als hare bloemknoppen bevochtigd worden.

Fig. 65. — Urtica dioica (naar Eichler).
1. Diagram eener mannelijke bloem.
2. » » vrouwelijke » .
H. Hoofdas; - b, schutblad; α, γ, steelblaadjes; - d. d. bloemdekblaadjes

Fam. XLV. Cannabinaceeën.

Tweeuzig. — De ♂ bloemen met een 5bladig bloemdek en 5 meeldraden. — De ♀ bloemen met een gaafrandig bekervormig bloemdek, dat het onderst gedeelte van het vruchtbeginsel nauw
omsluit, — een hokkig, leig vruchtbeginsel en 2 stempels. Ieder Ø bloem is daarenboven voorzien van een betrekkelijk groot, scheedevormig schutblad, dat in de meeste flora’s verkeerdelijk bloemdek of kelkblad genoemd wordt.

Figuur 66. (Naar Eichler.)

1. *Humulus Lupulus*. Diagram van een Ø bloemengroepje: H, as van het katje: ss, een paar schubvormige schutbladen (steunblaadjes); — d, scheedevormig schutblad; — b, bekervormig bloemdek.

2. *Ulmus campestris*. Diagram eener regelmatige 5tallige bloem: H, as van het bloomenkluwen; b, schubvormig schutblad; — a, a, steelblaadjes; — d, bloemdek. — In ’t centrum het vruchtbeginsel met twee stempels.

Ø Bloemen in katjes (hopbellen): ieder katje bestaat uit een spil met een aantal schubben, die niets anders zijn dan paren steunblaadjes waarvan de eigenlijke bladen gewoonlijk niet (of onvolkomen) tot ontwikkeling zijn gekomen. In den oksel van ieder paar schubben bevinden zich 4 (soms 2 of 6) bloempjes, ieder met zijn scheedevormig schutblad, zooals in fig. 66,1 aangewezen wordt.

Fam. XLVI. Ulmaceeën.

408. *Ulmus montana* With. — Windbloemig (*Anémophile*). Bloeit Maart-April. (Fig. 66, 2).

De bloemen zijn Ø en staan in kluwens. Ieder kluwen begint met een aantal ledige schubben; de daarop volgende binnenste (bovenste)
schubben (= schutbladen) dragen bloemen in hare oksels. In den oksel van ieder schutblad staat gewoonlijk één bloem met 2 steelblaadjes; soms zijn er 2 of meer bloemen.

Bloemdek 4-8- (doorgaans 5-6-) slippig. Meeldraden doorgaans even talrijk als de bloemdekslippen en tegenover deze geplaatst, somwijlen talrijker. Helmknoppen aan de buitenzijde opengaande. —

Vruchtbeginsel doorgaans Ihokkig, Izadig; 2 stempels. —

Gebrek honig.

Proterogynisch: als de bloemen opengaan zijn de 2 draadvormige, roode stempels volkomen ontwikkeld; de helmknoppen zijn nog gesloten met zeer korte filamenten. Deze filamenten worden later zoo lang, dat de stempels tusschen de meeldraden verborgen worden. Eindelijk gaan de helmknoppen open, terwijl de stempels nog frisch uitzien (Kirchner, Beitr., 1890, blz. 12). — Wordt volgens Kirchner somwijlen door stuifmeelverzamelende honigbijen bezocht.

Ulmus montana is in ons gebied zeer zeldzaam, misschien niet inheemsch. — U. campestris komt daarentegen overvloedig voor, aan wegen enz. geplant. Stemt met U. montana overeen wat de bevruchting betreft, maar bloeit (te Stuttgart) 4-6 dagen later (Kirchner, loc. cit.).

Fam. XLVII. Ceratophyllaceeën.

409. Ceratophyllum demersum L. Eenuiszig.

410. » submersum L. Eenuiszig.

De bestuiving geschiedt door het water.

Bloemen alleenstaande, ondergedompeld, zittend, okselstandig. (In iederen bladkrans is er doorgaans slechts één blad dat eene bloem in zijn oksel draagt. De meeste bladkransen hebben geen bloem; σ' en Φ bloemen zonder bepaalde orde verspreid). Ieder bloem met een 6-12slippig omwindsel. Het omwindsel der σ' bloemen is witachtig; de omwindselslippen der Φ bloemen zijn groener, smaller en teederder. — Binnen het omwindsel der σ' bloemen doorgaans 10-12 meeldraden; Φ bloemen met een enkelvoudigen stamper. Helmknoppen bijna zittend, met 3 spitsen aan den top. Stamper 1bladig, met 1 eitje en een priemvormigen stempel. (fig. 66.3).

De σ' bloemen zijn talrijker dan de Φ en brengen veel stuifmeel voort. De helmknoppen worden als het ware uit het omwindsel
geperst, en stijgen in het water omhoog (hun bovenste gedeelte bestaat uit een los, luchthoudend weefsel waardoor het specifisch gewicht verminderd wordt) : zij laten tevens hun stuifmeel ontsnappen. De stuifmeelkorrels hebben hetzelfde specifisch gewicht als het water : zij zweven bijgevolg in deze vloeiistof rond, en worden aldus in aanraking gebracht met de «lange, draadvormige, gekromde stempels, die in de ♂ bloemen de geheele onderzijde van den staartvormigen stijl innemen ». (Kirchner). (Het ware wenselijk den bouw van den stempel nogmaals te onderzoeken, bij onze beide inheemsche soorten en bij een groot aantal exemplaren ; de verschillende schrijvers zijn het daarover niet eens).

Vegetatieve vermeerdering : de stengels zijn broos en hebben een zeer taai leven. Ieder afgebroken stuk wordt tot een nieuwe plant.

— Deze soort overwintert door knoppen, die uit kleine, dicht samengedrongen bladjes bestaan. — (Naar Eichler, Blüthendiagramme, en Kirchner, Flora von Stuttgart).

Fam. XLVIII. Polygonaceëën.

Rumex. Windbloemig (Anémophile).

Zie Kirchner, Flora ; — Schulz, Beiträge, I, II ; — Axell, Växt. Befruktning).

Bloemdek 6bladig ; de bladjes van den binnensten krans zijn groter dan die van den buitensten, groeien met de vrucht mede en zijn in rijpen staat dikker met een knobbeltje bezet. De 6 meeldraden (eigenlijk 3 meeldraden die in tweeën gedeeld zijn) zijn paarswijze aan de buitenste dekbladjes overgesteld, en staan dus 2 aan 2, op de hoogte van de randen der binnenste bladjes (zie fig. 68,1). De 3 stempels zijn penseelvormig, naar de uitwendige dekbladjes gekeerd. — Bij sommige Rumex-soorten worden de helmknoppen, evenals bij de Gramineëën, gedragen door buigzame, schommelende filamenten, waardoor de uitstrooing van het stuifmeel door den wind bevorderd wordt.

411. Rumex crispus L.

Proterandrische ♂ en ♀ bloemen aan dezelfde individuen. — De ♂ bloemen zijn groter dan de ♀. Als de 6 helmknoppen opengaan, zijn de 3 binnenste bloemdekbladen met hunne basis tegen het vruchtbeginsel aangedrukt, terwijl hunne bovenste gedeelten uiteenverspreid
zijn. De 3 penseelvormige stempels zijn alsdan nog tusschen de bloemdekbladen verborgen: daar de bloemen overhangen bevinden de stempels zich boven de helmknoppen, waardoor zelfbevruchting verhinderd wordt. Als de helmknoppen afgevallen en de meeldraden verflens zijn, worden de volkomen ontwikkelde stempels bloot. — De kleinere ♀ bloemen hebben een stamper en 6 rudimentaire helmknoppen.—Tusschen de ♀ en de ♀ bloemen komen overgangsvormen voor, daar de meeldraden der ♄ bloemen soms ten deele rudimentair zijn. (Naar Kirchner, Flora.)

412. Rumex obtusifolius L.

Stemt met de vorige soort overeen (Kirchner).

413. R. maritimus L.

Tijdens den bloei zijn de dekbladen slechts weinig uiteenverspreid. De binnenste dekbladen zijn voorzien van twee tandvormige aanhangsels, waarop (in den bloemknop) de stempels liggen. Als de helmknoppen opengaan steken zij niet of slechts weinig boven de dekbladen uit. De stempels, die onder de meeldraden liggen, zijn in vele gevallen reeds geslachtsrijp alvorens het stuifmeel ontslaat; zij worden weldra bruin, en zij overleven slechts zelden de uitstrooiing van het stuifmeel. Zelfbestuiving onvermijdelijk. Zelfs in de bloemen, waar de stempels vóór de helmknoppen geslachtsrijp worden, is de toevoer van vreemd stuifmeel onmogelijk, daar de stempels verborgen worden onder de helmknoppen, die den ingang der bloem geheel innemen. De bloemen zijn horizontaal afstaande of rechtstreeks, met stijve bloemstelen: het stuifmeel kan dus slechts zelden door den wind medegevoerd worden. In sommige bloemen ontbreken de stempels. Zuivere ♂ planten werden nog niet aangetroffen. (Naar Schulz, Beiträge, I, blz. 94).

414. R. conglomeratus Murr.

Bij deze soort (evenals bij de vorige) steken de meeldraden boven de binnenste bloemdekbladen niet uit. Deze zijn tamelijk breed en worden wijder uitgespreid dan bij de vorige soort. De stempels zijn kortgesteeld; zij liggen op zulke wijze, dat zij onvermijdelijk door de helmknoppen bestoven worden. De bloemen zijn gewoonlijk homogaam, soms iets proterandrisch, zelden iets proterogynisch. Er komen ook bloemen voor met onvolkomen stempels. (Naar Schulz, Beiträge, I, blz. 95).
415. *R. palustris* Sm. — Niet onderzocht.

417. *Rumex acetosa* L.

418. *Rumex acitosella* L.

Te Wenduyne, op dorre zandduinen, hebben wij (Juni 1892) Nr 418 schier uitsluitend in σ† planten aangetroffen. Deze plantjes waren klein.

Dit strookt met de resultaten der proeven van Hoffmann (Botan. Zeit. 1885, N° 10 en 11) : volgens dezen schrijver wordt het getal der σ† planten door « dichtzaaiing » aanmerkelijk vermeerderd, hetgeen dient toegeschreven te worden aan de onvolkomen voeding, welke door dichtzaaiing veroorzaakt wordt. Onze planten te Wenduyne bevonden zich, wat de voeding betreft, in zeer ongunstige voorwaarden.

Opmerking : Volgens Schulz (Beiträge, II, blz. 155) kunnen de inheemsche *Rumex*-soorten met tweeënlachtige bloemen, uit het oogpunt der bestuiving, in twee groepen gerangschikt worden :

1° *Rumex conglomeratus* en *maritimus* : als de stempels geslachtsrijp zijn, worden zij door de bloemdekbladen en door de helmknoppen volkomen omgeven, zoodat zij door geen vreemd stuifmeel kunnen bereikt worden. Later, als de geledigde helmknoppen afgevallen zijn, worden de stempels voor vreemd (door den wind aangebracht) stuifmeel toegankelijk, maar alsdan zijn zij bijna steeds verflenst. Kruisbestuiving is dus in de meeste gevallen onmogelijk : daar de helmknoppen rondom den stempel staan is spontane zelfbestuiving onvermijdelijk. De bloemen zijn rechtopstaande of afstaande, maar niet overhangend : daardoor wordt het uitvallen van het stuifmeel op de stempels derzelfde bloem bevorderd. — In de σ bloemen is kruisbevruchting door den wind mogelijk.

2° Bij *R. crispus* en *obtusifolius* wordt kruisbevruchting (door den wind) daarentegen begunstigd (zie *R. crispus* N° 411).

419. **Polygonum Fagopyrum** L. — Witte of rose bloemen met blootliggende honig. (*Fleurs blanches ou roses, à nectar librement expose*). — (H. Müller, fertilis. of flowers, blz. 509. — Kirchner, Neue Beobacht., 1886. — Schulz, Reiträje II. — Knuth, Blumen und Insekten Nordfries. Inseln).

Ongelijkstijlige. Bloemen klein, maar vele bijeen en daardoor in 't oog springend, en aangenaam geurend.

Bloemdek 5-deelig. Meeldraden 8; aan den voet der meeldraden 8 gele kogelvormige honigklieren (zie Fig. 67, h). De honig wordt op den bodem van het wijd uitgespreid bloemdek verzameld. Van de 8 meeldraden zijn er 3 (Fig. 68, 2, i) die rondom den stamper staan en hun stuifmeel aan de buitenzijde ontslachten; de 5 andere (ld , e) zijn meer naar buiten gebogen en keeren hunne stuifmeelzijde naar binnen, zoodat insecten die den honig willen bereiken aan beide zijden met stuifmeel bepoederd worden. 3 Stijlen met knopvormige stempels.

Fig. 67. — Polygonum Fagopyrum. (Naar H. Müller).

Links: langstijlige bloem.
Rechts: kortstijlige bloem.
st, stempels; — *m,* helmknoppen; — *h,* honigklieren.

In de langstijlige bloemen zijn de stijlen tweemaal zoolang als de meeldraden; in de kortstijlige bloemen kijken de meeldraden verre buiten de bloemen uit, terwijl de stijlen ongeveer half zoolang zijn als de meeldraden. De stuifmeelkorrels van den kortstijligen vorm zijn groter dan die van den langstijligen. Legitieme bestuiving wordt begunstigd (zie hooger blz. 40 = Bot. Jaarb. V, blz. 192). Illegitieme bestuiving en zelfbestuiving zijn nochtans niet onmogelijk. Langstijlige planten dragen soms enkele bloemen met zoo korte stijlen, dat de stempels tusschen de drie binnenste meel-
draden liggen en door deze rechtstreeks bestoven worden (Müller). De beide vormen vertoonen nu en dan enkele \(\sigma \) bloemen, waarin een onvolkomen vruchtbeginsel met zeer korte stijlen en zonder stempels voorkomt.

Volgens Schulz komen daarenboven zuiver \(\sigma \) exemplaren, exemplaren met \(\varphi \) en \(\varphi \) bloemen en zuiver \(\varphi \) exemplaren voor. — Het heeft Knuth toegeschenen alsof (op het eiland Föhr) de langstijlige en de kortstijlige planten niet dooreengemengd, maar op verschillende perceelen akkerland groeiden. Het ware belangrijk dit nader te onderzoeken.

420. *Polygonum amphibium* L. — Rose met volkomen verborgen honig. (*Rose à nectar complètement caché*).
(Kirchner, Neue Beobacht., 1886, bladz., 15 en Flora, bladz. 215. -- Schulz, Beiträge II. -- Knuth, Blumen und Insekten Nord-Fries. Inseln, blz. 128, figg.)

Bloemen rose, aangenaam geurend, in sierlijke schijnaren. Bloemdek 5deelig, 5 mill. lang.

5 Meeldraden, 2 stempels. Aan den voet van het vruchtbeginsel 5 gele honigklieren. (Fig. 68,4).

Fig. 68. — Polygonaceën (Naar Eichler).

1. Rumex. — * Plaats der ontbrekende meeldraden (deze meeldraden zijn in 2 door i aangewezen).
2. Polygonum tataricum (= Fagopyrum): H, hoofdas; — e, buitenste meeldraden (daarvan zijn er 2 in tweeën gedeeld); — i, binnenste meeldraden; h, honigklieren.
3. Polygonum lapathifolium.
4. Polygonum amphibium.

Volgens Kirchner ongelijkstijlig. In de kortstijlige bloemen is het bloemdek (tijdens den bloei) trechternormig open, zoodat de ingang 4 mill. breed is. De beide kogelvormige stempels bevinden zich op gelijke hoogte als de ingang der bloem, de 5 helmknoppen staan 1,5-2 mill. hooger. — In de langstijlige bloemen zijn de dekbladen op zulke wijze vereenigd dat er slechts een nauwe ingang openblijft. De uiteenverspreide stijlen kijken ongeveer 1,5 millim. buiten de bloem uit, de helmknoppen bevinden zich ongeveer 1 mill. onder den ingang. (Deze waarnemingen werden in Würtemburg bij den landvorm gedaan).

Bij den landvorm scheiden de stengelharen een kleverige zelfstandigheid af, waardoor kruipende insecten verhinderd worden de
bloemen te bereiken. Bij den watervorm worden de bloemen door het water zelf tegen ongenoode gasten beschut en de haren ontbreken.

Volgens KNUTH zijn de bloemen op het eiland Föhr onvolkomen trimorph, te weten: 1° Bloemen met lange meeldraden en korte stampers; 2° id. met lange meeldraden en middelmatige stampers; 3° id. met korte meeldraden en lange stampers.

In ons gebied werd deze soort tot nog toe niet nauwkeurig onderzocht.

+ **421. Polygonum aviculare** L. — Insectenbloemig zonder honig? — *(Entomophile sans nectar?)*

H. MüLLER, Fertil of flowers, blz. 515.

Bloempjes klein (2 1/2 mill.), weinig in 't oog springend, zonder geur en zonder honig (?). De 5 dekblaadjes zijn groen aan hun voet, wit of rose aan hun top. Diagram zooals *P. Fagopyrum* (zie fig. 68). De 5 buitenste meeldraden (die met de dekslippen afwisselen) worden naar buiten gebogen, de drie binnenste buigen zich naar het centrum, zoodanig dat hunne helmknoppen boven de drie stempels staan: spontane zelfbestuiving is dus onvermijdelijk. Insecten bewerken zelfbestuiving even goed als kruisbestuiving.

De 8 meeldraden zijn aan hun voet verdikt: misschien scheiden deze verdikkingen somwijlen honig af.

+ **422. Polygonum Persicaria** L.

H. MüLLER, Fertil. of flowers, blz. 512.

Bloemen wit of rood, in schijnaren. Zonder geur, weinig honig. Er zijn theoretisch 8 meeldraden (zooals bij *P. Fagopyrum*); de 5 buitenste ontbreken nooit, de 3 binnenste kunnen alle of ten deele onvolkomen ontwikkeld zijn of geheel ontbreken. Aan den voet van ieder dekslip komt een honigklier voor. Het vruchtbeginsel is doorgaans 2zijdig, met 1 2deeligen stijl en 2 knopvormige stempels (er zijn dikwerf 3 stempels). Helmknoppen en stempels te gelijkertijd geslachtsrijp en op gelijke hoogte. Als de bloem volkomen ontloken is vormt het bloemdek een half kogelvormig klok, de 5 buitenste meeldraden zijn zooverre mogelijk uiteenverspreid en raken de stempels niet aan. Als de 3 binnenste helmknoppen voorhanden zijn buigen hunne dragers zich naar het centrum en komen zij met de
stempels in aanraking: spontane zelfbestuiving is dus verzekerd als de bloem meer dan 5 meeldraden heeft. Dit is waarschijnlijk eveneens het geval als er slechts 5 meeldraden zijn, want bij 't eind van den bloei sluit zich het bloemdek, en daardoor worden de helmknoppen met de stempels in aanraking gebracht. De bloemen blijven in den regen open. — Door insectenbezoek kan zelfbestuiving evenals kruisbestuiving plaats grijpen.

Deze soort wordt gewoonlijk weinig bezocht. In September 1891 hebben wij nochtans te Nevel, op akkerland, bij zeer gunstig weder, talrijke bezoekers gezien.

423. *Polygonum lapathifolium* L.

Stemt in hoofdzaak met de vorige soort overeen. Doorgaans 5 meeldraden, waarvan 1 of meerdere zich naar binnen buigen en met de stempels in aanraking komen. (Müller, Fertil., blz. 514).

Bloemen in schijnaren. Diagram zooals *P. Fagopyrum*. Acht rode honigklieren aan den voet der meeldraden; honig op den bloembodem verzameld. Kruisbestuiving bevorderd door proterandrie. In het 1e *stadium* steken de meeldraden buiten de bloem uit. In het 2e *stadium* zijn de helmknoppen doorgaans afgevallen, en de 3 stiften met hunne knopvormige stempels komen nu buiten de bloem te voorschijn. — Zeer zeldzaam in ons gebied.

Volgens Schulz komen (in de Riesengebirge) bloemen voor met meeldraden die niet langer dan de dekbladen en soms ten deele onvolkomen zijn, en andere zuiver ♀ bloemen, met korte meeldraden en ledige helmknoppen. Al deze onvolkomen bloemen zijn proterandrisch (vergelijk met de ♀ bloemen van Geranium).

425. *Polygonum Convulvulus* L. — (Kirchner, Beobacht., 1885 en Flora).

Bloemen klein, in de bladoksels, weinig in 't oog springend;
dekslippen groen met witten rand, de 3 buitenste stomp gekield. 8 meeldraden, zooals bij P. Fagopyrum. Homogaam. De dekslippen gaan wijd genoeg open opdat de 8 meeldraden in den beginne de stempels niet zouden aanraken. Al de helmknoppen gaan aan de binnenzijde open (de 3 binnenste — zie diagram P. Fagopyrum — blijven soms gesloten); zij buigen zich allengs (de 3 binnenste vóór de 5 buitenste) naar binnen, en komen aldus met de stempels in aanraking. Aan den voet der meeldraden wordt (weinig) honig afgescheiden. Door insectenbezoek kan kruisbestuiving bewerkstelligd worden, vooral gedurende het 1e stadium. Wordt schier nooit bezocht. — Bladstelen met honiggroefjes.

B e z o e k e r s : Hemitrope Dipteren: Syritta pipiens, 3. 8. 86, Melle.

+ 426. Polygonum dumetorum L. — (Kirchner, Flora, blz. 214).

+ 428. Polygonum Hydropiper L. — (Kirchner, Beobacht., 1886, blz. 14).

Bloeiwijze en bloemen zooals bij P. mite, maar nog minder in 't oog springend, daar de bloemen iets kleiner en groener zijn. 4 Dekslippen en 8 of minder meeldraden. Honigklieren 0. Helmknoppen op gelijke hoogte als de stempels. Zelfbevruchting nog meer begunstigd dan bij de vorige soort.

Opmerking: De verschillende hier beschreven soorten van het
geslacht *Polygonum* kunnen onder twee groepen gerangschikt worden:

1° groep: *P. Fagopyrum* ♂.

 » *amphibium* ♀.

 » *Bistorta* ♀.

 (P. viviparum L., ♀, niet inheems; zie Müller, Alpenblumen, blz. 180).

Oversgangsvormen:

 P. Persicaria ♂

 P. lapathifolium ♂.

2° groep: *P. aviculare* ♂.

 » *Convolvulus* ♂.

 » *dumetorum* ♂.

 » *mite* ♂.

 » *Hydropiper* ♂.

De bloemen der eerste groep zijn fraai gekleurd, vele bijeen in dichte bloeiwijzen, geurend, rijk of zeer rijk aan honig; heterostylie (trimorphisme) of proterandrie wijzen op een neiging tot kruisbevruchting; zij worden veel door insecten bezocht.

Bij de soorten uit de 2° groep zijn de bloemen kleiner, reukeloos, homogaam en minder fraai gekleurd; de bloeiwijzen zijn armer en losser, de honigafscheiding gering of nul, het insectenbezoek zeer schaarsch, zelfbestuiving onvermijdelijk.

Het is zeer opmerkenswaardig dat de verschillende hier vermelde kenmerken in iedere groep bijna zonder uitzondering met elkander hand in hand gaan. De theorie der natuurlijke teeltkeus geeft daarvan een zeer behendige verklaring: de eigenschappen, waardoor de eerste groep gekenschetst wordt, strekken immers *gezamenlijk* tot bevordering der kruisbevruchting. Toen die eigenschappen, in den beginne, als geringe, toevallige afwijkingen voor den dag kwamen, waren zij reeds voordeelig voor de planten, en zij werden bijgevolg, in den strijd voor het bestaan, *gezamenlijk* van de eene generatie tot de andere opgestapeld. Maar hoe komt het, dat de soorten der tweede groep, die van de voordeelen der kruisbevruchting bijna geheel verstoken zijn, op zulke zegevierende wijze den strijd voor hun bestaan voeren en overal in tallooze exemplaren voorkomen?

Hieruit blijkt dat de kruisbevruchting niet eene onontbeerlijke voorwaarde is tot de algemene verspreiding eener plantensoort (zie
Müller, Review of the species of Polygonum; — Fertilisation, blz. 516).

De soorten der eerste groep zijn meerendeels 4, de soorten der tweede groep zijn alle 0.

Fam. XLVIII. Chenopodiaceën.

Bloemdek groen, klein, weinig in 't oog springend. Reukeloos, honigloos. De 3 (zelden 2) draadvormige stempels zijn reeds geslachtsrijp als de bloem slechts de helft van hare definitieve grootte bereikt heeft; alsdan kunnen de meeldraden nauwelijks onderscheiden worden. De dekslippen sluiten boven het vruchtbeginsel samen en laten aan den top der bloem (die als een bloemknop uitziet) een klein gaatje open waardoor de stempels te voorschijn komen. Veel later, als het vruchtbeg. reeds opgezwollen en de stempels verdroogd zijn, gaan de dekslippen volkomen open, en de 5 meeldraden, die thans volkomen ontwikkeld zijn, steken nu buiten de bloem uit. Nu gaan de helmknoppen open en daarna sluiten de dekslippen zich wederom, maar op zulke wijze dat de meeldraden tusschen hare randen vastgeklemd worden en naar buiten uitkijken totdat zij volkomen verdroogd zijn. De bloempjes zijn tot kluwens vereenigd: in ieder kluwen vindt men doorgaans te gelijkertijd bloemen in al de successieve toestanden. Soms is 1 van de 5 meeldraden onvolkomen of ontbrekend. De overeenkomstige dekslip blijft alsdan tot het eind tegen het vruchtbeginsel aangedrukt.

Wordt soms door stuifmeelvretende insecten bezocht.

430. Chenopodium polyspermum L. Windbloemig. (Kirchner, Neue Beobacht., 1886, blz. 17).

Stemt in hoofdzaak met de vorige soort overeen. In het eerste stadium zijn de dekslippen tegen het vruchtbeginsel aangedrukt: aan den top eene kleine opening waardoor de 2 stempels naar buiten kijken. Zoodra de stempels verwelken ontwikkelen zich de meeldraden één voor één, terwijl de overeenkomstige dekslippen eveneens
één voor één naar buiten gebogen worden. Er zijn slechts 3 meeldraden voorhanden: de 2 dekslippen die geen meeldraad hebben blijven tegen het vruchtbeginsel aangedrukt. Na de bevruchting neemt het vruchtbeginsel in korten tijd aan grootte toe, en daardoor worden de dekslippen allens geheel uiteengebogen.

432. Chenopodium ficifolium Sm. — Windbloemig.

434. Chenopodium murale L. Windbloemig.

Stemt met Ch. album overeen, maar de 2 stempels zijn zeer kort (Kirchner, Neue Beob., 1886).

Volgens Schulz (Beiträge I, blz. 93) zijn de dekslippen aan hun top iets ingesneden. De filamenten der meeldraden steken buiten de bloem uit en liggen daarbij gewoonlijk in de insnijding der dekslippen. De stempels zijn zeer klein en dikwijls reeds verslenst als het stuifmeel ontlast wordt. Maar zelfs in die bloemen, waarin zij behouden blijven totdat de eerste helmknoppen opengaan is de kans op zelfbestuiving gering, daar de helmknoppen zijdelings buiten de bloem uitsteken.

435. Chenopodium hybridum L. — Windbloemig. (Kirchner, Beiträge, 1890, blz. 13).

Proterogynisch, zooals Ch. album. Het bloemdek heeft reeds zijn definitieve grootte bereikt, als de ontwikkelde stempels naar buiten uitkijken. Als de stempels verdrogd en afgevallen zijn strekken de meeldraden zich successievelijk uit, en de overeenkomstige dekslippen worden tevens één voor één uitgespreid.

Het bloemdek sluit zich wederom als de helmknoppen alle verdrogd zijn.

Proterogynisch, zooals Ch. album. De meeldraden ontwikkelen zich korten tijd nadat de stempels verwelkt zijn. De stempels zijn
ten getale van 2, 3 of 4, en tamelijk lang. De meeldraden zijn slechts zoolang als de dekslippen; deze spreiden zich weinig uiteen. De bloemen van iedere aar ontwikkelen zich nagenoeg gelijktijdig, zodat al de bloemen van aanzienlijke gedeelten der bloeiwijze zich ongeveer in hetzelfde stadium bevinden.

436A. Chenopodium (Blitum) rubrum L. — Windbloemig (anémophile). — (Schulz, Beiträge I, blz. 94).

De bloem is in ’t midden volkomen open en de vrij lange stempels kijken reeds naar buiten uit, als de bloemdeksbladen nog niet uitgespreid zijn. Eenigen tijd daarna worden de meeldraden rechtgebogen en richten zij de bloemdekslippen op: tevens worden de stempels bruin, en zij zijn volkomen verdroogd als de eerste helmknoppen opengaan. De helmknoppen gaan successievelijk open. Ten gevolge van de stijfheid der dekslippen blijven de helmdragers vaak recht overeindstaande, met hunne helmknoppen boven de opening der bloem, en zij krommen zich nadat de helmknoppen afgevallen zijn. In vele gevallen zijn de stempels zoo klein dat de bloem als ♂ mag beschouwd worden. Soms zijn al de bloemen van een individu ♂.

436B. Atriplex hastata L. — Windbloemig (anémophile).

De soorten van het geslacht Atriplex zijn eenhuizig, zelden twee-huizig; bij sommige soorten komen daarenboven ♀ bloemen voor. — Bestuiving niet onderzocht.

Fam. L. AMARANTACEEËN.

Fam. LI. CARYOPHYLLACEEËN.

(1. — Sileneëën).

438. Dianthus prolifer L. ♀.

De bloemkroon is kleiner dan bij de meeste andere Dianthus-soorten, roodachtig-lila. Bevruchting niet onderzocht. — (De bloem opent zich als het regent?)
439. **Saponaria officinalis** L. — Vlinderbloem, rose of bleeklila. — (Fl. lépidoptérophiile, rose ou lilas pâle).

Wordt voornamelijk door Schemeringvlinders (Sphingiden, enz.) bezocht. De bloemen geuren 's avonds het sterkst. Honigmerken ontbreken. Kelkbuis 18-21 mill. diep; nagels der kroonbladen en helmdraden op een cyllindrische verhevenheid van den bloembodem, een weinig boven de basis van den kelk (fig. 69, 2, b) gezeten, over een lengte van een paar millimeters met deze verhevenheid (tussen a en b) vereenigd en aan de binnenzijde honigafscheidend.

Duidelijk proterandrisch: vooreerst (1e stadium) kijken de 5 buitenste (episepale) meeldraden boven de keel der bloemkroon uit; hunne helmknoppen gaan open, en daarna worden hunne helmdragers naar buiten gebogen. Later (2e stadium) komen de 5 binnenste (epipetale) meeldraden op hunne beurt buiten de kroenbuis te voorschijn; zij worden eveneens naar buiten gebogen nadat hunne helmknoppen zijn opengegaan. Daarna (3e stadium) komen de twee stempels, die te voren in de bloembuis verborgen waren, naar buiten uitkijken. Zij divergeeren, en keeren hunne stempelzijde naar boven. Honig wordt tusschen de basis der meeldraden en het vruchtbeginsel afgescheiden. (MüLLER, Fertil. of flowers, blz. 128). Zelfbestuiving onmogelijk.

Ieder kroonblad is op de grens tusschen den nage en de plaats voorzien van twee kleine tandjes (t). De nagels vertoonen, in hun bovenste gedeeltje (fig. 69, 3) en aan de binnenzijde een sterk vooruitspringende middenerf. Ieder dezer vijf verheven lijsten is aan haren vrijen rand voorzien van een diepe overlangsche groef, waarin de helmdrager van een epipetale meeldraad past. De stand der 5 episepale meeldraden wordt door fig. 69, 3 duidelijk aangegeven. De kroenbuis wordt aldus gedeeld in 6 evenwijdige nauwe kanalen, nl. een centraal kanaal c, waarin zich de 5 epipetale meeldraden en de 2 (in fig. 69, 3 niet afgebeelde) stijlen bevinden, en 5 gangen a die rondom het centraal kanaal een krans vormen en ieder een der episepale meeldraden bevatten. — Naarmate men dieper in de kroenbuis dringt worden de nagels der kroonbladen smaller, en aan de binnenzijde gegroefd (zie fig. 69, 4); tevens wordt de groef die zich aan hunne binnenzijde (aan den rand der verheven lijst) bevindt zoo diep, dat de nagel eindelijk op een dwarse doorsnede, X-vormig wordt (fig. 69, 4). De zes hooger vermelde kanalen vinden...
Fig. 69 (zie blz. 153).
wij hier terug: de 5 buitenste (69,4, a) bevatten ieder een epipetale meeldraad, en worden nu aan de buitenzijde door den wand der kelkbluis begrensd. Het centraal kanaal is stervormig geworden: zijn centrum wordt door het vruchtbeginsel c ingenomen, en in ieder der 5 armen der ster bevindt zich een der epipetale meeldraden.

Deze eigenaardige structuur schijnt aan een dubbel doel te beantwoorden: 1° de bloembuis wordt in een aantal evenwijdige kanalen gedeeld, en aldus kan de honig slechts bereikt worden door insecten wier slurf lang en dun genoeg is om in die kanalen gevoerd te worden, nl. door Vlinders. Wij denken dat de Vlinders gewoonlijk gebruik maken van de 5 kanalen a, want als men de bloem van boven bekijkt doen de ingangen dier 5 kanalen zich voor als 5 trechternormige openingen, terwijl het centraal kanaal grootendeels versperd wordt door den stamper en door de epipetale meeldraden (zie de figuren; in fig. 69,3 zijn de stijlen niet afgebeeld!)

Wij hebben nochtans de verrichtingen der bezoekers in dit opzicht niet kunnen gadeslaan, zoodat onze verklaring slechts op onderstellingen berust — 2o De nagels zijn zeer lang en dun: door hun eigenaardigen vorm worden zij veel steviger en minder buigbaar.

Met de geringste hoeveelheid bouwstoffen wordt hier het grootst mogelijke weerstandsvermogen (onbuigbaarheid) verkregen Iemand, beter vertrouwd dan wij met de mechanica, kan hier wellicht een interessant onderwerp tot verdere studie vinden.

Fig. 69. — Saponaria officinalis (Naar de natuur).

1. Bloem in het tweede stadium: de epipetale meeldraden (k) hebben reeds hunne helmknoppen verloren en zijn iets naar buiten gebogen (de hier afgebeeld bloem werd bij regenachtig weder onderzocht; bij zonnig weder worden de meeldraden k verder naar buiten gebogen); — de epipetale meeldraden (kr) staan recht op; hunne helmknoppen zullen weldra opengaen; — de stijlen zijn nog van binnen in de bloembuis verborgen.

2. Dezezelfde bloem, in de lengte doorgesneden. (De helmdragers zijn niet volkomen geteekend, ten einde het figuur eenvoudiger te maken): b, basis der meeldraden en der kroonbladen; a, basis van het vruchtbeginsel. Tusschen a en b zijn de meeldraden en de nagels der kroonbladeren vergroed met de centrale zuil, die het vruchtbeginsel aan haar top draagt; bij a werden enkele meeldraden en kroonbladen afgesneden om het vruchtbeginsel te laten zien. — f, vruchtbeginsel; — st, stempels; — t, tongvormige aanhangsels der kroonbladen.

3. Doorssnede der bloem, een weinig boven de toppen der kelkbladen. — n, nagels der kroonbladen. — k, epipetale meeldraad. — k, epipetale id. — a, a, a, a, a, c, kanalen (zie den tekst).

4. Doorssnede der bloem, een weinig lager dan het bovenste uiteinde van het vruchtbeginsel. — k, kelkbluis. — k, epipetale meeldraad. — k, epipetale id. — c, vruchtbeginsel. — a, a, kanalen (zie den tekst).
440. **Silene inflata** Sm. — Vlinderbloem (*Lépidoptéro-phile*). — (Müller, Alpenblumen).

Wordt voornamelijk door Nachtvlinders bezocht. Is gewoonlijk 3huizig: ♂, ♀ en ♂ exemplaren). De ♀ bloemen zijn proterandrisch, maar zelfbevruchting is niet onmogelijk. De ♂ zoowel als de ♀ bloemen vertoonden overblijfsels van de organen van het ander geslacht Honig 10 à 12 mill. diep. De opgeblazen kelk is een verdedigingsmiddel tegen honigdieven (zie *Symphytum officinale*; zie ook MacLeod, Pyreneënblommen). Wij twijfelen of deze soort in ons gebied inheemsch is.

441. **Lychnis Flos-Cuculi** L. — Roode bijenbloem. — (Fl. mélittophile rouge).

Bloemen rood, zonder honigmerken. De honigklieren bevinden zich aan de basis der meeldraden en vormen samen een vleezigen ring die den voet van het vruchtbeginsel omgeeft. De kelkbuish is 6-7 mill. diep; de kelktanden zijn rechtovereind staande, 3 mill. lang, en ondersteunen de nagels der kroonbladen. De honig kan dus bereikt worden door insecten met een 9-10 mill. lange slurf, — ofwel door insecten, die een 6 mill. lange slurf hebben, en die tevens krachtig genoeg zijn om de nagels der kroonbladen aan den ingang der bloem uiteen te buigen, en om aldus met hun kop een eindweegs in de bloemen te dringen, — ofwel door insecten, die klein genoeg zijn om geheel in de bloem te kruipen.

Proterandrisch. In het 1e stadium staan de helmknoppen der 5 buitenste (episepale) meeldraden aan den ingang der bloem; zij gaan aan de binvemenzijde open, en versperren den ingang zoo volkomen, dat een insectenslurf, die in de bloem gevoerd wordt, onvermijdelijk met stuifmeel bepoederd wordt. In het 2e stadium worden deze meeldraden langer en naar buiten gebogen, en de helmknoppen der 5 binnenste (epipetale) meeldraden komen nu op hunne beurt aan den ingang der bloem staan. Als deze verslenst zijn (3e stadium) worden de 5 stijlen (die te voren zeer kort en in de bloembuis verborgen waren) langer, en de stempeltepels, waarmede hunne binvenzijde geheel is bezet, worden nu volkomen ontwikkel. De stijlen bevinden zich alsdan aan den ingang der bloem; hunne uiteinden zijn spiraalsgewijs gedraaid, waaruit volgt dat een insect,
dat zijne slurf in de bloem voert, de stempeltepels onvermijdelijk aanraakt. (MüLLER, Fert., blz. 129).

Volgens SCHULZ (Beiträge, I, 1888, blz. 11) komen ♀ bloemen (met korte meeldraden en ledige helmknoppen) en ♂ bloemen (met kleine stempels) voor. In de ♀ bloemen worden de stempels vaak eerst langen tijd na het ontluiken der bloem geslachtsrijp; de ♂ bloemen blijven langen tijd na het onttalen van het stuifmeel fris. De proterandrie der ♀ bloemen wordt hier dus in de ♂ en in de ♀ bloemen teruggevonden (vergelijk met Geranium molle). Eenslachtige bloemen hebben wij in ons gebied niet aangetroffen.

Uit deze lijst blijkt dat Lychnis Flos-Cuculi betrekkelijk veel vlinderbezoek ontvangt: door de diepte van haren honig houdt deze plant het midden tusschen de Alsideën (Stellaria, Cerastium, enz.) en de vlinderbloemige Sileneëën (b. v. Saponaria officinalis).

De plant is gewoonlijk tweehuizig; ♀ bloemen werden door MÜLLER en door SCHULZ aangetroffen.

De bloemen der ♂ planten zijn iets groter dan die der ♀. De meeldraden zijn van ongelijke lengte; zij komen niet buiten de kroonbuis te voorschijn als zij hun stuifmeel onttalen. De 5 binnenste meeldraden gaan na de 5 buitenste open. Vertoont veel ver-
scheidenheid wat de volgorde betreft waarin de meeldraden van iedereen krans opengaan. Honig afgescheiden door een ring aan de basis der meeldraden. Vruchtbeginsel ontbrekend of althans zeer onvolkomen.

In de bloemen der ♀ planten doen de meeldraden zich doorgaans voor in den vorm van kleine stompjes, op den honigaf scheidendenden ring die de basis van het vruchtbeginsel omgeeft. De 5 stijlen kijken 2-4 mill. buiten de kroonbuis uit; zij zijn aan hun top gedraaid en bijna tot aan hun voet met stempel tepels bezet. — Nooit bezoekers gezien. Vrij zeldzaam in ons gebied.

Fig. 70. — Lychnis vespertina (Melandrium album).
1. Vrouwelijke bloem.
2. Id. in de lengte doorgesneden: m, onvruchtbare meeldraden; — k, nagels der kroonbladen; — k', id., afgesneden. — v, vruchtbeginsel. (Naar de natuur, 11. 9. 08).

444. **Agrostemma Githago** L. — Paarse vlinderbloem (*Fl. purpureine lépidoptérophile*). — Kirchner, Flora, blz. 252. — Schulz, Beiträge I, 1888, blz. 11.

Dikwijls worden de stempels eerst geslachtsrijp nadat de helmknoppen afgevallen (of althans geledigd) zijn. In andere gevallen te gelijker tijd als de buitenste (episepale) helmknoppen, of te gelijker tijd als de binnenste (epipetale) helmknoppen : in deze beide gevallen is zelfbevruchting waarschijnlijk de regel. (Deze bijzonderheden zijn ontleend aan Schulz ; wij hebben zelf de bloemen niet nauwkeurig onderzocht, en wij weten niet of de hoogervermelde verschillen zich ook in ons gebied voordoen). — Nooit bezoekers gezien. Groeit op akkerland.

(2. — Alsineeeën).

445. **Spergularia rubra** Prsl. — Rose bloemen met half verborgen honig. — (*Fl. roses, à nectar partiellement caché*). — Schulz, Beiträge I, blz. 17.

Bezoekers : Allotrope Dipteren : *Empis Purio* Egger., 2 ♂ exemplaren, zuigend, 18. 5. 90, Bellem.
446. *Spergularia segetalis* Fenzl.

Niet onderzocht. Kroonblad wit, korter dan kelk. Waarschijnlijk is zelfbevruchting de regel, en behoort de bloem tot de klasse AB.

447. *Spergula arvensis* L. — Wit met half verborgen honig. — (*Blanc, à nectar partiellement cache*). — Kirchner, Flora, blz. 232; — Schulz, Beiträge I, blz. 15).

Bloemen homogaam, bij zonig weder wijd opengaande. Rondom de basis der meeldraden wordt honig afgescheiden. Er zijn soms 10 meeldraden voorhanden; gewoonlijk zijn echter enkele (of al de) meeldraden van den binnensten krans (epipetale) en zelfs somwijlen enkele (of al de) episepale meeldraden rudimentair of 0; aan den voet der rudimentaire meeldraden is de overeenkomstige honigklier doorgaans behouden. Met de reductie der meeldraden gaat eene vermindering der bloem hand in hand. Bij ongunstig weder blijft de bloem gesloten; alsdan grijpt spontane zelfbestuiving van binnen in de bloem plaats, *indien de meeldraden niet te kort zijn om hun stuifmeel op den stempel te brengen*. In dit geval blijft de bloem bij regenachtig weder onbevrucht.

Kelk 4bladig; kroon wit, 4bladig, de kroonbladen steeds korter dan de kelk, in meerdere of mindere mate gereduceerd (soms ontbrekend: var. *apetala*). Meeldraden 4, episepaal; honig wordt afgescheiden door verdikkingen aan de basis der meeldraden. Stempels 4. Volgens Schulz zijn de bloemen gewoonlijk homogaam. In den beginne staan de helmknoppen op een geringen afstand van de stempels; later worden de meeldraden een weinig naar binnen
gebogen, de helmknoppen worden daardoor met de stempels in aanraking gebracht, zoodat spontane zelfbestuiving onvermijdelijk is. Bij betrokken lucht blijven de bloemen gesloten, en zelfbestuiving heeft van binnen in de bloem plaats. In den beginne is kruising door insecten mogelijk.

Sagina apetala, die wij te Melle hebben onderzocht, stemt in bijna alle opzichten met de vorige beschrijving overeen, maar de bloemen zijn (bij helder, warm weder) een weinig proterandrisch: in den beginne zijn de 4 stempels tegen elkander aangedrukt, maar na korten tijd spreidenzij zich uiteen (fig. 71, 1).

\[\text{Fig. 71. — *Sagina apetala* (naar de natuur).}\]

1. Eerste stadium (stempels reeds uiteengespreid).
2. Tweede stadium (zelfbestuiving).

\(k\), kroonbladen. De kelk is weggelaten.

449. *Sagina ciliata* Fries stemt waarschijnlijk met de vorige soort overeen.

Als de bloem ontsnapt zijn de stempels kort, niet divergeerend, en gedeeltelijk onder de helmknoppen verborgen. De meeldraden zijn naar den stamper geneigd. Na eenigen tijd beginnen de meeldraden zich successievelijk van den stamper te verwijderen en tevens gaan hunne helmknoppen open. Zoodra al de helmknoppen opengegaan zijn beginnen de stempels zich te ontwikkelen: zij groeien zeer snel en nemen (na 12 uren) de gedaante aan van gekromde draden (te voren waren zij 3- à 4maal korter en niet gekromd).

In de zeeduinen (buiten de grenzen van ons gebied) hebben wij ♀ exemplaren (met geaborteerde, onvruchtbare meeldraden) aangetroffen.

451. *Holosteum umbellatum* L. — Wit met half verborgen honig (*Blanc à nectar partiellement caché*). — H. Müller, Weitere Beobachtungen, II.

Bloemen klein; gewoonlijk 3, soms 2, 4 of 5 (episepale) meeldraden. Aan de buitenzijde der basis van iederen meeldraad een groene honigklier; de honigklieren der ontbrekende meeldraden zijn doorgaans verdwenen (zie *Stellaria media*).

Proterandrisch. Als de bloemen ontsnappen hebben de stempels hunne definitieve lengte nog niet bereikt; zij staan rechtop (of iets naar binnen gebogen) naast elkander, met enkele stempeltepels aan hun top. De meeldraden zijn naar het midden der bloem gebogen en de met stuifmeel beladen helmknoppen bevinden zich boven de stempeltepels. Daarna spreiden de stempels zich uiteen, maar het stuifmeel blijft grootendeels aan de stempeltepels gekleefd, zoodat spontane zelfbestuiving bij uitblijvend insectenbezoek onvermijdelijk plaats grijpt. — Terwijl de stempels zich uiteenspreiden worden de meeldraden naar buiten gebogen; in het 1° stadium worden de helmknoppen, in het 2° de stempels door de bezoekers aangeraakt. In geval de bloem voldoende bezoek ontvangt is kruising verzekerd, daar vreemd stuifmeel ongetwijfeld (zooals bij vele andere soorten bewezen werd) boven het eigen stuifmeel de overhand heeft.

Volgens Schulz (Beiträge, I, blz. 19) komen ook ♀ planten, en exemplaren met ♀ en ♀ bloemen voor. Spontane zelfbestuiving is waarschijnlijk de regel.
452. **Arenaria serpyllifolia** L. — Als voren. (*Comme l'espèce précédente*). — Schulz, Beiträge, I, blz. 19; II, blz. 47. — Kirchner, Flora, blz. 754.

453. **Arenaria (Moehringia) trinervia**. — Als voren, (*Comme l'espèce précédente*). — Schulz, Beiträge II, blz. 46. — Müller, fertilis., blz. 136.

Honigklieren aan de buitenzijde der basis der epipetale meeldra-den, zoo sterk ontwikkeld dat zij elkander zijdelings aanraken en een ring vormen, waaruit de 5 epipetale meeldraden schijnbaar ontspringen. — Als de bloem ontluikt hebben de stempels reeds van elkander losgelaten, en keeren zij hunne tepelzijde naar boven, terwijl de helmknoppen nog gesloten zijn. In het 2e stadium gaan de helmknoppen der (lengere) episepale meeldraden open; in het 3e stadium ontlasten de epipetale meeldraden hun stuifmeel, terwijl de stempels nog friisch uitzien. De 10 meeldraden buigen zich einde-lijk naar binnen, en aldus worden de helmknoppen met de stempels in aanraking gebracht (spont. zelfbest.). In vele gevallen zijn de buitenste meeldraden zeer kort, met verkrompen, ledige helmknoppen. (Müller, loc. cit.) — Volgens Schulz zijn de bloemen doorgaans homo-gaam, soms zwak proterandrisch of zwak proterogynisch. De episepale meeldraden buigen zich in het 1e stadium naar binnen (spontane zelfbestuiving); daarna ontlasten de epipetale meeldraden, die door-gaans rechtovereind staan, op hunne beurt hun stuifmeel, en de
episepale verwijderen zich gewoonlijk een weinig van het centrum.

Uit deze beschrijvingen blijkt dat de bloemen zich niet altijd op dezelfde wijze gedragen. Uitwendige invloeden (licht, temperatuur, enz.) spelen hier ongetwijfeld eene rol.

Bezoekers: Allotrope Dipteren: Empis florisomna Löw, zgd., 1 exempl., 12. 5. 89, Gentbrugge.

Aan de basis en aan de buitenzijde van iedereen episepalen meeldraad een gele klier, die van boven een honigafscheidend kuiltje vertoont. In het 1° stadium worden de 5 episepale meeldraden naar het midden gebogen, hunne helmknoppen gaan open en keeren hunne stuifmezelijke meer of minder naar boven. De 3 stijlen zijn nog niet volkomen ontwikkeld, naar binnen gebogen, met de stempelzijde naar onderen gekeerd. In het 2° stadium worden de episepale meeldraden naar buiten gebogen; de epipetale worden naar binnen gebogen en ontlasten hun stuifmeel. De stijlen staan nu rechtop, met de stempelzijde naar binnen gekeerd. In het derde stadium zijn de 3 stijlen volkomen ontwikkeld en uitgespreid, en de helmknoppen zijn doorgaans geledigd of afgevallen. Kruising door insecten is dus verzekerd. In bloemen die in een kamer werden gehouden, greep zelfbestuiving vaak plaats, daar de uiteinden der stempels dikwijls in aanraking kwamen met epipetale helmknoppen die nog niet geledigd waren, en stuifmeel viel daarenboven vaak uit de helmknoppen op de stempels (Müller, loc. cit.)

Volgens Schulz zijn de bloemen in wouden bij Halie a. S. soms bijna homogaam (zelfbestuiving is alsdan onvermijdelijk); de epipetale meeldraden buigen zich niet naar binnen als zij opengaen, en hunne helmknoppen blijven vaak intrors. Er zijn exemplaren met kleinere ♀ bloemen: in deze bloemen zijn de meeldraden kort, de helmknoppen ledig. Te Melle hebben wij exemplaren aangetroffen, waarin 5 van de 10 meeldraden kort en onvruchtbaar waren.

Bezoekers: Hemitrope Dipteren: Eristalis arbustorum L., 22. 5. 89, Meirelbeke. E. nemorum L., id. Id. Syrphus Ribesii L., 17. 5. 85, Melle. Melithreptus dispar

Gynodioecisch. ♂ Bloemen kleiner dan bij de vorige soort. Honigklieren rondom de basis der episepale meeldraden, groen. In het *eerste tijdperk* worden de episepale meeldraden naar het centrum gebogen en hunne helmknoppen gaan open; de epipetale meeldraden zijn naar buiten gericht en hunne helmknoppen zijn gesloten; de stijlen zijn kort, onvolkomen ontwikkeld en naar binnen omgebogen (zoals bij No 454). In het tweede tijdperk gaan de helmknoppen der epipet. meeldraden open, maar deze meeldraden blijven naar buiten gericht (bij No 454 is het vaak anders). Als deze meeldraden verslensen (*derde tijdperk*) worden de stijlen langer, uitgespreid en aan hun top omgebogen.

Kruising door insecten wordt door proterandrie bevorderd, maar bij uitblijvend insectenbezoek is zelfbestuiving mogelijk, daar de
stempels met de helmknoppen in aanraking komen als zij zich uitspreiden (Müller).

♀ planten algemeen in ons gebied, met kleinere bloemen: meeldraden met kleine ledige helmknoppen. — Soms zijn enkele meeldraden geaborteerd, de overige normaal.

Planten met ♀ en ♀ bloemen (door Schulz vermeld) hebben wij niet aangetroffen.

De 3 tijdperken van den bloei zijn niet altijd zoo duidelijkonderscheiden als hooger beschreven wordt.

456. **Stellaria glauca** With. — Als voren (Comme l’espèce précédente). Gelijk op N° 454.

Bezoekers: Alloatrope Dipteren: Siphona geniculata Deg., 25. 9. 88, Roygem (Gent).

457. **Stellaria uliginosa** Ehrh. — Als voren (Comme les espèces précédentes). Mac Leod. Arch. de Biologie, VII, 1886, blz. 138. — Schulz, Beiträge, I, blz. 22.

Bloem klein; kroon korter dan kelk. Honigklieren zooals bij de vorige soorten Proterandrisch (volgens Schulz: proterandrie meer of minder volkomen; — bloem soms homogaam). In het eerste tijdperk zijn de stijlen doorgaans onvolkomen ontwikkeld; de episepale meeldraden staan recht overeind of neigen iets naar buiten en onlasten hun stuifmeel; de epipet. meeldraden zijn naar buiten
gericht. Daarna gaan de epipetale helmknoppen open, en eindelijk bereiken de stempels hun definitieve lengte (dit kan reeds vroeger geschied zijn) en worden zij uiteengepreide: alsdan komen zij in aanraking met de helmknoppen der episepale meeldraden, en zelfbevruchting grijpt aldus plaats. Bij ’t einde van den bloei—alhans in vele gevallen—worden de episepale meeldraden (soms al de meeldraden ?) naar het centrum geneigd: spontane zelfbevruchting is alsdan onvermijdelijk, te meer daar deze beweging soms plaats grijpt voor de volkomen ontwikkeling der stempels. — Deze bloem schijnt zich verschillend te gedragen naar gelang van de weersgesteldheid, in ’t bijzonder wat de bewegingen der meeldraden betreft.

Bezoekers: Allotrope Dipteren: Empis Purio Egger, o*, 18. 5. 90, Bellem. (Deze bloem wordt schier nooit bezocht).

Deze plant vertoont veel verscheidenheid. Tusschen Melle en Meirelbeke (bij Gent) komt een grootbloemige vorm met 10 meeldraden in boschden voor (? var. neglecta Weihe)

De vorm die gewoonlijk op akkerland, aan wegen, enz. voorkomt, heeft kleine of zeer kleine bloempjes, gewoonlijk met 3-5 meeldraden. Epipetale meeldraden steeds geaborteerd, vaak volkomen ontbrekend. De episepale meeldraden, die de honigklieren aan de buitenzijde hunner basis dragen, beginnen slechts te verdwijnen als de 5 epipetale ontbreken; er blijven bijna steeds 3 episepale meeldraden behouden; de klieren der verdwenen meeldraden zijn (volgens Müller) steeds voorhanden (zie N° 451) (1). Als de bloem ontluikt zijn de stempels rechtovereindstaande met iets divergerende toppen, en de eerste meeldraad gaat open. Daarna komen de 2e en 3e meeldraad aan de beurt, en tevens worden de stempels uiteengepreide. Door insectenbezoek kan zelfbevruchting evengoed als

(1) Volgens Schulz zijn de honigklieren der geaborteerde episepale meeldraden daarentegen onvolkomen of verdwenen. Dit was ook met onze exemplaren (Melle-bij-Gent, Mei 1894) het geval.
kruising plaats grijpen. De helmknoppen komen met de stempels in aanraking (althans als de bloem zich sluit bij 't einde van den bloei) en zelfbestuiving is onvermijdelijk. (Zie hooger, Bot. Jaarb., V, blz. 233).

Deze plant bloeit gedurende bijna het geheele jaar en draagt overvloedig zaad. In de duinen komt een variëteit met niet opengaande, kroonloze of bijna kroonloze bloemen voor (var. apetala).

Bezoekers : 1e var. neglecta ? Weihe : Hemitrope Dipteren : *Platycheirus scutatus* Meig., 18. 5. 89, Melle. — Allotrope Dipteren : *Anthomyia aestiva* Meig., 1. 5. 89, Id. *Ocydromia gabricula* Fall. (Empide), 18. 5. 89, Id.

De bloemen gelijken op Stellaria holostea wat de honigklieren, de volgorde der ontwikkeling van de episepale en de epipetale meeldraden en van de stempels betreft. Ook door haar voorkomen gelijken de bloemen zoozeer op die van St. holostea, dat studenten in de plantenkunde de beide soorten plegen te verwarren. De bloemen gaan minder wijd open dan bij de genoemde Stellaria.

Bezoekers: Korttongige bijen: *Andrena Gwynana* K., ♀, 6. 5. 88, Heusden. *Halictus Morio* F., 2 ♀, id. Id. — Lepidopteren: *Pieris Brassicae*, 22. 5. 89, Meirelbeke.— Coleopteren: *Amara familiaris* Duftschmd, tracht de honigklieren te bereiken, zeer waarschijnlijk zuigend, 1. 5. 88, Ledeberg (zie *Stellaria media*, No 458).

Bloemen wit, zeer klein. ♀ en ♀ exemplaren.
463. Cerastium aquaticum L. — Als voren (Comme

![Diagram of Cerastium aquaticum]

Fig. 72. — *Cerastium aquaticum.* — (Naar de natuur).

1. ♀ bloem, eerste stadium: *kl*, episepale meeldraden, met geopende helmknoppen en honigklieren aan hun voet; — *kr*, epipetale meeldraden (*o, o* geopend; *d, d, d* gesloten); — de stempels zijn nog niet geslachtsrijp.

2. Id., tweede stadium: *kl* en *kr* als voren; — stempels uiteengespreid.

4. Id., ♀ bloem.

De ♀ bloemen zijn proterandrisch, evenals bij Stellaria holostea.

In het eerste tijdperk zijn de stijlen klein en iets naar binnen gebogen; de epipetale meeldraden gaan open en staan in het midden der bloem, terwijl de epipetale meeldraden naar buiten zijn gericht. In het tweede tijdperk zijn de epipetale meeldraden naar buiten gericht; de epipetale zijn opengegaan en nader bij het centrum gekomen. De stempels spreiden zich (volgens Schulz) doorgaans uiteen nadat de helmknoppen zijn afgevallen: in de bloem, in fig. 72,2 afgebeeld, was dit niet het geval. Een rechtstreeksche aanraking tusschen helmknoppen en stempels hebben wij echter nooit kunnen constateeren.

♀ bloemen zeldzaam; zij zijn kleiner, met korte helmdragers en bleke, niet opengaaende helmknoppen; de stijlen zijn iets langer en meer uiteengespreid, met grootere stempeltepels dan in de ♀ bloemen. Wordt weinig bezocht. — Volgens Müller zouden er soms 4 of 3 stijlen zijn; dergelijke gevallen hebben wij nooit aangetroffen.

Bloemen 4tallig. Doorgaans zijn de epipetale meeldraden alleen ontwikkeld; de epipetale ontbreken, of zij zijn ten getale van 1, 2 of zelfs alle 4 voorhanden. Stempels 4 (soms 3 of 5), reeds in den knop ontwikkeld; als de bloem ontluikt staan de epipetale meeldraden rechtovereind of zelfs iets naar buiten geneigd; de helmknoppen
raken zelden de stempels aan. In al de onderzochte gevallen waren de epipetale meeldraden weinig of niet langer dan het vruchtbeginsel: hunne helmknoppen komen dus slechts zelden met de stempels in aanraking. Evenals bij vele andere Alsineëën worden de bloemen 's nachts en bij ongunstig weder gesloten: zelfbestuiving is alsdan onvermijdelijk, daar de epipetale helmknoppen tegen de stempels aangedrukt worden. Indien het weder voortdurend ongunstig blijft, ontluiken de bloemen niet, en zelfbevruchting grijpt van binnen in den knop plaats. Honigklieren aan den voet der episep. meeldraden. (SCHULZ, loc. cit.)

FAM. LII. PARONYCHIACEÆEN.

465. Illecebrum verticillatum L. —

Naar HILDEBRANDT (Geschlechtervertheillung, 1867, blz. 77) zouden de ondergedompelde bloemen niet opengaen en zich zelf bevruchten. Wij hebben nooit ondergedompelde bloemen aangetroffen. Illecebrum komt op sommige plaatsen (Meirelbeke, Bellem, enz.) op akkerland overvloedig voor: de buigzame stengels liggen op den grond, de bloempjes zijn klein en talrijk, met 5 witte vlezige kelkbladen, en blijven (overdag en 's nachts, bij gunstig en bij ongunstig weder) steeds gesloten.

466. Scleranthus annuus L. — Groenachtig met blootliggenden honig. (Verdâtre à nectar librement expose).

Bloemen weinig in 't oog springend. Kelkbladen groen. Vertoont veel verscheidenheid wat het getal der meeldraden betreft. Theoretisch zijn er 5 epipetale en 5 episepale meeldraden, die op een vlezige ring aan de keel der urnvormige kelkbuis (waarin het vruchtbeginsel weggedoken is), aan den voet der dekslippen, rondom de basis der 2 stijlen, ingeplant zijn.

Fam. LIII. Portulacaceaeën.

467. Montia fontana L

Kroon 1bladig, 5slippig, gespleten, zeer klein, grootendeels in de kelkslippen weggedoken. De bloemen gaan zelden (bij zeer zonnig weder) volkomen open. Zelfbevruchten is de regel.

Fam. LIV. Ranunculaceaeën.

468. Thalictrum flavum L. — Gele pollenbloem, zonder honig: (Fleur jaune, à pollen.) — Müller, Fertil., blz. 70.

Volgens Schulz (Beiträge, II, blz. 2) is Th. minus in Zuid-Tirol homogaam of zeer zwak proterogynisch. Spontane zelfbestuiving zou vaak plaats grijpen.

469. Anemone nemorosa L. — Witte pollenbloem. — (Fl. blanche, à pollen.) — Müller, Fertil., blz. 72.
Bloemen zonder honig; kelkbladen wit of roze paars. Kroon ontbreekt. Als de bloem ontluikt zijn de stempels onder de helmknoppen verborgen, maar weldra worden zij ontbloeit, en gedurende het grootste gedeelte van den bloeitijd zijn helmknoppen en stempels beide geslachtsrijp. Insecten kunnen zelfbestuiving even goed als kruisbestuiving bewerkstelligen. Daar de bloem meer of minder overhangend is, kan stuifmeel op de stempels vallen, maar men weet niet of de spontane zelfbestuiving, die aldus plaats grijpt, door vruchtbaarheid wordt gevolgd. — De bloem is zeer in 't oog springend: zij wordt nochtans, wegens het ontploffen aan honig, betrekkelijk weinig bezocht.

Bloemen klein. Kelkbladen 5, gespoord, afvallend. Als de bloem ontluikt zijn de smalle platen der 5 kroonbladen naar buiten afstaande: de nagel van ieder kroonblad is rolrand, en heeft de gedaante van een buisvormig honigbakje, waarin een druppel blootliggende honig
afgescheiden wordt. De meeldraden, (doorgaans ten getale van 5-15; Oudemans) staan rondom de stampers, die in 't centrum der bloem tot een kegel vereenigd zijn, en zijn tegen dezen kegel aangedrukt. De helmknoppen gaan aan weerszijden met eene spleet open en worden weldra aan hunne buitenzijde met stuifmeel bedekt. Kleine insecten, die in de bloem rondkruipen, komen met de helmknoppen en met de stempels in aanraking, en kunnen aldus kruisbevruchting en ook zelfbevruchting bewerkstelligen. De bloem wordt echter weinig bezocht, en spontane zelfbestuiving schijnt de regel te zijn: de kegel, door de stempels gevormd, wordt langer en langer, en aldus worden de stempels de eene na de andere (van onderen naar boven toe) voorbij de helmknoppen geschoven. Ieder stempel wordt aldus op zijne beurt in aanraking gebracht met het stuifmeel dat aan de randen der helmknoppen kleeft, en kan een of meerdere stuifmeelkorrels lijmen. Daarenboven kan stuifmeel uit de helmknoppen vallen op de stempels die zich aan de basis van den kegel bevinden en die derhalve niet voorbijgeschoven worden. De stempels die zich aan den top van den kegel bevinden, en die van den beginne af boven de helmknoppen staan, ontsnappen alleen aan de zelfbestuiving. De meeste bezoekers zijn (volgens Müller)

![Diagram](image-url)

Fig. 73. — Myosurus minimus (Naar de natuur).

1. Bloem (klein exemplaar). — k, kelkblad, met zijne spoor s, — kr, kroonblad. — m, meeldraad, gesloten. — m', id. opengesprongen.— st, stampers.

2. Bovenste gedeelte van een kroonblad. — a b, plaat.
kleine Dipteren. — De bloem vertoont veel verscheidenheid wat hare grootte en het getal der bloemdeelen (kelkbladen, kroonbladen en meeldraden) betreft.

Deze vier soorten stemmen in hoofdzaak met elkander overeen. De voet van ieder kroonblad draagt een honigbakje, dat door een klein schubbetje wordt bedekt (zoals in fig. 74,2). Als de bloem ontluikt zijn de meeldraden in het midden samengebogen; de stempels, die in 't centrum der bloem tot een kogeltje vereenigd zijn, worden door de binnenste meeldraden volkomen of bijna volkomen verborgen. De helmknoppen der buitenste meeldraden gaan aan de buitenzijde open, en tevens spreiden die meeldraden zich uiteen (zie fig. 74): insecten, die den honig willen bereiken, en tusschen de kroonbladen en de meeldraden hun weg zoeken, worden aldus met stuifmeel bepoederd. Het opengaan der helmknoppen schrijdt nu van buiten naar binnen voort; de stempels, die in den beginne nog niet volkomen ontwikkeld waren, worden geslachtsrijp alvorens de binnenste helmknoppen opengaan. Als deze aan de beurt komen en zich naar buiten uitspreiden, worden de stempels ontbloot. Indien insecten, die met vreemd stuifmeel beladen zijn, zich op de stempels (in 't centrum der bloem) nederzetten alvorens zij de helmknoppen derzelve bloem hebben aangeraakt, zal kruising bijna onvermijdelijk plaats grijpen. Het ligt echter voor de hand, dat zelfbevruchting door insecten geenszins uitgesloten is. Bij uitblijvend insectenbezoek kan zelfbestuiving plaats grijpen, daar sommige der buitenste stempels vaak in aanraking komen met het stuifmeel van sommige der binnenste meeldraden.

Ranunculus Flammula heeft kleinere bloemen dan **R. acris**, **bulbosus** en **repens** De 3 laatstgenoemde soorten gelijken zoozeer op elkander dat wij, naar 't voorbeeld van H. Müller, hunne bezoekers tot eene lijst hebben vereenigd.

Bezoekers: 1° **R. Flammula**: Korttongige Bijen: **Halictus punctulatus** K., ♀, 22. 7. 86, Bellem. — Hemitrope

Fig. 74. — Ranunculus Philonotis (Naar de natuur).
1. Eene bloem: de buitenste meeldraden hebben zich reeds uiteengespred en hunne helmknoppen zijn open; de binnenste meeldraden zijn nog samengebogen, met gesloten helmknoppen. Stempels geslachtsrijp.
2. Kroonblad: h, honigbakje, door eene schub bedekt.
475. **Ranunculus Philonotis** Ehrh. — Als voren.
(Comme les espèces précédentes.)
Stemt in hoofdzaak met de vorige soorten overeen. Bloemen doorgaans bleek.

Bezoekers: Hemitrope Dipteren: *Syrphus balleatus* Deg., 10. 9. 91, Nevel. *Melanostoma mellina* L., id. Id. — Allotrope Dipteren: *Anthomyia aestiva* Meig., id. Id. *Hylemyia cinerella* Meig., 7. 6. 91, Id. — Allotrope Hymenopteren: *Cephus pygmaeus* L., ♂ en ♀ gepaard, 6. 6. 91, Id.

476. **Ranunculus lingua** L. — Als voren. (Comme les espèces précédentes).

Fig. 75. — Ranunculus sceleratus (Naar de natuur).
2. Kroonblad van dezelfde bloem, met zijn honigbakje.
3 en 4. Onderst gedeelte van twee kroonbladen van dezelfde bloem, met honigbakjes.

Batrachium aquatile (Naar de natuur).
5 Onderst gedeelte van een kroonblad met een honigbakje.
Bloemen doorgaans vrij groot en weinig talrijk; groeit in of aan het water.

478. *Ranunculus sceleratus* L. — Als voren. (*Comme les espèces précédentes*).

Bloemen klein. Vertoont veel verscheidenheid wat de grootte der bloemen en de relatieve grootte der kroonbladen betreft. In de bloem, die wij in fig. 75 hebben afgebeeld, (7 Aug. 1892, bij regenaar weder; zeer krachtig exemplaar, Gent.) waren de kelkbladen teruggeslagen; de kroonbladen waren horizontaal afstaande, aan hunne basis door breede tusschenruimten gescheiden en betrekkelijk klein. De stampers waren in 't midden der bloem vereenigd tot een meer of minder cylindrisch hoofdje. De meeldraden waren bijna rechtstredende, tegen de stampers aangedrukt. Wij vermoeden dat zelfbevruchting hier nagenoeg op dezelfde wijze als bij *Myosurus* (zie Nr 470) plaats grijpt, want de stampercylinder is bij 't eind van den bloei langer dan in den beginne. De vorm der honigbakjes vertoont veel verscheidenheid, zooals blijkt uit fig. 75, 2, 3, 4. De honigbakjes worden *niet* door een schubbetje bedekt (vergelijk met fig. 74, 2). Wordt weinig bezocht. Draagt regelmatig zaad. Moeirasplant (० १०२१).

Bezoekers: Hemitrope Dipterena: *Melanostoma mellynia* L, 6. 7. 89, Melle. — Allotrope Dipterena: *Anthomyia aestiva* Meig., 18. 5. 89, Id.

479. *Ranunculus arvensis* L. — Als voren (*Comme les espèces précédentes*) — Kirchner, Neue Beobacht., 1886, blz. 20.

Bloemen zwavelgeel, klein (4-10 mill.); schubben aan den voet der kroonbladen betrekkelijk groot. Als de bloem ontluikt zijn de
stempels door de naar binnen gebogen helmknoppen vaak geheel verborgen (zie N° 471). Terwijl de helmknoppen beginnen naar buiten en naar boven open te gaan nemen de stijlen aan lengte toe. Door den wederzijdschen stand van helmknoppen en stempels is spontane zelfbestuiving bijna onmogelijk.

Er komen echter bloemen voor, waarin de helmknoppen reeds opengegaan zijn, als de stempels nog op een lager niveau staan: in dergelijke bloemen kan spontane zelfbestuiving plaats grijpen. Later wordt dit onmogelijk, daar de stempels zich boven de helmknoppen verheffen, en daar de bloem rechtopstaat.

Meeldraden doorgaans 10-13; vaak zijn er enige onvolkomen. Soms zijn zij alle mislukt: alsdan is de bloem zuiver ♀. Deze ♀ bloemen zijn kleiner dan de ♂, en als zij opengaan kijken de stempels reeds buiten de kroon uit. — Wordt weinig bezocht.

Hoffmann (Bot. Zeit., 1884, blz. 244) maakt gewag van zuiver proterandrische bloemen.

Opmerking: De monocarpische soorten van het geslacht Ranunculus (scelerat., Philon., arvensis) hebben kleine of bleke bloemen, en worden weinig bezocht. De polycarpische soorten hebben grootere en zuivergele bloemen; zij worden veel bezocht, uitgenomen Lingua en flammula, die beide in of aan het water groeien. (Over het insectenbezoek van R. auricomus hebben wij geen waarnemingen kunnen doen; door Müller worden echter 12 verschillende bezoekers vermeld).

480. Batrachium aquatile en verwante soorten en varieteiten. — Wit met half verborgen honig. (Blanc, à nectar partiellement caché). Müller, Fertilis., blz. 74, en Weit. Beob., I; Kirchner, Neue Beob., 1886, blz. 20.

Bloemen wit, in 't midden geel. Middellijn doorgaans 20-27 mill., maar ook kleiner, soms zeer klein (3-4 mill.). Het getal der meeldraden is evenredig aan de grootte der kroon (in de kleinste bloemen zijn er slechts 8-12). Als de bloem ontluikt gaan de helmknoppen
successievelijk open; zij worden geheel met stuifmeel bedekt. Tevens worden de stempels geslachtsrijp. Spontane zelfbestuiving grijpt dikwijls plaats.

Ieder kroonhlad draagt een honigbakje aan zijn voet (zie Almqvist, Bot. Centralbl., XXXVIII, blz. 662). Ieder honigbakje heeft de gedaante van eene trechtersvormige holte (fig. 75,5), waarvan de ingang niet van eene schub voorzien is (vergelijk met fig. 74,2) en dus wijd openstaat, en waarin honig afgescheiden wordt. In deze honigbakjes treft men soms stuifmeelkorrels aan, die daarin ongetwijfeld achtergelaten werden door insecten, die daarin monddeelen met stuifmeel beladen waren.

In ondiepe wateren zijn de bloemen soms zoo talrijk, dat ze bijna de geheele oppervlakte bedekken. In diepere wateren blijven de bloemen ondergedompeld: alsdan gaan zij niet open, en de bevruchting grijpt van binnen in den bloemknop plaats.

Bezoekers: Langtongige Bijen: *Apis*, 19. 5. 89, Gentbrugge. *Megachile circumcincta* K., o*, id. Id. — Hemitrope Dipteren: *Eristalis arbustorum* L., talrijk, id. Id.

481. *Ficaria ranunculoides* Moench. — Geel, met half verborgen honig. (Jaune, à nectar partiellement caché).

— Müller, Fertilis., blz. 78.

482. *Caltha palustris* L. — Geel, met half verborgen honig (*Jaune, à nectar partiellement caché*). — Müller, Fertilis., blz. 79. — Schulz, Beiträge, II, blz 179.

Ieder vruchtblad vertoont aan zijne basis en aan weerszijden een ondiepe honigafheffende indeuking. In iedere ruimte tusschen twee naast elkander gelegen vruchtbladen worden aldus twee honigdruppels afgescheiden: deze beide druppels vloeien vaak samen. De helmknoppen en de stempels zijn te gelijkertijd geslachtsrijp; kruising wordt (evenals bij *Ranunculus*) bevorderd door de omstandighed dat de helmknoppen hun stuifmeel aan de buitenzijde onlasten, en dat de buitenste voor de binnenste opengaan. De middellijn der bloem bedraagt soms 40 mm. — Moerasplant. — In Tirol (volgens Schulz) en in Frankrijk (volgens Lecocq) komen exemplaren voor, waarvan de bloemen alle of ten deele onvolkomen of geen stampers hebben.

Fam. LV. Nymphaeaceeën.

De groote bloemen blijven van 7 ure's morgens tot 4-5 ure's namiddags open. De bloembladen en de meeldraden zijn *niet in*
kransen, maar in eene spiraal gezeten. De talrijke bloembladen nemen van buiten naar binnen in kleinte toe, en gaan langzaam over in de nog talrijker meeldraden, die eveneens van buiten naar binnen korter en smaller worden. De helmknoppen zijn sikkelvormig gebogen; hunne convexe zijde is naar het midden der bloem gekeerd, en gaat met twee overlangsche spletten open. De helmdragers zijn eveneens sikkelvormig gebogen, maar met de convexe zijde naar buiten; en daar zij van binnen naar buiten in lengte toenemen, bevinden zich (in vele gevallen) de gezamenlijke helmknoppen boven den stempel. — Stempel in 't centrum trechertvormig, met 12-18 straalsgewijze groeven. De straalsgewijze ribben, die tusschen deze groeven begrepen zijn, eindigen aan den omtrek ieder in een stomp, naar boven gericht en tand. In 't midden van den trechter zijn de verheven lijsten met elkander versmolten, en in 't centrum verheft zich een kleine spits. De verheven lijsten zijn dicht bezet met gele stempeltепels, die reeds geslachtsrijp zijn als de bloem ontluikt, en, volgens Schulz, ten minste gedurende eenige dagen frisch blijven. De helmknoppen beginnen gewoonlijk reeds den eersten dag hun stuifmeel te ontlasten, en daar zij van binnen naar buiten opengaan (bij Ranunculus is het anders om) is spontane zelfbestuiving onvermijdelijk. Bloemen volkomen (Schulz) of bijna volkomen (Knuth, Blumen und Insekten enz., 1894) van honig verstoken, zwak geurend; weinig bezocht; zelfvruchtbaar.

Bezoekers: Coleopteren: Donacia, Mariakerke (Gent), Juli 1874.

Kelkbladen 5 (zelden 6-8): hunne buitenzijde groen, randen en binnenzijde geel. Kroonbladen veel kleiner, doorgaans 10-15, geel, lepelvormig, verdikt; de honig wordt (in kleine hoeveelheid) door hunne achterzijde afgescheiden. Honig geurend. — De meeldraden nemen van buiten naar binnen in grootte toe (bij Nr 483 is het anders om). In den beginne, als de helmknoppen nog gesloten zijn, staan de meeldraden rondom de stempelzuil samengedrongen; de uiteinden
hunner helmknoppen vormen samen een kegel, waarvan de afgeknottede top door de (in 't centrum trechertervormige) stempelschijf ingenomen wordt: de rand van de stempelschijf steekt boven de binnenste helmknoppen als een daklijst uit. De helmdragers (vooral de binnenste) zijn concaaf naar binnen gekromd, de helmknoppen daarentegen concaaf naar buiten. Het opengaan der helmknoppen schrijdt langzaam van buiten naar binnen voort. Iedere helmknop gaat aan de binnenzijde open, en tevens wordt de meeldraad naar buiten geneigd. Later worden de meeldraden naar buiten gekromd, zoodanig dat de helmknoppen der buitenste meeldraden met de basis der horizontaal afstaande kroonbladen in aanraking komen. — De stempels hebben de gedaante van 12-20 straalsgewijze strepen, die noch het centrum noch den rand der trechertervormige stempelschijf bereiken. Zij schijnen bij het ontluiken der bloem geslachtsrijp te zijn en gedurende den geheel bloei bloei frisch te blijven. Ieder stempel heeft een overlans loopende sleuf; zijn oppervlakte is betrekkelijk glad. Door den wederzijdschen stand der helmknoppen en der stempels is spontane zelfbestuiving onmogelijk. Door insecten wordt waarschijnlijk in de meeste gevallen zelfbestuiving, somwijlen kruisbestuiving bewerkstelligd. Stuifmeelkorrels ongeveer 100µ lang, van stekeltjes voorzien.

Fam. LVI. Papaveraceae.

Bloem zonder honig, rood, met een zwarte vlek aan den voet van ieder kroonblad. Bovenvlakte van den stamper met een aantal straalsgewijze stempelstreepen. Meeldraden talrijk, rondom den stempel staande, voor het ontluiken der bloem opengaaende. De helmknoppen worden geheel met stuifmeel bedekt; een gedeelte van het stuifmeel komt in aanraking met de buitenste uiteinden der stempelstralen (maar niet met de centrale deelen van de stempelschijf). Spontane zelfbestuiving is aldus verzekerd, volgens Kirchner blijft die bestuiving echter zonder gevolg. Insecten die de bloem
wegens haar stuifmeel bezoeken, bewerkstelligen gewoonlijk kruisbevruchtung, daar zij zich, in de meeste gevallen, voor eerst op den stempel nederzetten en daarna de helmknopen aanraken.

Exemplaren te Melle onderzocht, 24. 5. 84, akkerland: de twee buitenste kroonbladen 8 cm. breed en 4 à 5 cm. lang; de 2 binnenste kroonbladen nagenoeg evenlang als de buitenste, maar minder breed. De zwarte vlekken aan de basis der kroonbladen in de meeste bloemen zeer duidelijk, in enkele bloemen ontbreken. Helmdragers draadvormig, de binnenste veel langer dan de buitenste. Stempelstralen grijisachtig; ruimten tusschen de stempelstralen geelachtig groen. In de volkomen ontloten bloem staan de stempels op een lager niveau dan de helmknopen der lange meeldraden, die er onmiddellijk om heen staan: de uiteinden der stempels kunnen dus stuifmeel ontvangen. In den bloemknop zijn de meeldraden boven den stempel samengebogen, en deze schijnt iets lager te staan dan in de ontloten bloemen. Daar de helmknopen van binnen in den knop opengaan worden de stempels (ook in het centrum der stempelschijf, althans in sommige bloemen), met stuifmeel bepoederd.

Bezoekers: Hemitrope Dipteren: Syrphus batteatus, 3. 8. 85, Melle; 8-10. 9. 91, Nevel. S. Ribesii L., 8. 9. 91, Nevel. Melanostoma mellina L., id. Id.

486. Papaver Argemone L. — Als voren. (Comme l’espèce précédente). — Müller, fertilis., blz. 94.

Stemt in hoofdzaak met de vorige soort overeen, maar het gedeelte der stempels, dat kan zelfbestoven worden, is kleiner (Müller).

Exemplaren te Melle onderzocht, 24. 5. 94, akkerland. Vertoont veel verscheidenheid wat de grootte der bloemen betreft. Kroonbladen soms 2,5 cm. lang, in andere gevallen minder dan 1 cm. Zwarte vlekken ontbreken nooit. Helmdraden naar boven geleidelijk verbred, aan den top tot een zeer dun draadje versmald. Buitenste meeldraden korter dan de binnenste, maar het verschil is minder sterk uitgesproken dan bij P. Rhaeas. In den bloemknop is de stamper merkelijk korter dan de langste meeldraden. De helmknopen gaan in den bloemknop open, als de meeldraden nog boven de stempels samengebogen en tegen deze aangedrukt zijn. Later wordt de stamper langer: in de volkomen ontloten bloem staat de stempel iets boven de helmknopen, ofwel op gelijke hoogte als
deze, of iets lager. — Het heeft ons toegeschenen dat bij zeer zwakke exemplaren, die gewoonlijk slechts één kleine bloem dragen, de stempels (in de ontloken bloem) merkelijk lager dan de helmknoppen staan, waardoor de kansen op kruising door insecten veel verminderd worden. Bij dergelijke dwergexemplaren zijn de meeldraden en de stempelstralen minder talrijk, en de plant vertoont tijdens den bloei duidelijke teekens van uitputting (geel worden der bladen, enz.)

487. **Papaver dubium** L. — Als voren. — *(Comme l'espèce précédente).* — Müller, Fertilis., blz. 94.

Stemt in hoofdzaak met Nr 485 overeen; gewoonlijk zonder zwarte vlekken aan den voet der kroonbladen. Stempels enkele millimeters boven de helmknoppen: zelfbestuiving is dus slechts mogelijk als de bloem overhangt.

Exemplaren te Melle onderzocht, 25. 4. 94, op denzelfden akker als *P. Rhaeas:* kroonbladen 3-4 cm. lang en ruim evenzoo breed, de 2 buitenste breder dan de binnenste. De zwarte vlekken aan de basis der kroonbaden ontbreken of zijn onduidelijk. Helmdragers draadvormig, de binnenste langer dan de buitenste. Stempelstralen bleek geelachtig groen, de ruimten tusschen de stralen groen. De helmknoppen gaan in den bloemknop open, maar de stempel staat iets hooger dan de helmknoppen, waardoor spontane zelfbestuiving in den bloemknop verhinderd wordt.

Op een andere, minder vruchtbare groeiplaats (Melle, 25. 4. 94) hebben wij kleinbloemige exemplaren aangetroffen met meeldraden die slechts half zo lang waren als de stamper (spontane zelfbestuiving onmogelijk).

Bezoekers: *Kleine Vliegjes,* 29. 5. 94, Melle.

488. **Chelidonium majus** L. — Gele pollenbloem. — *(Fl. jaune, à pollen).* — Müller, Fertilis., blz 94.

Bij zonnig weder zijn de helmknoppen en de stempel geslachtsrijp als de bloem ontluikt. De stempel is een weinig boven de helmknoppen gelegen; door insecten kan zelf- en kruisbestuiving bewerkstelligd worden. Bij ongunstig weder blijft de bloem langer gesloten; de stempels gaan alsdan van binnen in den knop open, en zelfbestuiving grijpt aldus plaats. Zonder honig.

Bezoekers: Langtongige bijen: *Apis,* 5-8-23. 5. 86,

Fam. LVII. Fumariaceëen.

Corydalis solida Sm. — Roseroode of witte bijenbloem. *(Fl. mérittophile rouge-pâle ou blanche).*

Deze soort is misschien niet inheemsch in ons gebied ; door hare bevruchting stemt zij met *C. cava* volkomen overeen. Wij ontleenen de volgende beknopte beschrijving van *C. cava* grootendeels aan *Kirchner, Flora*, blz. 280 (Zie ook verder, Nr 489) :

(1) Deze waarneming levert o. i. een argument tegen de theorie der honigmerken : *Chelidonium* heeft immers noch honigmerken, noch honig, en nochtans tracht *Rhinгиa*, zoodra zij zich op de bloem nedergezet heeft, en als het ware zonder aarzelen, honig te zuigen op de plaats waar die vloeistof in de meeste bloemen afgescheiden wordt. — De zwarte vlekken aan den voet der kroonbladen van *P. Rhaeas* enz. doen zich als honigmerken voor, ofschoon de bloemen geen honig voortbrengen.
Eene bij, die den honig wil bereiken, moet haren zuiger tusschen de muts en het bovenste kroonblad in de bloem steken: daarbij wordt de muts naar onderen gedrukt, en tevens strijkt de bij met de onderzijde van haren kop over den stempel, die door een stevigen stijl gedragen en dus niet naar onderen gebogen wordt. Vóór het ontluiken der bloem hebben de helmknoppen reeds hun stuifmeel op den stempel ontlast. Als het insect de bloem verlaat springt de muts naar omhoog en omvat zij opnieuw de voortplantingsorganen. In jonge bloemen worden de bijen aldus met stuifmeel beladen; in oudere bloemen, waaruit het stuifmeel reeds is weggehaald, bevruchten zij den stempel. — Wordt (in den plantentuin te Gent) door Anthophora pilipes (April) bezocht; Bombus terrestris (slurf 7-9 mill.) doorboort den wand der spoor en steelt op die wijze den honig. De honigbij (slurf 6 mill.) maakt gebruik van de gaten die Bombus heeft geboord. (Zie hooger, Bot. Jaarboek, V, blz. 201).

Corydalis claviculata DC. — Wij weten niet met zekerheid of deze soort tot ons gebied behoort.

Bloemen purper, aan den top zwartachtig rood. Stemt in hoofdzaak met Corydalis cava overeen, maar bloemen veel kleiner. De 2 kelkbladen zijn meer of minder driehoekig, getand, en een weinig onder het midden van hun breedste gedeelte ingeplant. Bij de studie der bevruchting komen zij niet in aanmerking. De kroonbladen zijn 4 in getal: het bovenste kroonblad 1 is aan zyne basis verlengd tot een korte bultvormige spoor, met een kort, honigaf-scheidend aanhangsel van den bovenste meeldraad. Het onderste kroonblad 3 is langgenageld, niet gespoord. De beide zijdelingsche kroonbladen 2 passen op de middellinie bij elkander; zij zijn aan hun top met elkander vereenigd, en zij vormen samen een soort van muts, waarin de stempel en de helmknoppen verborgen zijn. Omtrent de plaats, waar zich de grens tusschen het vruchtbeginsel en den stijl bevindt, vertoonen zij van boven en van onderen eene plooi (zie fig. 76,3): deze plooien vormen eene elastische geleding, waar-
door de beide zijdelingsche kroonbladen naar onder kunnen gedrukt worden (zooals in fig. 76,3) en daarna opnieuw hun oorspronkelijken stand innemen (zooals in fig. 76,1) als de drukking ophoudt. (Deze geleding is eenvoudiger dan bij Corydalis). Als de muts niet naar onderen gedrukt wordt staat de onderste plooi wijd open, terwijl de bovenste bijna gesloten is. Wordt de muts daarentegen naar onderen gedrukt, dan wordt de onderste plooi bijna gesloten, en de bovenste opent zich (zooals in fig. 76,3;—in fig. 76,3 zijn de plooiën niet zichtbaar, daar zij achter de filamenten der meeldraden enz. verborgen zijn). Het basale, niet beweeglijk gedeelte der zijdelingsche kroonbladen is met zijn bovenrand iets vergroeid met het bovenste buttvormig kroonblad en tevens met den bandvormigenhelldrager van den bovensten meeldraad, zoodat al deze organen steeds denzelfden wederzijdschen stand behouden.—Men onderscheidt een bovensten en een ondersten meeldraad : het basaal gedeelte van iederen helldrager is bandvormig : de beide bandvormige deelen omsluiten onder en boven het vruchtbeginsel en het basaal gedeelte van den stijl. Naar boven deelt iedere helldrager zich in 3 dunne draden, die ieder een helmknop dragen (tweebroederige meeldraden). De bovenste helldrager is aan zijne basis voorzien van een kort honigafscheidend aanhangsel, hetwelk met talrijke eencellige tepels is bezet.

De helmknoppen gaan in den bloemknop open, en ontlasten hun stuifmeel op den stempel ; daarna worden zij teruggetrokken, en hunne filamenten verdrogen (fig. 76,2) : zelfbestuiving is dus, evenals bij Corydalis, onvermijdelijk. Insecten, die honig willen zuigen, moeten hun slurf (of hun kop) tusschen het bovenste kroonblad en de muts in de bloem voeren : daarbij wordt de muts naar onderen gedrukt : de stijl (en de meeldraden) worden daarbij ontbloot (deze deelen komen door de spleet, die zich op de middellinie tusschen de bovenste randen der beide zijdelingsche kroonbladen bevindt, naar buiten te voorschijn). Het stuifmeel dat op den stempel ligt, kleeft aan de onderzijde van het lichaam van het insect. Als het stuifmeel der bloem door de eerste bezoekers weggehaald is kan het vreemd stuifmeel, waarmede de volgende bezoekers beladen zijn, door den stempel gelijmd worden (kruisbevruchting). De honig is veel minder diep verborgen dan bij C. cava, en kan door velerlei bijen bereikt worden. Fumaria officinalis wordt echter weinig
bezocht, en zelfbevruchting is de regel, terwijl C. cava, en zeer waarschijnlijk ook C. solida zelfonvruchtbaar zijn. — Nooit bezoekers gezien.

Fig. 76. — Fumaria officinalis.

2. Dezelfde bloem, in de lengte doorgesneden. — 1, 2, 3, als voren. — s, stempel, met stulimel beladen. — m, onderste meeldraad. — v, vruchtbeginsel. — (Naar de natuur, iets geschematiseerd).

4. Uiteinde van den stijl met den stempel. (Naar HILDEBRANDT).

Stemt met Nr 489 overeen, maar de muts heeft hare veerkracht grootendeels verloren.

Fam. LVIII. Cruciferen.

491. Cardamine pratensis L. — Wit of bleekpaars, met verborgen honig. *(Blanc ou d'un purpurin pâle, à nectar caché).* — Müller, Fertilis., blz. 102. — Kirchner, Flora, blz 290.

De nagels der kroonbladen zijn betrekkelijk lang. De honigklieren zijn ten getale van 4, te weten: 1° de voet van iederen korten meeldraad wordt omgeven door een groene, vleezige, ringvormige klier *(h)*, die vooral aan de buitenzijde ontwikkeld is; 2° aan den voet van ieder paar lange meeldraden en aan hunne buitenzijde een veel kleinere klier *(h)*. De 4 klieren bevinden zich dus ieder tegenover een der kelkbladen *(k, k')*, en de honig van iedere klier wordt in de bultvormige basis van het overeenkomstige kelkblad verzameld. De kelkbladen *(k)*, die zich tegenover de korte meeldraden bevinden en den honig der groote honigklieren *(h)* ontvangen zijn aan hun voet meer gewelfd dan de 2 kelkbladen *(k*)', waarin de honig der kleine klieren *(h')* verzameld wordt. Als men de kelkbladen voorzichtig afplukt krijgt men de honigklieren gedeeltelijk te zien, door de spleten tusschen de nagels der kroonbladen heen : het is door die spleten dat de honig uit de honigklieren in de honigbehouders vloeit. In den jongen bloemknop zijn de 6 helmknoppen met hunne buikzijde naar den stamper gekeerd, en zij bevinden zich op een lager niveau dan de stempel. Alvorens de bloem ontluikt worden de 4 binnenste meeldraden langer dan de stamper, en om hunne as gedraaid, en hunne stuifmeelzijde aanraken en tevens den stempel aanraken. — Bij ongunstig weder worden de lange meeldraden (in vele bloemen) slechts onvolkomen of niet gedraaid: alsdan blijft hunne stuifmeelfrijde naar den stempel gekeerd, en spontane zelfbestuiving grijpt
aldus plaats. De helmknoppen der korte meeldraden staan soms lager dan de stempel: in dit geval kunnen zij bij de spontane zelfbestuiving geen rol spelen. In andere bloemen staan zij op gelijke hoogte als de stempel of zelfs hoger; alsdan is zelfbestuiving door de korte meeldraden mogelijk. — Vegetatieve vermeerderving door broedknoppen die op de wortelbladen ontstaan (althans bij vele exemplaren).

Fig. 77. — Cardamine pratensis (Naar de natuur).

1. Bloem bij het einde van den bloei (zeer warm, helder weder): de kruisjes duiden de twee plaatsen aan, waar de insecten gewoonlijk hunne slurf in de bloem voeren. (De lange meeldraden zijn te schuins getekend).

2. Voortplantingsorganen, bij het einde van den bloei, van ter zijde gezien:
 - h, basis van een der buitenste kelkbladen. — k', id. van een der binnenste kelkbladen. — h, k' honigklieren. — Aan weerszijden van k' ziet men het litteken, dat na het afplukken van een der kroonbladen achtergebleven is.

Bezoekers: Langtongige bijen: *Apis*, zgd. en smvzd., 29. 4. 89, 3. 5. 90, 5. 5. 86, 5. 5. 89, 6. 5. 88, Destelbergen, Heusden, Gentbrugge, Melle. *Osmia bicornis* L., σ', 28. 4. 86; φ, 3. 5. 90, Melle. *Bombus lapidarius* L., φ, 3. 5. 90, Id. — *Andrena albigans* Müll., σ (slurfengte: 2-2½ mill.), kan slechts met veel moeite den honig bereiken, 29. 4. 89, Destelbergen. *A. parvula* K., φ, 29. 4. 89, Id. *A. nitida* Fourcr., φ, 6. 5. 88, Heusden. *Halictus cylindricus* F., φ, 3. 5. 90, Melle; φ, 6. 5. 88, Heusden. *H. flavipes* F., φ, 7. 5. 90, Bellem. — *Hemitrope Dipteren*: *Bombylius major* L., 3. 5. 90, Melle. *Eristalis pertinax* Scop., smvrtd.

492. **Cardamine hirsuta** L. — Wit, met half verborgen honig. *(Blanc, à nectar partiellement caché).* ○

Bloempjes zeer klein. 4 meeldraden. Zelfbevruchting is waarschijnlijk de regel. Niet nader onderzocht.

B e z o e k e r s : Korttongige bijen: *Andrena fulva* Schranck, 2, 10. 4. 86, Melle. — Allotrope Dipteren: *Oenisia gentilis* Meig., 18. 4. 16, Melle. — Coleopteren: *Melighetes*, 19. 4. 86, Melle.

493. **Cardamine amara** L. — Als voren. *(Comme l’espèce précédente).* — Ludwig, deut. Bot. Monatschrift, VI, 1888, blz. 5. — De volgende beschrijving ontleend aan *Kirchner, Flora*, blz. 291:

Kroonbladen wit; honigklieren zooals bij *C. pratensis*. De 6 meeldraden divergeeren wijd; de spletten, waardoor het stuifmeel ontlast wordt, blijven alle naar het centrum der bloem gekeerd. Vruchtbeginsel hoogstens half zoolang als de helmdragers: de stempel bevindt
zich aldus dicht voor de ingangen die naar den honig voeren. Er komen ook ♀ bloemen met kleinere kroonbladen voor. — Wij hebben nooit de gelegenheid gehad deze plant gade te slaan. ♪

494. **Cardamine sylvatica** Link. — Als vore. (*Comme l’espèce précédente*). ⊙

495. **Barbarea vulgaris** R. Br. — Geel, met half verborgen honig. (*Jaune, à nectar partiellement caché*). Müller, Fertilis., blz. 104. — Kirchner, Neue Beobacht, 1886, blz. 23.

De lange meeldraden zijn, volgens Müller, langer dan de stamper, volgens Kirchner evenlang als deze; zij worden om hunne as gedraaid, op dezelfde wijze als bij *Cardamine pratensis*: deze beweging begint als de bloem ontluikt, en is voltooid als de helmknoppen aan hunne buikzijde geheel met stuifmeel zijn bedekt. De helmknoppen der twee korte meeldraden staan op gelijke hoogte als de stempel, en blijven met hunne stuifmeelzijde het centrum der bloem toegekeerd (zoals bij *N. officinale*, Nr. 498).

Honigklieren. Volgens Kirchner (Würtemberg): 1° eene halfcirkelvormige groene klier omgeeft de basis van iederen korten meeldraad aan de binnenzijde; deze klier is soms in haar midden onderbroken, en aldus in 2 gedeeld; 2° aan den voet van ieder paar lange meeldraden en aan de buitenzijde een grootere, groene, tandvormig verlengde klier, die echter veel minder honig afscheidt dan de klieren die zich aan den voet der korte meeldraden bevinden. (Volgens Hildebrandt — cit. naar Kirchner — scheiden de klieren die zich aan de basis der lange meeldraden bevinden geen honig af).

Bezoekers: Korttongige bijen: *Nomada ruficornis* L. ♀ en *N. bifida* Thoms, ♀, zgd. — Hemitrope Dipteren: *Eristalis pertinax* Scop. — Allotrope Dipteren: *Empis opaca* F. Alle te Nevel, bij regenachtig weder, 17. 5. 91. (De winter 1890-91 was buitengewoon streng en langdurig geweest; ten gevolge daarvan bloeide Barbarea, evenals een aantal andere planten, later dan in gewone jaren).
496. **Barbarea intermedia** Bor. — Als voren (*Comme l’espèce précédente*). Kirchner, Neue Beobacht., 1886, blz. 24.

Bloemen kleiner dan bij Nr 495, slechts 6 mill. breed. De 4 lange meeldraden worden op dezelfde wijze als bij Nr 495 gedraaid, maar zij zijn (volgens Kirchner) iets langer dan de stamper, terwijl de helmknoppen der korte meeldraden een weinig lager dan de stempel staan. Honigklieren in hoofdzaak zooals bij Nr 495: de tandvormige klieren aan de basis der lange meeldraden zijn kleiner; en een deeling der half-cirkelvormige klieren werd (door Kirchner) niet waargenomen.

497. **Arabis hirsuta** R. Br. — Wit met half verborgen honig. (*Blanc, à nectar partiellement caché*). — Müller, Fertilis., blz. 102.

Stemt in hoofdzaak met *Nasturtium silvestre* (Nr 499) overeen; slechts 2 klieren, aan de basis der korte meeldraden en aan hunne binnenzijde, scheiden honig af. In de meeste bloemen zijn de lange meeldraden langer dan de stamper, en het stuifmeel valt uit hunne helmknoppen op den stempel; in andere bloemen staan de helmknoppen der lange meeldraden op gelijke hoogte als de stempel, en zij ontlasten hun stuifmeel onmiddellijk op dezen.

Aan de binnenzijde der basis van iederen korten meeldraad zitten 2 groene honigklieren. De korte meeldraden zijn veel korter dan de stamper; hunne stuifmeelzijde is het centrum der bloem toegekeerd. De helmknoppen der lange meeldraden staan in den beginne op gelijke hoogte als de stempel; later wordt de stempel op een hooger niveau gebracht. Deze helmknoppen worden (evenals bij *Cardamine pratensis*) van den stempel afgewend en naar de korte meeldra- den gekeerd: een insect, dat den honig wil bereiken, moet dus de stuifmeelzijde van 3 helmknoppen en tevens den stempel aanraken. Bij ongunstig weder gaan de bloemen niet volkomen open: spontane zelfbestuiving wordt alsdan door de lange meeldraden bewerkstel-

![Diagram of *Nasturtium silvestre*]

Fig. 78. — Nasturtium silvestre (Naar de natuur).

1. Bloem (bij helder, warm weder): van de 6 honigklieren zijn er twee (als zwarte stippen) aan de basis der meeldraden zichtbaar.
2. Bloembodem: \(m \), basis der lange meeldraden. — \(m' \), id. der korte meeldraden. — \(h \), honigklier aan de basis der lange meeldraden. — \(h' \), id. aan de basis der korte meeldraden.
Evenals bij *N. officinale* zijn er twee honigkliieren aan den voet van iederen korten meeldraad, en daarenboven een honigklier aan de basis en aan de buitenzijde van ieder paar lange meeldraden. De helmknoppen der 4 lange meeldraden staan op gelijke hoogte als de stempel, de helmknoppen der 2 korte meeldraden zijn iets lager gelegen. De stuifmeelzijde der 6 helmknoppen blijft naar het centrum der bloem gekeerd. Bij zonnig weder worden de helmknoppen een weinig uiteengespreid, en hunne stuifmeelzijde wordt meer of minder naar boven gekeerd. Insecten die den honig trachten te bereiken, moeten den stempel en de helmknoppen aanraken: de kans op zelfbestuiving is daarbij nagenoeg even groot als de kans op kruising. Bij regenachtig weder gaan de bloemen onvolkomen open: de helmknoppen der lange meeldraden blijven alsdan tegen den stempel aangedrukt, en spontane zelfbestuiving grijpt plaats.

500. Nasturtium palustre DC.
— Als voren (*Comme l'espèce précédente*). **Kirchner**, Flora, blz. 287.

501. Nasturtium amphibium R. Br.
— Als voren. (*Comme l'espèce précédente*). — **Kirchner**, Flora, blz. 287.

Stemt in hoofzaak met *N. silvestre* (Nr 499) overeen: de 6 honigkliieren vloeien soms tot een ring samen. Wordt veel bezocht.

502. *Erysimum cheiranthoides* L. — Geel met half verborgen honig. (*Jaune, à nectar partiellement caché*). De volgende beschrijving naar Kirchner, Flora, blz. 295:

Honigklieren 4: een rudimentaire klier aan de basis en aan de buitenzijde van ieder paar lange meeldraden, en een honigaf scheidende klier aan de basis en aan de binnenzijde van ieder korten meeldraad. De honig wordt aan weerszijden van de basis van den stamper verzameld, in den hoek die begrepen is tusschen den stamper, een der korte meeldraden en twee der lange meeldraden. De stuifmeelzijde der 6 helmknoppen is het centrum der bloem toegekeerd. De korte meeldraden worden naar buiten gebogen, en aldus wordt de weg naar den honig vrij. De helmknoppen der 4 lange meeldraden omringen den stempel: aldus wordt spontane zelfbe stuiving verzekerd.

Bezoekers: Kortt. bijen: *Andrena propinqua* Schenck, ♀, 25. 7. 92, Heusden. — Hemitr. Dipt.: *Eristalis tenax*

Honigklieren zoaals bij Cardamine pratensis: de klieren aan den voet der korte meeldraden scheiden aan hare binnen zijde honig af. Deze vloeistof wordt voortgebracht in 4 samenvloeiende druppels (2 voor iedere klier) en tusschen den stamper en de meeldraden ver zameld. De honigklieren die zich aan de basis der lange meeldra den bevinden scheiden geen honig af. De kelkbladen, die hier niet als honigbehouders dienst doen, vallen na het ontluiken der bloem gemakkelijk af. De stuifmeelzijde der 6 helmknoppen is het centrum der bloem toegekeerd. De helmknoppen der lange meeldraden staan rondom den stempel, en aldus wordt spontane zelfbevrucht ing verzekerd (de plant is zelf vruchtbaar). Door insecten kan kruising bewerkstelligd worden. Geen bezoekers gezien.

Stemt in hoofdzaak met de vorige soort overeen. Aan den voet van iederen korten meeldraad 2 honigklieren: de honig wordt in 4 druppels afgescheiden, en tusschen de helmdragers en den stamper verzameld. De stuifmeelzijde der 6 meeldraden is gewoonlijk het centrum der bloem toegekeerd. De helmknoppen der lange meeldraden staan hooger dan de stempel; soms zijn zij iets naar buiten gekerd (of hunne dragers zijn iets naar buiten gebogen, zooals in fig. 81). De helmknoppen der korte meeldraden staan op gelijke hoogte als de stempel, en zijn van den stempel verwijderd. Bij uitblijvend insectenbezoek wordt de stempel bevrucht met stuif mee!, dat uit de helmknoppen der lange meeldraden valt. Door insectenbezoek kan zelfbestuiving even goed als kruisbevruchting bewerkstelligd worden. — Bloempjes klein. (Zie verder, fig. 81).

505. Sisymbrium Thalianum Gay. — Wit, zooals Nr 503. (Blanc, comme le N° 503). — De volgende beschrijving ontleend aan Kirchner, Flora, blz. 294:

Bloemen klein, wit, weinig bezocht. Aan de buitenzijde der basis van ieder meeldraad een kleine honigklier. De 4 klieren aan den voet der 4 lange meeldraden rudimentair; de 2 klieren aan den voet der korte meeldraden zijn veel groter, en scheiden honig af, die in het onderst buitvormig gedeelte der overeenkomstige kelkbladen verzameld wordt. Soms zijn de 6 honigklieren onvolkomen. De 6 meeldraden zijn doorgaans voorhanden; soms ontbreken de 2 korte (of één van beide) De stuifmeelzijde der 6 helmknoppen is het centrum der bloem toegekeerd. De helmknoppen der 4 lange meeldraden omsluiten den stempel: spontane zelfbestuiving is dus onvermijdelijk.

Bezoekers: Allotrope Dipteren: Anthomyia aestiva Meig., 29. 4. 89, Destelbergen.

506. Sisymbrium Sophia L. — Groenachtig geel met half verborgen honig. (Jaune verdâtre, à nectar partiellement caché). — Kirchner, Beiträge, 1890, blz. 20. (De planten werden te Zermatt, 16. 8. 1890, onderzocht).

Kroonbladen geel, smal, korter dan de groenachtig-gele kelkbladen. De 4 lange meeldraden zijn 1-1 \(\frac{1}{4}\) millim. langer dan de kelkbladen; bij het begin van den bloei staat de stempel op gelijke hoogte als de helmknoppen der korte meeldraden, later wordt hij op gelijke hoogte als de helmknoppen der lange meeldraden gebracht. Al de helmknoppen gaan aan de binnenzijde open en blijven tot het einde met hunne stuifmeelzijde naar den stamper gekeerd; daar zij rondom den stempel staan is zelfbestuiving onvermijdelijk. Aan weerszijden van den voet van iedereen korte meeldraad (aan de buitenzijde) treft men een honigklier aan: er zijn dus 4 dergelijke klieren in iedere bloem (Volgens Velénovsky — cit. naar Kirchner — is er daarentegen een enkele, onregelmatige honigklier, die den geheelen bloembodem inneemt).
507. **Diplotaxis tenuifolia** D. C. — Geel, met half verborgen honig. *(Jaune, à nectar partiellement caché).* — **MacLeod**, Bot. Centralblatt, XXIX, blz. 120. — **Schulz**, Beiträge, II, 1890, blz. 15.

Kroonbladen langgenageld. Bloemen geurend. De korte meeldraden zijn (bij gunstig weder) iets afstaande, met hunne stuifmeelzijde naar binnen gekeerd; hunne helmknoppen gewoonlijk iets lager dan de stempel. De helmknoppen der lange meeldraden staan gewoonlijk nagenoeg op gelijke hoogte als de stempel; zij zijn om hunne as gedraaid, derwijze dat hunne stuifmeelzijde naar de korte meeldraden gekeerd wordt (zoals bij *Cardamine pratensis* enz.). Er zijn 4 honigklieren: 1 *kleine* klier aan den voet en aan de binnenzijde van iederen korten meeldraad, en 1 veel *grootere* klier aan de basis en aan de buitenzijde van ieder paar lange meeldraden. De kleine klieren scheiden honig af; de groote klieren zijn schuin naar buiten gericht, en scheiden (bij de door ons onderzochte exemplaren) geen honig af. De beide kelkbladen, die tegenover de groote honigklieren staan, zijn (bij zonnig weder) horizontaal afstaande: ten gevolge daarvan zijn de groote honigklieren aan de buitenzijde duidelijk zichtbaar, en niet tegen ongenoode gasten beschut. De 2 kelkbladen die tegenover de korte meeldraden staan zijn daarentegen tegen de nagels aangedrukt. Als de bloem ontluikt zijn de ♂ en de ♀ deelen geslachtsrijp: insecten die den honig der kleine klieren willen bereiken moeten hun kop en hun slurf tusschen den stempel en de korte meeldraden voeren, en deze deelen aanraken; zij zullen daarenboven de stuifmeelzijde van twee der lange meeldraden aanraken. Het voorste gedeelte van het lichaam der bezoekers wordt aldus aan 3 zijden met stuifmeel bepoederd, en aan de vierde zijde met den stempel in aanraking gebracht. Als het insect achtereenvolgens meerdere bloemen bezoekt wordt kruising bewerkstelligd, maar zelfbestuiving is niet onmogelijk.

Bij het eind van den bloei (volgens **Schulz** ’s nachts en bij ongunstig weder) worden de meeldraden — vooral de lange meeldraden — naar binnen gebogen: hunne helmknoppen worden aldus met den stempel in aanraking gebracht (spontane zelfbestuiving is aldus bijna onvermijdelijk, te meer daar de toppen der helmknoppen soms naar binnen omgebogen worden). De korte meeldraden zijn korter
dan de stijl en spelen derhalve bij de zelfbevruchting geen rol.

508. **Diploaxis muralis** D. C. — Als voren *(Comme l’espèce précédente)*. — KIRCHNER, Beiträge, 1890, blz. 23.

Fig. 79. — Diploaxis muralis (Naar de natuur).

3. Onderste gedeelte der voortplantingsorganen met de honigklieren: de stamper en de korte meeldraden zijn weggenomen: het litteken, dat na het wegneemen van den korten meeldraad achtergebleven is, wordt door de zwarte stip aan den voet van *h* voorgesteld.

st, stempel. — *h‘* honigklier aan de basis der lange meeldraden. — *h*, id. aan de basis der korte meeldraden. — *d*, honigdruppel, door *h* afgescheiden. *m*, onderste gedeelte van een der lange meeldraden.
- Alle te Melle-bij-Gent.

Deze soort bevindt zich op de grens tusschen de klassen AB en B. Honigklieren 4 : 2 aan de binnenzijde der basis der 2 korte meeldraden, en 2 tusschen de 2 helmdragers van ieder paar lange meeldraden. Ieder der eerstgenoemde klieren scheidt een honigdruppel af, die verzameld wordt tusschen het vruchtbeginsel, den overeenkomstigen korten meeldraad en de 2 aangrenzende lange meeldraden. De honigdruppel van de laatstgenoemde klieren ligt aan de buitenzijde en aan de basis van de dicht naast elkander staande helmdragers van ieder paar lange meeldraden. — De 2 korte meeldraden, die gewoonlijk korter, soms evenlang als de stomper zijn, worden naar buiten gebogen; hunne stuifmeelzijde is naar binnen gekeerd. De 4 lange meeldraden worden (evenals bij *Diplotaxis*, enz), om hunne as gedraaid, waardoor hunne stuifmeelzijde naar de korte meeldraden of zelfs naar buiten gekeerd wordt; zij verwijderen zich echter niet van het centrum der bloem. Insecten, die den honig aan den voet der korte meeldraden zuigen, bewerkstelligen in de meeste gevallen kruising (op dezelfde wijze als bij Nr 507). Bij uitblijvend insectenbezoek wordt het bovenst gedeelte der lange meeldraden naar den stempel gebogen en met dezen in aanraking gebracht: aldus komt zelfbestuiving tot stand. De bloem is zelfvruchtbaar (zaadopbrengst geringer).

510. **Brassica Rapa** L. — Geel met half verborgen honig. *(Jaune, à nectar partiellement caché).* — Kirchner, Flora, blz. 298. — Schulz, Beiträge, I, blz. 3.

Zwak proterogynisch. Als de bloem ontluikt liggen de nog gesloten helmknoppen der 4 lange meeldraden tegen den stempel aan. Alvorens de kroonbladen zich volkomen uitgespreid hebben gaan de helmknoppen open: tevens worden de lange meeldraden om hunne as gedraaid, en hunne stuifmeelzijde wordt daardoor naar de korte meeldraden of geheel naar buiten gekeerd. De helmknoppen der 2 korte meeldraden blijven met hunne spletten naar binnen gekeerd: zij staan 2-3 1/2 mill. lager dan de stempel, zijn naar buiten gebogen, en dienen uitsluitend tot de kruisbevruchting. De toppen der helmknoppen der 4 lange meeldraden bevinden zich (volgens Kirchner) slechts weinig boven den stempel; deze toppen worden later op zulke wijze omgebogen, dat spont. zelfbest. bij 't einde van den bloei plaats

(1) Al de hier vermelde bezoekers werden waargenomen op de varieteit «Spruitjes».
grijpt. (Volgens Schulz bereikt de stempel het onderst gedeelte der helmknoppen der lange meeldraden). De bloem is zelfvruchtbaar. De honigklieren stemmen met die der vorige soort overeen: somwijlen zijn de vrij groote klieren, die zich aan de binnenzijde der korte meeldraden bevinden, ieder in 2 gedeeld. — Wordt veel bezocht: zie bezoekers, Nr 511.

511. Brassica Napus L. — Geel met half verborgen honig. (Jaune, à nectar partiellement caché). — Kirchner, Flora, blz. 299.

Bloemen in al hare deelen groter en inflorescentie losser dan bij Nr 510. — Stamt met de vorige soort overeen.

Honigklieren zooals bij B. oleracea. De lange meeldraden worden niet gedraaid: hunne stuifmeelzijde blijft derhalve den stempel toegekeerd. De stijl is langer of korter; de stempel bevindt zich op
gelijke hoogte als de korte, ofwel op gelijke hoogte als de lange meeldraden (overgangsvormen).

Opmerking: Zie over kruisbevruchting, bastaardvorming, enz. bij *Brassica*-soorten:

LUND en KJAERSKOU, Botanisk Tidskrift, Bd. XV, 1885 (*B. oleracea, campestris en Napus*);

513. **Sinapis arvensis** L. — Als voren, (*Comme les espèces précédentes*). — **KIRCHNER**, Flora, blz. 299; — **MÜLLER**, Fertil., blz. 112.

Bloemen geel. Honigklieren zooals bij *Brassica*. Kelkbladen afstaande: derhalve zijn de honigklieren uitwendig zichtbaar, en insecten kunnen den honig tusschen den kelk en de kroon bereiken, zonder de geslachtswerktuigen aan te raken. Daar de bloemen dicht bijeen staan is het voor de insecten echter gemakkelijker hun slurf
tusschen de helmknoppen (op de gewone wijze) in de bloem te voeren dan den honig aan de buitenzijde der bloem te stelen. De helmknoppen der lange meeldraden worden met hunne stuifmeelzijde naar de nabijliggende korte meeldraden gedraaid (fig. 80,2); korten tijd daarna wordt hunne stuifmeelzijde naar boven gekeerd, en eindelijk worden hunne uiteinden naar onderen gekromd (fig. 80,3). Daarbij wordt de stempel, die (gewoonlijk) tusschen de helmknoppen naar boven geschoven wordt, met stuifmeel bepoederd.

Fig. 80. — *Sinapis arvensis* (Naar de natuur).

1. — Bloem, volkomen ontloken.
2. — Voortplantingsorganen (van de 6 meeldraden zijn er slechts 3 getekend) bij het begin van den bloei. De helmknoppen zijn reeds aan hun top opengegaan; de stuifmeelzijde der lange meeldraden is reeds naar den korten meeldraad gekeerd.
3. — Id. bij het einde van den bloei.

514. *Raphanus Raphanistrum* L. (en *R. sativus* L.). — Wit of lila met donkere aderen (bij *R. Raphan*. soms geel met donkergele aderen); honig half-verborgen. (*Blanc ou lilas à veines sombres* (chez *R. Raphan*. quelquefois jaune, veiné de jaune sombre); *nectar partiellement caché*).

Deze beide vormen behooren tot één soort: dit is gebleken uit de cultuurproeven van *Carrière* (1) en *van Hoffmann* (2).

R. sativus (var. *oleiferus*; naar *Kirchner*, Neue Beob., 1886, blz. 28): Kroonbladen wit met bleekgroene aderen of lila met donkere aderen; middellijn der bloem 20 mill. Kelkbladen recht overeind staande, tegen de nagels der kroonbladen los aangedrukt, 9-10 mill. lang. Honigklieren 4, groen: 1 aan de binnenzijde der basis der 2 korte meeldraden, en 1 dunne steelvormige klier aan de buitenzijde van ieder paar lange meeldraden. De kelkbladen die vóór de korte meeldraden staan zijn aan hun voet zakvormig en fungeeren als honigbehouders. De 6 helmknoppen gaan aan de binnenzijde open en worden naar buiten omgekanteld: daardoor nemen zij een horizontale stand aan en worden zij tevens van den stempel verwijderd. De helmdragers worden niet gedraaid. De helmknoppen der 4 lange meeldraden staan op gelijke hoogte als de stempel; die der korte meeldraden staan 2-3 mill. lager en zijn meer naar buiten gebogen. Bij ’t einde van den bloei komen de bovenste helmknoppen met den stempel in

(1) *André*, Belg. horticole, 1869, XIX, blz. 151. — Cit. naar Gevaert en Errera.

aanraking. Door zelfbevruchting wordt slechts een halve zaadopbrengst voortgebracht.

515. Alyssum (Berteroa) incanum L. — Wit met half verborgen honig. (Blanc à nectar partiellement caché).

Honigklieren 4, aan weerszijden van de basis der 2 korte meeldraden. Aan de binnenzijde van iederen korten meeldraad een tand; deze tanden zijn tegen het vruchtbeginzel aangedrukt; het vruchtbeginzel zelf ligt met zijne scherpe kanten tegen de lange meeldraden aan. Op die wijze wordt voor iedere honigklier een bijzondere ingang gevormd. De helmknoppen der 4 lange meeldraden worden 90° gedraaid en naar de korte meeldraden gekeerd; deze helmknoppen bevinden zich een weinig boven den stempel. De helmknoppen der korte meeldraden staan op gelijke hoogte als de stempel, maar zijn, ten gevolge van de buiging hunner filamenten, van den stempel verwijderd. — Zelfbestuiving is mogelijk.

Kroonbladen gespleten; lange meeldraden aan hun voet verbreed. — Wij hebben deze zeldzame soort in ons gebied nooit aangetroffen.

516. Draba verna L. — Wit met half verborgen honig. (Blanc à nectar partiellement caché). — Kirchner, Flora.

Bezoekers: Allotrope Dipteren: Anthomyia radicum
L., ♂ 29. 4. 89, Destelbergen. Hylemyia cinerella Meig., 6. 5. 88, Heusden. (Dit zijn de eenige bezoekers die wij op deze plant ooit hebben gezien, ofschoon wij haar meermalen bij gunstig weder gadegezagen hebben).

Twee lange en twee kortere kroonbladen. Bloemen klein, in den beginne tot eene vlakke bloeiwijze vereenigd; naarmate de bloei voortschrijdt wordt de as langer, en daardoor wordt de bloeiwijze tot een tros verlengd. De kelkbladen hebben (bij onze exemplaren) een witten rand, waardoor zij bijdragen om de inflorescentie in 't oog springend te maken. De helmdragers der 6 meeldraden zijn van een wit vleugelvormig aanhangsel voorzien. De vleugels der 4 lange meeldraden zijn groter en aangedrukt tegen het vruchtbeginsel, hetwelk van voren naar achteren samengevouwen is.

Het centrum der basis van ieder kroonblad vertoont een kleine indeuking; tegenover ieder dezer indefiniteen heeft de vleugel van den overeenkomstigen langen meeldraad een indeuking van gelijken aard. Tusschen beide ligt een druppel honig, en, onder dezen druppel verborgen, eene kleine groene honigklier.

Alvorens de bloem ontluikt zijn de 6 helmknoppen met hunne stuifmeelzijde naar den stempel gekooid; de 4 lange bevinden zich een weinig boven den stempel, de 2 korte op gelijke hoogte als deze. Als de bloem ontloken is worden de 6 meeldraden 90° gedraaid: de helmknoppen der lange meeldraden worden naar de aangrenzende korte meeldraden gekooid; de helmknoppen der korte meeldraden worden naar de buitenzijde gekooid. Nu gaan de helmknoppen open, en de stempel wordt geslachtsrijp. Insecten die honig zuigen komen met het stuifmeel en met den stempel in aanraking. Bij uitblijvend insectenbezoek wordt spontane zelfbestuiving door de lange meeldraden bewerkstelligd.

Bloeit gewoonlijk Maart-April. Na den strengen winter 1890-91 hebben de meeste exemplaren in Mei-Juni gebloeid; het heeft ons daarenboven geschenen dat deze soort sedertdien minder verspreid is en later bloeit dan in vroegere jaren, en vooral op beschutte plaatsen (b. v. in sparrebossen) is behouden gebleven.

520. **Lepidium campestre** R. Br. — Als N° 516. (Comme le N° 516). — Kirchner, Beiträge, 1890, blz. 28.

Bloempjes wit, 2 mill. breed. Al de helmknoppen verwijderd van den stempel, die zich op gelijke hoogte als de helmknoppen der korte meeldraden bevindt. Stuifmeeltje der 6 helmknoppen naar den stempel gekeerd; de 2 korte meeldraden zijn iets meer zijdelings uitgespreid dan de 4 lange. Homogaam. Aan weerszijden van den voet van iederen korten meeldraad een groene honigklier. (Volgens Velenovsky (cit. naar Kirchner) zijn er daarenboven 2 kleinere klieren, nl. ééne aan de binnenzijde en aan de basis van iederen paar lange meeldraden). Bij 't einde van den bloei sluiten de kelkbladen zich samen; daardoor worden de helmknoppen tegen den stempel gedrukt. Spontane zelfbestuiving is dus onvermijdelijk. — Wij hebben deze plant nooit gadegeslagen.

Lepidium sativum, niet inheemsch. Zie Müller, Fertilis., blz. 110.
521. Senebiera Coronopus Poir. — Wit, met blootliggende honig. (*Blanc, à nectar librement expose*). — Kirchner, Neue Beobacht., 1886, blz. 26; MacLeod, Bot. Centralbl., 1887, XXIX.

Bloemen zeer klein, wijd opengaande. De helmknoppen der 4 lange meeldraden staan iets hooger dan de stempel en zijn van dezen verwijderd; de helmknoppen der 2 korte meeldraden staan op gelijke hoogte als de stempel, maar zijn nog meer naar buiten gebogen. De stuifmeelzijden der 6 meeldraden zijn en blijven naar het centrum gekeerd. Kruising wordt bevorderd door de omstandigheid dat de helmknoppen (naar Kirchner) opengaan eenigen tijd nadat de bloem ontkloken is. Honigklieren 4 : één aan weerszijden van de basis van iederen korten meeldraad. (Daarenboven vertoonen (naar Kirchner) vele bloemen nog 2 zeer kleine honigklieren, nl. één aan de basis van ieder paar lange meeldraden. Of dit eveneens in ons gebied voorkomt weten wij niet). Bij ’t einde van den bloei richten de 2 binnenste kelkbladen zich op: daardoor worden de 4 lange meeldraden tegen het vruchtbeginsel gedrukt; hunne helmknoppen komen dicht boven den stempel staan, en spontane zelfbestuiving is onvermijdelijk. De korte meeldraden worden niet naar binnen gebogen. — Nooit bezoekers gezien. Te Brugge hebben wij exemplaren aangetroffen waarin de meeldraden ten deele geaborteerd waren. Wij hebben verzuimd deze bloempjes nauwkeurig te onderzoeken.

FAM. LIX. RESEDACEEÉN.

Stemt in hoofdzaak met *R. odorata* overeen, uitgenomen wat de kleur en de geur betreft. — Bloemen horizontaal.

Homogaam. Kroonbladen bleekgeel, in smalle, iets onregelmatige, divergerende slipjes gedeeld. Van achteren in de bloem staat een verticale, 4hoekige plaat, waarvan de voorzijde ruw is en als honigmerk fungeert; de achterzijde is daarentegen glad, groen en

Naar Schulz (loc. cit.) begint het opengaan der helmknoppen aan de peripherie der bloem; de bloem is in meerdere of mindere mate proterandrisch; — in sommige streken vertoont schier iedere inflorescentie, behalve de gewone bloemen, enkele kleinere bloemen met kleine stempels.

523. Reseda luteola L. — Bleekgeel met volkomen verborgen honig. — (Jaune pâle, à nectar complètement caché). — Kirchner, Neue Beobacht., 1886. blz. 28.

Bloemen klein, maar vele bijeen en daardoor in 't oog springend. Deze soort verschilt in vele opzichten van de vorige: de bloemen zijn eveneens geopend alvorens de eigenlijke bloei begint, maar de meeldraden liggen gelijkmatig rondom het vruchtbegin; en de 3 stempels steken een weinig voorbij de meeldraden uit. Als de helmknoppen opengaan heeft (naar Kirchner) geen beweging der meeldraden plaats (die beweging wordt soms gedeeltelijk vol-
bracht): zeltbestuiving grijpt dus zeer gemakkelijk plaats. De honigklier heeft denzelfden bouw als bij *R. odorata* en *lutea*, maar hare voorzijde is bleekgroen. De kroonbladen zijn niet afstaande, en verwelken reeds alvorens al de helmknoppen opengegaan zijn. Bij de door ons onderzochte exemplaren (plantentuin, Gent) was de honigklier kleiner dan bij Nr. 522 en het bovenste kroonblad was alleen volkomen ontwikkeld; de meeldraden waren talrijk.

Fam. LX. — Violaceën.

524. *Viola tricolor* L. — Bijenbloem (*Fleur mélitophile*).

In ons gebied (omstreken van Gent) komt de kleinbloemige varieteit *arvensis* Murr. op akkerland, aan wegen enz. algemeen voor. (Bloemen 8-10 mill. breed). — In de zeeduinen treft men een grootbloemige varieteit aan. Tusschen Boom en Turnhout (prov. Antwerpen) en ook, naar het schijnt, op sommige plaatsen in Vlaanderen, groeit eveneens een grootbloemige vorm. — Veelkleurige, veredelde varieteiten met nog grootere bloemen worden onder den naam *pensee* in tuinen gekweekt.

Kleinbloemige varieteit *arvensis* Murr. ♂ Bloem bijna wit; het onderste kroonblad aan de basis der plaat (aan den ingang der spoor) geel. Somwijlen zijn de bovenste kroonbladen iets blauw violet; deze kleur komt soms bij het einde van den bloei te voorschijn, als de kroon reeds begint te verslensen. De spoor van het onderste kroonblad is blauw. Het onderste en de zijdelingsche kroonbladen zijn versierd met donkere strepen (honigmerken). De kroonbladen zijn iets korter dan de kelkbladen. De 2 bovenste kroonbladen zijn naar boven gericht; de 2 zijdelingsche staan nagenoeg horizontaal of zijn schuin naar boven gericht; het onderste kroonblad vormt een soort van onderlip en is aan zijne basis tot een holle, naar achteren gerichte spoor verlengd.

De ingang der bloem is nagenoeg driehoekig, en wordt begrensd door het onderste en de twee zijdelingsche kroonbladen. Deze 3 kroonbladen vertoonen de hoogervermelde honigmerken. De stamper en de meeldraden zijn van binnen in de bloem verborgen.
Fig. 82. — Viola tricolor, var. arvensis (Naar de natuur).

1. Bloem. — 1, 2, bovenste kroonbladen. — 3, 4, zijdelingsche id. — 5, onderste id. — k, bovenste kelkblad (22. 9. 93, Melle).

2. Dezelfde bloem in de lengte doorgesneden. — 1, 4, 5 duiden respectievelijk dezelfde kroonbladen aan als in 1. — k, bovenste kelkblad, met zijn basaal aanhangsel ka. — sp, spoor van het onderste kroonblad 5. — h, honigklieren.
Het vruchtbeginsel (fig. 82,4) draagt aan zijn top een knievormig gebogen stijl, die aan zijn uiteinde tot een soort van knop verdikt is.

Deze knop is inwendig hol, en vertoont aan de onderzijde een wijde opening, waarvan de onderste rand voorzien is van een soort van lipje (zie fig. 82,4 en 5): de opening is de stempelopening, en haar lipje zullen wij *stempellip* noemen. Rondom den voet van het vruchtbeginsel zijn de 5 mdeeldraden ingeplant: hunne filamenten zijn kort, hunne helmknoppen daarentegen betrekkelijk groot. Aan zijn top draagt iedere helmknop een vliezige, bruine schub. Deze 5 schubben omringen de basis van den stijl, en het vruchtbeginsel is schier geheel verborgen onder de helmknoppen, die tot een kegel vereenigd zijn. De randen der helmknoppen zijn bezet met kroezige harren. De filamenten der twee onderste mdeeldraden dragen aan hunne onderzijde een snavelvormig aanhangsel: de beide aanhangselen zitten in de spoor van het onderste kroonblad, en scheiden (niet altijd) honig af. Onder de helmknoppen en onder den stempel is de binnenzijde der spoor van het onderste kroonblad aan weerszijden van de middellinie behaard. Het stuifmeel is droog en poederig.

Soms komen de 3 bovenste mdeeldraden aan hunne basis van den bloembedem los. Dit grijpt vroeger of later, somwijlen eerst bij 't einde van den bloei plaats (fig. 82,3). Hunne helmknoppen blijven echter met elkander en met de beide onderste helmknoppen tot een kegel vereenigd.

V. tricolor var. *arvensis* wordt in onze streken schier nooit door insecten bezocht: spontane zelfbestuiving is de regel (Müller, Weit. Beobacht., I, 1878). De holte van den knopvormigen stempel is gewoonlijk geheel gevuld met stuifmeelkorrels, die lange stuifmeelbuizen vormen. Volgens Müller (loc. cit.) valt dit stuifmeel korten tijd na het ontluiken der bloem uit de helmknoppen in de stempelholte, en in vele gevallen grijpt dit zelfs vóór het ontluiken plaats. Kruising door insecten is nochtans niet geheel onmogelijk.

De grootbloemige exemplaren (in tuinen) zijn daarentegen, bij uitblijvend insectenbezoek, volkomen of grootendeels onvruchtbaar.
(MÜLLER, loc. cit. — DARWIN, Cross. aud self-fertilisation, 1876, blz. 123). Zij verschillen van de kleinbloemige variëteit *arvensis* door de volgende bijzonderheden (naar Müller, loc. cit.):

1° Bij de grootbloemige vormen (1) is de kroon gewoonlijk bleek (witachtig met geel) als de bloem ontluikt; daarna wordt zij groter, en gedeeltelijk violet of blauw gekleurd. Bij var. *arvensis* blijft de kroon klein en bleek, en de blauw-violette kleur komt niet voor den dag. (In ons gebied vertoonen de bovenste en zelfs de zijdelingsche kroonbladen van var. *arvensis* soms geringe sporen van de blauwe kleur; zie hooger).

2° De verdikte stempelkop is bij de beide vormen tegen het onderste kroonblad aangedrukt. Bij de grootbloemige exemplaren is zijne opening naar buiten gekeerd, bij var. *arvensis* daarentegen naar binnen. In het laatste geval kunnen stuifmeelkorrels uit de helmknoppen in de stempelopening vallen, en zelfbestuiving is aldus verzekerd, terwijl dit bij de grootbloemige vormen door den stand der opening verhinderd wordt. — (Bij de door ons onderzochte exemplaren van var. *arvensis* was de stempel niet „gegen die Unterlippe gedrückt”, maar onder den stempel bleef een nauwe ingang vrij, zooals in fig. 82,2 duidelijk aangewezen wordt. Daarboven was de stempelopening niet „nach innen», maar veeler naar onderen gekeerd. — Bij de exemplaren met grootere bloemen (kleiner dan de gekweekte pensée) die in onze duinen groeien is de opening naar voren gekeerd, zooals door Müller voor de «grossblumige Formen» aangegeven wordt. Deze duin-exemplaren vertoonen daaronder boven aan de onderzijde van den stijl een donkere vlek; deze vlek komt bij sommige exemplaren van de kleinbloemige var. *arvensis* eveneens voor, maar zij is veel kleiner dan bij den duinvorm, en bij de meeste exemplaren ontbreekt zij volkomen.

3° Bij de grootbloemige vormen is de onderste rand der stempel-

(1) Müller beschrijft onder dien naam twee verscheidenheden, eene „met groote bloemen” en een andere „met nog grootere bloemen”, die beide te Lippstadt op akkerland groeien. Daar wij die planten niet hebben gezien weten wij niet of zij in al hare détails overeenstemmen met de grootbloemige vormen die men in onze streken (in tuinen gekweekt, of in tuinen verwilderd, in de zeeduinen, enz.) aantreft, maar in ieder geval zijn de verschillen gering. Darwin’s proeven werden met de gekweekte pensée genomen.
opening voorzien van een lipvormig aanhangsel: volgens Müller ontbreekt deze stempellip bij var. arvensis. — Zoals uit de hooger gegeven beschrijving en uit de figuren 82,4 en 82,5 blijkt is var. arvensis in ons gebied (Melle, Bloemendael) van eene stempellip voorzien. Deze lip is echter veel kleiner dan bij de grootbloemige exemplaren.

4° Bij de grootbloemige vormen valt het stuifmeel uit de helmknoppen eerst verscheidene dagen nadat de bloem volkomen ontwikkeld is. Bij den kleinbloemigen vorm valt het stuifmeel korten tijd nadat de bloem ontloken is uit de helmknoppen in den stempel, en dikwijls grijpt dit reeds vóór het opengaan der bloem plaats. Hierdoor wordt zelfbevruchting verzekerd en kruising bijna volkomen verhinderd.

5° Als men bloemen der beide vormen met gaas omhult en aldus het insectenbezoek verhindert, constateert men dat de bloemen der var. arvensis na 2-3 dagen verwelken en alle een dikke vrucht voortbrengen, waarin talrijke kiembare zaden ontstaan. De bloemen der grootbloemige varieteiten (pensée) blijven daarentegen, onder dezelfde voorwaarden, 2 à 3 weken volkomen frisch en verwelken eindelijk, in de meeste gevallen zonder eene vrucht te zetten; bij uitzondering brengen zij kleine zaaddoozen voort, maar de zaden zijn (naar Müller's proefnemingen) niet kiembaar. (Darwin heeft bevonden dat, bij de gekweekte pensée, de goede gevolgen der kruising en de slechte gevolgen der zelfbevruchting zeer sterk uitgesproken zijn (loc. cit., blz. 123-128).

Bij de grootbloemige vormen wordt de bevruchting op de volgende wijze door insecten volbracht (naar Hildebrandt, Geschlechter-Vertheilung bei den Pflanzen, 1867, blz. 53-55, figg.; — hierbij kunnen onze fig. 82,1,2,4,5 geraadpleegd worden, ofschoon zij var. arvensis betreffen): een insect dat honig wil zuigen steekt zijn zuiger door de opening tusschen het onderste en de twee zijdeling-sche kroonbladen in de bloem, en verder tusschen het knopvormig gedeelte van den stijl en den wand van het onderste kroonblad. Hierbij komt de zuiger in aanraking met de stempellip, en deze lip wordt, zooals duidelijk is, naar binnen (naar achteren) omgebogen; tevens wordt de stijl, die aan zijn voet dun en buigzaam is, naar boven gedrukt. (Daardoor wordt stuifmeel uit de helmknoppen geschud.) Nu wordt de zuiger nog dieper in de spoor gevoerd, en hij komt in aanraking met de haren, die bepoederd zijn met stuifmeel dat
uit de helmknoppen gevallen is: de zuiger wordt aldus met stuifmeel beladen. Bij het terugtrekken van den zuiger wordt de stempellip naar voren en naar omhoog gedrukt; aldus wordt de stempelopening ten deele gesloten, en kan het stuifmeel, dat aan den zuiger kleeft, in de stempelopening niet terechtkomen. Als het insect daarna op dezelfde wijze een tweede bloem bezoekt komt de zuiger, die met stuifmeel uit de eerste bloem beladen is, in aanraking met de tepeldragende voorzijde der stempellip, en een zekere hoeveelheid stuifmeel blijft aan de tepels hangen, terwijl de stempellip, door de beweging van den zuiger, naar achteren gedrukt wordt. Bij het terugtrekken van den zuiger wordt de stempellip naar omhoog gedrukt: het vreemd stuifmeel, waarmede hare voorzijde belast is, wordt aldus in de stempelholte geperst, en daarin door het stempelvocht vastgehouden. Kruising door insecten is dus bijna onvermijdelijk, zelfbevruchting door insecten bijna onmogelijk.

Sommige insecten zetten zich op het onderste kroonblad neder; andere (b. v. *Apis, Bombus terrestris*) zuigen onderste boven gekeerd, met den kop naar omlaag, en houden zich aan de bovenste kroonbladen vast. (Zie Müller, *Fertilisation*, blz. 118.)

Darwin (*Cross and Self-Fertilisation*, 1876, blz. 124) doet zeer terecht opmerken dat de bloemen van *V. tricolor* (gekweekte pensée) soms zeer langen tijd van insectenbezoek verstoken blijven. Hij onderstelt dat een zekere gesteldheid der lucht tot de honigafscheiding noodig is: als de bloemen honig afscheiden zou dit ontdekt worden door de insecten, die alsdan de bloemen zouden bezoeken.

Opmerking. De verschillende inrichtingen, waardoor de grootbloemige exemplaren van *Viola tricolor* tot bevruiching door insecten aangepast zijn (o. a. de stempellip, die bij de kruisbevruchting een belangrijke rol speelt), komen bij var. *arvensis* in een rudimentaire vorm voor, en hebben grootendeels opgehouden nuttig te zijn.

Bezoekers: Allotrope Hymenopteren: *Odynerus (Ancistrocerus) oviventris*, tracht zijn kop in de bloem te steken en vliegt na enkele vergeefsche pogingen weg; op de gekweekte pensée, in een tuin te Melle, 29.5.86. — Lepidopteren: *Pieris Brassicae*, steekt zijne slurf in de bloem. De bezochte bloem was echter van honig verstoken; op var. *arvensis*. 22.5.89, Meirelbeke.

![Diagram of Viola odorata](image)

Fig. 83. (Naar de Natuur).

1. **Viola canina**, bloem.
2. **Viola canina**, binnenzijde van een geledigden helmknop.
5. **Viola odorata**, stijl, in de lengte doorgesneden: aan de bovenzijde is de wand dunner en minder stevig dan aan de onderzijde.

Bij deze soort zijn de 2 bovenste kroonbladen naar boven gericht, de 3 onderste daarentegen naar onderen. Het onderste kroonblad draagt donkere strepen (honigmerken). Deze soort verschilt van de vorige door den bouw van haren stijl: deze is aan zijn voet verdund.
maar niet knievormig, en aan zijn top snavelvormig omgebogen (zie fig. 83,5) Het centraal kanaal van den stijl is gevuld met een vocht, dat naar buiten vloeit als de stijl door een insect naar omhoog wordt gedrukt. De onderste wand van den stijl is dikker dan de bovenste wand (zie fig. 83,5). Een insect dat (op dezelfde wijze als hooger, blz. 219, reg. 26, voor V. tricolor beschreven wordt) de bloem bezoekt, zal bij het insteken van den slurf beladen worden met stuifmeel dat uit de helmknoppen valt, en bij het teruggaan zal dit stuifmeel slechts zeer moeilijk in den stempel derzelfde bloem kunnen gebracht worden, daar de stempelopening naar voren gekeerd is. In een tweede bloem zal de stempel met vreemdstuifmeel bevrucht worden, en de zuiger van het insect zal van een nieuw voorraad stuifmeel voorzien worden. Bloem geurend. Afstand van den stempel tot het uiteinde der spoor: 8-9 mill. Honigklieren,enz. zooals bij de vorige soort.

526. **Viola canina** L. — Blauwe bijenbloem. (*Fl. méliitophile tleue*) — Mac Leod, Botanisches Centralbl., XXIII, 1885, en Archives de Biologie, VII, 1886.

De 2 bovenste kroonbladen zijn naar boven gericht; de 2 zijdelingsche meer of minder naar onderen, maar niet zoo duidelijk als bij *V. odorata*; het onderste kroonblad is breeder dan bij *V. odorata*. De 3 onderste kroonbladen dragen donkere strepen (honigmerken). De bloemknop is bleek, iets geelachtig. De stijl is aan zijn voet iets

527. Viola palustris L. — Bijenbloem, bleek lila met violette aderen (Fl. mélittophile, d'un lilas très pâle veiné de violet). Knuth, Blumen und Insekten auf den Nordfr. Inseln, blz. 33.

Onderste kroonblad met violette aderen.

528. Viola silvestris Lmk. — Blauwe bijenbloem (Fl. mélittophile bleue). — Kirchner, Flora 319.

Reukeloos. Stemt in hoofdzaak met V. odorata overeen.

Niet opengaande (cleistogame) bloemen: Behalve de gewone opengaande bloemen brengen verscheidene Viola-soorten vruchtbare cleistogame bloemen voort:

V. odorata (naar Kirchner, Flora, blz. 318): cleistogame bloemen worden in Augustus door de uitloopers voortgebracht. Zij zijn okselstandig, van een 3-5 cm. langen steel voorzien, naar onderen geneigd; zij dringen soms in de losse aarde. Zij hebben een gesloten kelk; 5 kleine bleeke kroonbladen die knopvormig vereenigd en onder den kelk verborgen zijn; 5 meeldraden met kleine helmknoppen, die gesloten blijven. De stuifmeelbuizen worden rechtstreeks in den stempel gedreven. Als de bodem los genoeg is worden de vruchten in de aarde gegraven.
V. canina (naar Kirchner, blz. 320): zoals bij V. odorata, maar de kroonbladen ontbreken bijna volkomen, de meeldraden zijn zeer klein, de twee onderste helmknoppen brengen alleen (weinig) stuifmeel voort. De stuifmeelkorrels drijven hunne buizen door eene opening die zich aan het bovenste uiteinde der stuifmeelhokjes bevindt. De vruchten der cleistogame bloemen worden in kortere tijd rijp dan de vruchten der opengaande bloemen. (Juni-Aug.)

V. silvestris (Kirchner, blz. 319): in den zomer worden vertakte scheuten met kleinere steunblaadjes en cleistogame bloemen voortgebracht. Deze stemmen met de cleistogame bloemen van V. odorata overeen, maar hare kelkbladen zijn afstaande.

Fam. LXI. Droseraceeën.

529. Drosera rotundifolia L. — Kirchner, Flora, blz. 322. — Knuth, Blumen und Insekten auf den nordfriesischen Inseln, 1894, blz. 34.

1° De volgende beschrijving naar Knuth (bloemen op de Nord-Friesche eilanden onderzocht): Bloemen wit, slechts 3 mill. breed, in de meeste gevallen niet opengaande. Als de bloem ontluikt gaan de helmknoppen open, en de stempels zijn tevens geslachtsrijp. De meeldraden staan tusschen de kroonbladen op gelijke hoogte als de uitgespreide stempels. De afstand tusschen de (zijdelings opengaande) helmknoppen en de stempels bedraagt alsdan hoogstens 1/2 mill. Stuifmeel kan dus op de stempels vallen, na het verdrogen der helmknoppen, als de bloeiwijze door den wind gebogen wordt. Door insecten kan zelfbestuiving zoowel als kruising bewerkstelligd worden. — De meeste bloemen blijven echter gesloten: de bestuiving grijpt alsdan van binnen in de bloem plaats, en heeft een rijke zaadvorming ten gevolge.

2° Naar Kirchner: de bloemen gaan slechts 's morgens vroeg open. Behalve de opengaande bloemen zijn er niet opengaande, die vóór de normale bloemen te voorschijn komen. De niet-opengaande bloemen zijn zeer vruchtbaar; zij hebben een kleinere, niet opengaande kroon, een kelk die bijna volkomen gesloten blijft, en helmknoppen die weinig stuifmeel voortbrengen en niet opengaan.

Wij hebben zelf de bloemen niet nauwkeurig onderzocht. Nooit bezoekers gezien.
530. **Drosera intermedia** Hayne. — Naar Knuth (loc. cit., blz. 34) stemt deze soort met de vorige overeen. Groeit onder anderen in den *Sasput* bij Thourout.

Fam. LXII. Hypericaceae.

531. **Hypericum perforatum** L. — Gele pollenbloem. (*Fl. jaune, à pollen*). — Müller, Fertilis. blz. 139.

Meeldraden talrijk, aan hun voet tot 3 groepen vereenigd (drie-broederig); de helmknoppen worden geheel met stuifmeel bedekt, en openen zich successievelijk van het centrum naar den omtrek. De stijlen divergeren; de stempels, die aan hun uiteinde staan, zijn te gelijk met de helmknoppen geslachtsrijp, staan op gelijke hoogte als deze, en komen soms in aanraking met een of meerdere helmknoppen (*spontane zelfbestuiving*). Door insecten kan kruising en ook zelfbestuiving bewerkstelligd worden. Bij 't einde van den bloei worden de kroonbladen en de meeldraden rondom den stamper samengepakt, zoodat spontane zelfbestuiving bij uitblijvend insectenbezoek onvermijdelijk is. — Wordt in ons gebied weinig bezocht, ofschoon de (honiglooze) bloemen zeer in 't oog springend zijn. De kroonbladen zijn ongelijkzijdig, zooals blijkt uit fig. 84.

![Fig. 84. — *Hypericum perforatum* (Naar de natuur).](image-url)

Bezoekers: Langtongige bijen: *Bombus terrestris* L., ♀, 24. 7. 92, Laethem.—Hemiptere Dipteren: *Erystalis*

Bloemen kleiner, bleeker; meeldraden minder talrijk dan bij de vorige soort. Groeit gewoonlijk op lage gronden, of aan waterkanten.

533. *Hypericum humifusum* L. — Gele pollenbloeem. (*Fl. jaune, à pollen*). — Kirchner, Flora.

Bloemen klein. Meeldraden weinig talrijk. De helmknoppen komen met de stempels in aanraking als de bloem zich sluit; dit geschiedt soms als de bloem nog open is. Stemt anders in hoofdzaak met Nr 531 overeen. Nooit bezoekers gezien.

534. *Hypericum quadrangulum* L. — Gele pollenbloeem. (*Fleur jaune, à pollen*). — Kirchner, Flora.

Bloemen goudgeel, met zwarte strepen en stippen. Stemt met Nr 531 overeen, maar de meeldraden zijn minder talrijk.

535. *Hypericum pulchrum* L. — Als voren. (*Comme le No 534*). — Kirchner, Flora.

Water- of moerasplant. Bloemen geel. Ieder kroonblad draagt aan zijne basis eene schub, die in slipjes gedeeld is, en die wellicht honig afscheidt. Tusschen de meeldradenbundels komen daarenboven zeer kleine, kroonachtige, 2spletige klieren (vervormde meeldraden?)
voor, die tegen het vruchtbeginsel aangedrukt zijn, en die wellicht eveneens honig afscheiden. Niet nader onderzocht. Groeit te Bellem (Kraanpoel) en te Thourout (Sasput).

Fam. LXIII. ELATINACEÆN.

537. Elatine Hexandra D. C. — Niet onderzocht.

Fam. LXIV. TILIACEÆN.

— Wordt veel bezocht.

Fam. LXV. MALVACEÆN.

539. Malva silvestris L. — Purper met volkomen verborgen honig. (Purpurin, à nectar complètement caché)
— Müller, Fertilisation.

Honig afgescheiden in vijf groefjes, tusschen de basis der kroonbladen, en beschut door witte haren die op de randen der kroonbladen staan. Meeldraden eenbroederig, met de kroonbladen vergroeid.

Fig. 85. Malva silvestris (Naar de natuur).

1. Bloem in het eerste stadium, in de lengte doorgesneden. — k, k, kelk. — b, b basis der kroon: aan de rechterzijde loopt de doorsnede door het midden eener kroonlip; aan de linkerzijde loopt zij tusschen twee kroonlippen. — h, honigafscheidend groefje: de honig wordt beschut door de haren, die zich aan den rand van het kroonblad boven het honiggroefje bevinden. — v, vruchtbeginsel.

3. Id. laatste toestand. De stijlen zijn onregelmatig uiteengespreid.

Malva rotundifolia (Naar Müller).

540. **Malva rotundifolia** L. — Bleek lila-rose met verborgen honig. (*Rose-lilas pâle, à nectar caché*). — Müller, Fertilisation.

Bloemen kleiner, bleeker. Stemt met de vorige soort overeen, maar bij 't einde van den bloei worden de stempels naar onderen gebogen en met de helmknoppen in aanraking gebracht Spontane zelfbestuiving bij uitblijvend insectenbezoek is aldus verzekerd (Fig. 85.4). (Hetzelfde verschijnsel hebben wij een enkele maal bij *Malva silvestris* waargenomen).

Fam. LXVI. Geraniaceeën.

541. **Geranium Robertianum** L. — Rood met volkomen verborgen honig. (*Rouge, à nectar caché*). — Müller, Fertilisation, blz. 156. — Kirchner, Flora.

Terwijl de 5 epispale meeldraden uitbloeien worden de 5 epipetale naar binnen gebogen, en hunne helmknoppen komen rondom den stempel staan. Intusschen wordt de stijl langer, zoodat de 5 stempels iets boven de met stuifmeel beladen epipetale helmknoppen
gebracht worden. Door de proterandrie en door den stand der uitgespreide stempels gedurende het tweede stadium wordt kruising door insecten bevorderd, maar zelfbevruchting is niet onmogelijk.

Bij regenachtig weder is de bloem soms homogaam en zelfs proterogynisch (zie Nr 546).

Fig. 86. — Geranium Robertianum (Naar de natuur).

1. Bloem in het eerste stadium: de 5 epipetale helmknoppen *k* staan in 't midden der bloem. Een dezer helmknoppen is nog gesloten, de 4 andere zijn open. Stempels uiteengespreid. — De epipetale meeldraden *kr* zijn naar buiten gebogen.

B e z o e k e r s : Langtongige bijen: *Bombus pratorum* L., ♀, 23. 6. 88, Ingelmunster. — Allotrope Dipteren: *Empis pennipes* L., 18. 5. 89, 20. 5. 86, Melle; 6. 6. 91, Nevel. Allotr. Hymen.: *Ocydromia glabricula* Fall., 18.5.89, Melle. — Lepidopt.: *Pieris (Brassicae?)* 19. 5. 90, Bellem.

Honig afgescheiden door 5 klieren, aan de basis en aan de bui-
tenzijde der epipale meeldraden, door wimpers aan de basis der kroonbladen beschut. Bloemen klein. Proterandrisch.

Fig. 87. — Geranium molle.

1. — Voortplantingsorganen als de bloem ontluikt. Stempels (s) in 't centrum vereenigd. Helmknoppen gesloten en van de stempels verwijderd. — h, epipale helmknoppen. (Naar Müller).

4. — Bloem, bij het einde van den bloei. De stempels zijn volkomen uitgespreid. De 10 meeldraden zijn het centrum genaderd, en hunne helmknoppen zijn opengegaan. (Naar _de natuur_).
Als de bloem ontluikt staan de vijf stempels in 't midden der bloem, tegen elkander aangedrukt. De dunne uiteinden der tien meeldraden zijn naar buiten gebogen: de epipetale helmknoppen zijn verder van het centrum verwijderd dan de episepale. De tien helmknoppen zijn gesloten. Thans worden de vijf episepale meeldraden _successievelijk_ naar binnen gebogen; hunne helmknoppen worden daardoor boven de stempels gebracht en gaan open. Dit eerste _σ_ stadium duurt echter niet lang: alvorens de episepale helmknoppen alle vijf zijn opengegaan beginnen de stempels zich uiteen te spreiden; zij nemen (meer of minder regelmatig) tusschen de 5 helmknoppen plaats en spontane _zelfbevruchting_ kan aldus plaats grijpen. Terwijl de stempels zich steeds wijder uiteenspreiden beginnen de 5 epipetale meeldraden zich op hunne beurt naar binnen te buigen en open te gaan. Eindelijk staan de 10 helmknoppen tusschen en een weinig boven de stempels: insecten kunnen alsdan _zelfbevruchting_ even goed als kruising bewerkstelligen.

In de zeeduinen te Blankenberghe komen _♀_ bloemen voor, waarvan de meeldraden _ledige_ helmknoppen dragen. De helmdragers dezer onvruchtbare meeldraden worden, evenals in de gewone _♀_ bloemen, naar binnen gebogen, ofschoon deze beweging volkomen nutteloos is. Dit verschijnsel is een merkwaardig voorbeeld van de overerving eener levensverrichting die doelloos geworden is (vergelijk met Nr 441, 459, _en z._). — De onvruchtbareheid der meeldraden is meer of minder volkomen, zoodat talrijke _overgangsvormen_ (soms bij één exemplaar) tusschen _♀_ en _♀_ bloemen voorkomen.—Te Gent hebben wij individuen aangetroffen, waarvan de meeldraden ten deele kroonbladachtig en meer of minder onvruchtbaar waren.

Bloemen nog kleiner en bleeker dan bij Nr 542. De 5 episepale meeldraden dragen alleen helmknoppen en hebben ieder eene honigklier aan hun voet. Als het bloempje ontlukt zijn de meeldraden tegen den stamper aangedrukt. De 5 stempels zijn reeds over de helft hunner lengte uiteengespreid, en hunne tepelzijde is naar boven gekeerd. De 5 helmknoppen zijn nog gesloten en staan in de hoeken tusschen de stempels en iets lager dan deze. In dit stadium is de bloem Φ, zoodat kruisbevruchting alleen mogelijk is.

Daarna gaan de helmknoppen open: zij bedekken zich aan weerszijden met stuifmeel, en tevens spreiden de stempels zich steeds meer uiteen. Helmknoppen en stempels komen met elkander in aanraking en spontane zelfbestuiving (bij uitblijvend insectenbezoek) is onvermijdelijk.

Eindelijk vallen de helmknoppen af, en bij 't eind van den bloei heeft de bloem soms hare 5 helmknoppen verloren, terwijl de stempels nog frisch uitzien, maar zelfbestuiving is alsdan reeds volbracht.—De bloem doorloopt hare successieve stadiën in korterentijd dan G. molle. — G. pusillum en G. molle komen vaak op dezelfde groeiplaatsen dooreengemengd voor. Nooit bezoekers gezien.

Proterogynisch met lang levende stempels. De bloemen gaan, zelfs bij helderen zonneschijn, slechts trechtervormig open. Bij het opengaan der bloem zijn de stempels volkomen uiteengespreid; de helmknoppen staan dicht bij de stempels en zijn nog gesloten. Daarna gaan de helmknoppen successievelijk open, en spontane zelfbestuiving is onvermijdelijk. Wordschier nooit bezocht.

545. Geranium columbinum L.

Wij hebben deze soort in ons gebied nooit aangetroffen. Volgens
Schulz (Beiträge II, blz. 185) zwak proterandrisch, gynomonoecisch en gynodioecisch.

In ons gebied zijn de bloemen intensief purper, gewoonlijk met een donkere vlek op de beide bovenste kroonbladen (var. *pimpinellifo lium* Willd.) Deze vlekken worden als honigmerken beschouwd (zie daarover o. a. Knuth, loc. cit.). In onze zeeduinen heeft *E. cicutarium* schier altijd bleek-purpere bloemen. De bloemen staan schuins. De beide bovenste kroonbladen zijn korter, maar doorgaans iets breder dan de 3 onderste. De 5 epipetale meeldraden dragen geen helmknoppen. De 5 episepale meeldraden hebben een donkere honigklier *h* aan hun voet. De nagel van ieder kroonblad is aan weerszijden voorzien van een zeker aantal wimpers. Als de honigafscheiding gering is wordt iedere klier beladen met een druppel waterhelderen honig, die onder de hoogervermelde wimpers verborgen wordt. Als de honigafscheiding aanzienlijker wordt neemt de druppel aan omvang toe; hij wordt soms zoo groot, dat hij degeheele ruimte tusschen de wimpers der beide aangrenzende kroonbladen inneemt, en (door capillariteit) tusschen deze wimpers hangen blijft. Dit is vooral het geval met den honigdruppel der bovenste klier (tusschen de beide gevlekte kroonbladen), die groter is dan de 4 andere, en in sommige gevallen alleen honig afscheidt. De bloemen worden als duidelijk proterandrisch beschreven. In het eerste stadium zijn de 5 meeldraden (met gesloten helmknoppen) naar buiten gebogen. De stempels staan in 't centrum der bloem (fig. 88,1). De meeldraden worden nu één voor één naar binnen gebogen, en tevens gaan hunne helmknoppen aan de buitenzijde open. De bovenste meeldraden komen eerst aan de beurt; daarna volgen de beide onderste. In de door ons onderzochte bloemen (Melle) waren de stempels *bij regenachtig weder* uitgespreid en geslachtsrijp alvo-
rens de eerste helmknop was opengegaan: de bloemen waren dus
duidelijk proterogynisch. (fig. 88, 1). Als wij dergelijke bloemen in
eene warme kamer brachten gingen de helmknoppen onmiddellijk
open. De bloemen ontluiten gewoonlijk in den vroegen morgen: als
de atmosfeer droog is gaan de helmknoppen in korten tijd open, en
de bloem is proterandrisch. Als de atmosfeer daarentegen vochtig
is blijven de helmknoppen langer gesloten, de stempels worden
geslachtsrijp alvorens de helmknoppen opengaan (of alvorens al de
helmknoppen zijn opengegaan), en de bloem is proterogynisch
(of homogaam). De volgorde waarin de ♂ en de ♀ organen
geslachtsrijp worden hangt hier grootendeels van de uiterstijnde
omstandigheden af: het opengaam der helmknoppen wordt door
den toestand der atmosfeer verhaast of vertraagd, terwijl het
opengaan der stempels van den toestand der atmosfeer grooten-
deels onafhankelijk is. (Dit is ook met Nr 41 het geval).

Fig. 88.—Erodium cicutarium (Naar de natuur).
1. Bloem in het eerste stadium (regenachtig weder). — De stempels zijn uitge-
spreid, de meeldraden naar buiten gebogen, met gesloten helmknoppen. Aan
de basis van iedereen meeldraad een zwarte honigklier. De bovenste honigklier
heeft een grooten honigdruppel afgescheiden, die achter den bovensten meel-
draad, tusschen de wimpers der beide gevlekte kroonbladen hangt (4. 10. 92).
2. Voortplantingsorganen in het laatste stadium. — m, epipetale meeldraad
zonder helmknop. — h, honigklier (15. 9. 93).
Wij hebben hooger de waargenomen verschillen aan den *vochtigheidsgraad* der lucht toegeschreven: dit is waarschijnlijk niet de eenige factor. Temperatuur, licht enz. spelen hier ongetwijfeld eene rol, maar uit onze waarnemingen blijkt, in ieder geval, dat de dichogamie bij deze soort niet gefixeerd is, en niet als een *aanpassing tot kruisbevruchting* kan gelden.

Bij andere planten doen zich ongetwijfeld verschijnselen van gelijken aard voor: bij een aantal Aalsnagereën zijn de bloemen nu eens *proterandrisch*, dan weder *homogaam* of *proterogynisch*. (Zie § 453, 454, 457). Schulz, die met veel zorg de verschillen heeft geconstateerd, die zich met betrekking tot de dichogamie bij een en dezelfde soort kunnen voordoen, spreekt meermalen van bloemen die *proterandrisch of homogaam zijn*, ofwel die *homogaam, zwak proterandrisch of zwak proterogynisch zijn*, enz. en andere bloemenbiologen hebben eveneens van dergelijke gevallen gewag gemaakt. — De bloem van *Saponaria*. die wij hooger hebben afgebeeld, (fig. 60) werd bij regenachtig weder onderzocht: hier was de proterandrie volkomen behouden, maar de bewegingen der helmdragers na het ontlasten van het stuifmeel waren onvolkomen (zie de verklaring van § 69,1).

Het is belangrijk op deze feiten de aandacht te roepen, want het kan gebeuren dat een soort die, in eene bepaalde streek, b. v. als homogaam beschreven wordt, in een andere streek, als *dichogam* beschreven wordt. Door dergelijke verschillen in de beschrijvingen kunnen wij tot de meening worden gebracht, dat er in ieder van de beide streken een verschillende *varieteit* bestaat, terwijl het waargenomen verschil uitsluitend kan afhangen van de omstandigheden waarin de bloemen werden onderzocht.

Bij het einde van den bloei worden de helmdroppen tegen de stempels aangedrukt (fig. 88,2): bij uitblijvend insectenbezoek wordt zelfbestuiving aldaar verzekerd.

Indien de bloem veel insectenbezoek ontvangen heeft, zijn de helmdroppen bij 't einde van den bloei (ten gevolge van de bewegingen der insecten) doorgaans afgevallen.

B e z o e k e r s: Langtongige bijen: *Apis*, talrijk, kop met stuifmeel bepoederd; beperkt zich gewoonlijk bij het zuigen van den grootsten honigdruppel (tusschen de beide bovenste kroonbladen); zuigt soms daarenboven één der zijdelingsche of de beide zijdelingsche honigdruppels, maar nooit worden de beide *onderste* honigklieren door het insect aangeraakt; 20. 5. 88 en 1. 6. 88, Gentbrugge; 11. 9. 91, Meyghem. *Bombus terrestris*, 9, zuigt slechts één honigdruppel uit iedere bloem, maar vliegt zoo vlug van de eene bloem naar de andere, dat wij niet hebben kunnen constateeren welke honigdruppel door dit insect gezogen wordt; 20. 5. 88, Id. De vorige waarnemingen werden (20. 5. 88) bij zeer gunstig weder gedaan: de honigafscheiding was aanzienlijk, de honigdruppels glisten en den zonneschijn,

FAM. LXVII. OXALIDACEEËN.

Schaduwplant, met tweeërlei bloemen.

OPENGAANDE BLOEKEN (April-Mei): Kroonbladen wit met violette aderen en een gele vlek aan hunne basis boven de honigbehouders. Ieder kroonblad heeft aan weerszijden boven den nagel een vleezigen uitwas, dat met de filamenten der meeldraden in aanraking is, zoo dat er op den bodem der bloem 5 epipetale kuiltjes ontstaan, waarin de honig verzameld wordt. Meeldraden 10, eenbroederig, tweeërlei : 5 lange en 5 korte. Stijlen 5, evenlang als of langer dan de lange meeldraden.

NIET OPENGAANDE (CLEISTOGAME) BLOEKEN KOMEN NA DE GEWONE opengaande bloemen (Mei) voor den dag. Zij hebben een korteren,
haakvormig omgebogen steel en zij zijn gewoonlijk tusschen mos, enz. verborgen. Zij zien als gesloten bloemknoppen uit; de kroonbladen zijn eirond en gedraaid; de helmknoppen der 5 buitenste meeldraden zijn zeer klein, die der 5 binnenste zijn kleiner dan in de opengaande bloemen.

Bij de door ons onderzochte exemplaren (Melle) waren de opengaande bloemen onvruchtbaar, de niet opengaande daarentegen vruchtbaar.

548. *Oxalis stricta* L. — Geel met half verborgen honig. *(Jaune, à nectar partiellement caché).*

De bloemen stemmen in hoofdzaak met de opengaande bloemen van *O. acetosella* overeen, uitgenomen wat de kleur betreft. De helmknoppen der 5 lange meeldraden staan nagenoeg op gelijke hoogte als de stempels en zijn met deze in aanraking, zodat spontane zelfbevuizing onvermijdelijk is. Zelfvruchtbaar.

Opmerking: Vele soorten van het geslacht *Oxalis* zijn trimorph, d. w. z. dat zij zich voordoen in drieërlei exemplaren : a) met langstijlige, b) met middelstijlige en c) met kortstijlige bloemen (vergelijk met *Lythrum salicaria*). In de hooger geciteerde verhandelingen van HILDEBRANDT worden de bloemen van talrijke *Oxalis*-soorten en de resultaten der verschillende (legitieme of illegitieme) bevuchtingswijzen beschreven. Zie hooger, Botan. Jaarboek, V, 1893, blz. 201.

Bij *O. acetosella* en *stricta* werden (in onze streken) de hooger beschreven vormen tot nog toe alleen waargenomen.

Fam. LXVIII. LINACEEËN.

549. *Linum catharticum* L. — Wit met half verborgen honig. *(Blanc à nectar partiellement caché).* — MÜLLER. *Fertilisation*, blz. 147.

Bloem klein, homogaam De 5 helmknoppen en de 5 stempels staan op gelijke hoogte. De helmknoppen worden geheel met stuifmeel bedekt : als de bloem ontluikt staan zij (althans bij helder weder)
op een zeker afstand van de stempels, zodat spontane zelfbestuiving niet kan plaats krijpen. Door insecten kan zelfbestuiving even- goed als kruisbestuiving bewerkstelligd worden.

550. **Radiola linoides** Gmel.

Gewoonlijk eenhuizig. Bloemen in trosvormige, hangende, veel-bloemige inflorescentiën. De ♂ bloemen 1-2 cm. lang gesteeld, in typische gevallen met 5 kelkslippen en 5 smallere, kortere, kelkachtige kroonslippen die met de kelkslippen afwisselen (vaak iets onregelmatig). Op den bodem der bloem een dikke, groene, vleezige ring. Meeldraden veel langer dan het bloemdek, doorgaans 8 (soms 9-10) in getal, op den vleezigen ring ingeplant. Aan de buitenzijde van den voet van ieder meeldraad vertoont de vleezige ring een groefje. In 't centrum een onvolkomen stamper, die zich voordoet als een kwastje van witte haren (*1e stadium*? zie verder), ofwel als een wit behaard knobbeltje (vruchtbeginsel), dat aan zijn top twee meer of minder geaborteerde stijlen draagt (*2e stadium*?)

De ♀ bloemen stemmen met de ♂ overeen wat de bloembekleed-selen en de honigklier betreft. De meeldraden der ♀ bloemen hebben zeer korte filamenten, en hunne helmknoppen gaan niet open. Een stijl die aan zijn top in tweeën gedeeld is. (De ♀ bloemen schijnen de proterandrie harer ♂ voorouders te hebben behouden: in het begin van den bloei is de stijl kort en zijne 2 stempels zijn tegen elkander aangedrukt. Later wordt de stijl langer en zijne stempels divergeeren. — Het heeft ons ook geschenen dat de rudimentaire stamper der ♂ bloemen bij het begin van den bloei kleiner is dan bij het eind van den bloei (dient nader onderzocht te worden).

De verdeeling en de volgorde der ontwikkeling der ♂ en ♀ bloe- men in de inflorescentiën vertoont veel verscheidenheid. Gewoonlijk zijn de bloemen beider geslachten in ieder inflorescentie schijnbaar zonder orde doorengemengd: de ♂ bloemen ontwikkelen zich ofwel *voor* de ♀, ofwel *na* de ♀ van denzelfden tros. In zeldzamere gevallen is de eindbloem ♂, de later opengaande bloemen zijn ten deele ♂, ten deele ♀, de laatste bloemen doorgaans ♂. Zuiver ♂ of ♀ trossen komen waarschijnlijk niet voor. Al de trossen van iederen boom behooren doorgaans tot denzelfden vorm. (Hierover werden in ons gebied geen voldoende waarnemingen gedaan).
Fam. LXX. Polygalaceeën.

Bloemen meer of minder horizontaal Kelkbladen 5: het achterste en de beide voorste groen of groenachtig, klein; de 2 zijdelingsche (vleugels) veel groter en kroonachtig. — Kroonbladen 3, nl. een voorste en 2 achterste. Het voorste kroonblad is kielvormig (van ter zijde samengedrukt): zijn eindelingsch gedeelte be (fig. 90) is schuin naar onderen gericht, en eindigt met een tweedeelige gevingerde franje. De twee achterste kroonbladen i en j zijn aan hun top naar boven gebogen; op de middellinie (aan de achterzijde) zijn zij onderling vrij (het een wordt gedeeltelijk door den rand van het ander bedekt, zooals blijkt uit fig. 90, 5), aan weerszijden zijn zij over een gedeelte hunner lengte (fig. 90, 1: tusschen hunne basis en l) met de randen van het onderste kroonblad vergroeid. De 3 kroonbladen zijn aldus vereenigd tot eene buis die van achteren gespleten is. De meeldraden zijn 8 in getal, vereenigd tot 2 vierhelmige bundels die over een gedeelte hunner lengte aan weerszijden met het onderste kroonblad vergroeid zijn, terwijl hunne terminale gedeelten, waartusschen zich het uiteinde van den stijl bevindt, vrij zijn. De helmknoppen zijn twoehokkig en springen met eene porie (eigenlijk twee poriën die tot één vereenigd zijn) naar binnen open. De stijl is aan zijn top lepelvormig (fig. 89, 4): achter het lepelvormig verbreed gedeelte draagt hij aan de bovenzijde een haakvormig uitsteeksel (fig. 89, a) dat aan zijn voet versmald en naar achteren tot een spits verlengd is (fig. 81, 1). Dit uitsteeksel heeft een langronden vorm als men het van boven bezielt (fig. 89, 4). Zijne bovenzijde is bezet met korte haren (stempeltepels), waartusschen een kleverige zelfstandigheid afgescheiden wordt. Boven de lepelvormige holte liggen de 8 helmknoppen op zulke wijze (fig. 89, 2) dat zij hun stuifmeel in deze holte onlasten.
Fig. 90. — *Polygala vulgaris* (naar de natuur).

1. Bloem van ter zijde gezien. — *a*, basis der bloem. — *k1*, bovenste kelkblad. — *k2*, zijdelingsch kroonachtig kelkblad, afgesneden. — *k3* onderste kelkbladen. — *b*, geleding van het onderste kroonblad, tusschen het basaal gedeelte *ab* en het terminaal gedeelte *bc*; het gedeelte *bc* loopt naar voren in een franje uit. — *l*, basis van het *vrij* gedeelte van het bovenste kroonblad *j*. — *i, j*, bovenste kroonbladen.

2. Voorste gedeelte eener bloem. — Het voorste gedeelte van het kroonblad *j* werd weggenomen, het kroonblad *i* is behouden. — *b*, geleding. — *g*, omgebogen rand van het onderste kroonblad; de beurs (boven *g*) is gedeeltelijk onder het kroonblad *i* verborgen (zie den text).

Voorste gedeelte van het onderste kroonblad van boven gezien.— b, d, e, c, g, zooals in 3 — p, stuifmeel in het lepelvormig gedeelte van den stijl — h, uitsteeksel van den stijl (= a in fig. 89).

Fig. 89. — Polygala vulgaris (naar Hildebrandt, Bot. Zeit., 1867).

1. — Stijl van ter zijde gezien. — a, uitsteeksel (= h in fig. 90).
2. — Bovenzijde van den stijl. — h, helmknoppen.
3. — Stijl met de helmknoppen (zooals in 2), van ter zijde gezien.
4. — Bovenzijde van den stijl, nadat de helmknoppen h hun stuifmeel p in de lepelvormige holte van den stijl hebben onlast.
5. — Bovenzijde van het eindelingsch gedeelte van het onderste kroonblad, met de gevingerde aanhangselen en de beurs bb, waarin het voorste lepelvormig gedeelte van den stijl en de helmknoppen verborgen zijn.
6. — Voortplantingsorganen, van ter zijde: de helmknoppen hebben zich teruggetrokken, en het uitsteeksel a is van achteren met vreemd stuifmeel beladen. (Na een insectenbezoek).
7. — Stijl, van ter zijde: spontane zelfbestuiving bij uitblijvend insectenbezoek.

Het uitsteeksel a heeft zich naar voren gebogen, en is met het stuifmeel p (vergelijk met 4) in aanraking gekomen.

Na het onlasten van het stuifmeel verschrompelen de helmknoppen en trekken zij zich aan weerszijden terug (fig. 89,4 en 6),
waardoor de met stuifmeel gevulde lepelvormige holte geheel ontbloeit wordt. De lepel en de helmknoppen zitten verborgen in een tweedeelige beurs, die door het eindelingsch gedeelte van het onderste kroonblad gedragen wordt. Deze beurs wordt geheel verborgen door de twee bovenste kroonbladen. Als men deze kroonbladen verwijdert, (fig. 90,2, 3 en 4), ziet men dat de beurs gevormd wordt door de randen van het eindelingsch gedeelte van het onderste kroonblad (hetwelk zich in fig. 90,1 tusschen b en de franje bevindt), die aan weerszijden verdikt en naar binnen gebogen zijn (g), en zich daarna als twee bijna verticale platen verheffen. Deze platen of klep- pen zijn aan de buitenzijde iets convex: haar vrije rand is door een verdikte randlijst versterkt en bestaat uit een bijna verticaal gedeelte fe en een bijna horizontaal gedeelte de. De randen fe passen op de middellinie bij elkander, en vormen aldus een soort van scherpen kam die naar den ingang der bloem gekeerd is. De randen de divergeeren naar achteren, en begrenzen aldus een V — vormige opening. Als men de beurs van boven bekijkt (zoaals in fig. 90,4) ziet men het lepelvormig uiteinde van den stijl en het stuifmeel p dat erin ligt op den bodem der beurs ; de helmknoppen zijn aan weers- zijden onder de kleppe der beurs verborgen, en van achteren wordt de opening der V gedeeltelijk ingenomen door het uitsteek- sel h (1). Het gedeelte (fig. 90,1) van het onderste kroonblad dat de beurs draagt is met het basaal gedeelte ab door een geleding b verbonden. Deze geleding bestaat in hoofdzaak uit een naar binnen gerichte plooi van het onderste kroonblad, en doet aan de geleding van Fumaria denken (zie fig. 76,3).

De kroonbuis is gedeeltelijk met honig gevuld. In fig. 90,5 is de ingang der bloem afgebeeld. Deze ingang wordt van boven begrensd door de twee achterste kroonbladen, waarvan het een i door het ander j wordt bedekt ; hun onderste rand is aan weerszijden naar binnen omgeslagen en verdikt. De ingang wordt volkomen versperd door de hoogervermelde beurs, die donker gekleurd is, en waarvan de vooruitspringende kam e op de middellinie duidelijk zichtbaar is. De V— vormige opening der beurs is onder de bovenste kroonbla- den i en j verborgen : de bloem doet zich dus voor als een volkomen gesloten doos, welke door de bezoekers moet opengemaakt worden.

Een insect dat den honig wil bereiken zet zich op de franje neder

(1) Dit uitsteeksel wordt in fig. 89 door a, in fig. 90 door h aangewezen.
en houdt zich daaraan met zijne pooten vast; het tracht zijne slurf van boven in de bloem te voeren, en drukt daarbij met zijn kop tegen het gewelf \(i\). Daardoor wordt het onderste kroonblad meer of minder naar beneden gedrukt (dit wordt bevorderd door de geleding \(b\); fig. 90,1). Ten gevolge daarvan wordt het voorste gedeelte \(e\) der \(V\) — vormige opening der beurs naar onderen en naar voren gebracht en aldus ontbloot, en de twee kleppen der beurs worden tevens een weinig van elkander verwijderd, op zulke wijze dat de \(V\) nu iets wijder openstaat. Het binnenste der bloem wordt aldus toegankelijk. Het insect kan nu zijn zuiger in de beurs en dieper in de bloem steken en komt daarbij in aanraking met het uitsteeksel \(a\) (1): zijn zuiger wordt ingesmeerd met de kleverige zelfstandigheid welke door \(a\) afgescheiden wordt, maar (naar HILDERBRANDT) niet met stuifmeel bepoederd. Als de zuiger daarna uit de bloem teruggedrongen wordt neemt hij een zekere hoeveelheid stuifmeel uit den lepel mede.

Als het insect de bloem verlaat keert het onderste kroonblad door de veerkracht der geleding \(b\) tot zijn oorspronkelijken stand terug en de bloem wordt opnieuw gesloten (vergelijk met Linaria, de meeste Papilionaceën, Fumaria, enz.). — Als het insect zijne met stuifmeel beladen slurf in een tweede bloem voert, worden eenige stuifmeelkorrels (uit de eerste bloem) bij het uitrekken der slurf door het uitsteeksel \(a\) gelijmd, en de slurf wordt op dezelfde wijze als de eerste maal, met een nieuwenvoorraad stuifmeel uit den lepel beladen.

Kruising door insecten wordt op de hooger beschreven wijze volkomen verzekerd. Bij uitblijvend insectenbezoek grijpt spontano zelfbestuiving op de volgende wijze plaats (naar HILDERBRANDT). Als men de bloemen in een kamer laat bloeien en tegen insecten beschut, ziet men dat de beide vleugelvormige kelkbladen na eenigen tijd samen neon, waardoor aangeduid wordt dat de bevruchting volbracht is (dit geschiedt ook bij ongunstig weder). Men kan daarbij duidelijk waarnemen dat het uitsteeksel \(a\) zich naar voren gekromd heeft (fig. 89,7), en aldus zijne tepeldragende zijde in aanraking brengt met het stuifmeel dat in den lepel ligt.

In ons gebied is \(P. vulgaris\) altijd rose: wij hebben in Vlaanderen

(1) Dit uitsteeksel wordt in fig. 89 door \(a\), in fig. 90,4 door \(h\) aangewezen.
nooit exemplaren met blauwe bloemen gezien (nader te onderzoe-
ken!). Nooit bezoekers gezien.

553. **Polygala depressa** Wend.—Blauwe Bijenbloem. *(Fl. mélittophile bleue).*

Stemt in hoofdzaak met de vorige soort overeen, maar is kleiner.

Bezoekers: Langtongige bijen: *Bombus agrorum* F., ♀, 3. 5. 90, Melle; ♂, talrijk, 18. 5. 90, Bellem. *B. hortorum* L., ♀, 18. 5. 90, Bellem.

Fam. LXXI. Celastraceëen.

554. **Evonymus europaeus** L. — Groenachtig met bloot-
liggenden honig? *(Verdâtre à nectar librement expose).*

Müller, Fertilis., blz. 162; — Kirchner, Flora, blz. 356.

Driehuizig. Honig wordt afgescheiden door een vlezige schijf die den stempel omgeeft.

♀ bloemen proterandrisch: de 4 helmknoppen zijn van den stempel verwijderd; zij worden gedragen door stijve helmdragers en gaan aan de buitenzijde open. Alsdan zijn de stempellobben nog gesloten: zij gaan verscheidene dagen na de helmknoppen open, en zij sluiten zich opnieuw na de bevruchting. Spontane zelfbestui-
ving is onmogelijk.

♂ bloemen even groot als de ♀; met een stamper die normaal uitziend; zij vormen echter nooit eene vrucht.

♀ bloemen kleiner, met helmknoppen die opengaan, maar zonder stuifmeel.

Deze soort behoort waarschijnlijk niet tot de flora van ons gebied.

Fam. LXXII. Aquifoliaceëen.

555. **Ilex aquifolium** L. — Wit met blootliggenden honig *(Blanc, à nectar librement expose).*

Volgens Schulz (Beiträge II, blz. 192) heeft deze plant (tuinexem-
plaren) ♀ vruchtbare bloemen; volgens Vaucher en Darwin
(SCHULZ, loc. cit.) is zij tweehuizig. Kelk klein, gewoonlijk vierslippig. Kroon vrij groot, doorgaans vierslippig; kroonbuis zeer kort.

In ons gebied is de plant twee- huizig.

De ♂ bloemen hebben een zeer klein bruinachtig vruchtbeginsel, dat aan zijn top een kleine opening vertoont. Deze opening wordt begrensd door 4 lobben (toppen der rudimentaire vruchtbladen?), waarvan er soms 2 tot één grootere lob vereenigd zijn. Zoodra de bloem ontluikt, als de randen der kroonlippen elkander nauwelijks losgelaten hebben, gaan de helmknoppen open. Later wordt de kroon wijd uitgespreid.

De ♀ bloemen hebben een veel groter, groen vruchtbeginsel, met 4 stempels, waarvan er gewoonlijk 2 tot één vereenigd zijn (zie hooger, ♂ bloemen). De helmknoppen zijn ledig.

Honig wordt in de ♂ evenals in de ♀ bloemen op den bodem der bloem (waarschijnlijk door de basis van het vruchtbeginsel, die in de korte kroonbuis verborgen is) afgescheiden. Deze vloeistof wordt aan de basis der kroonlippen verzameld. Als de afscheiding zeer gering is komt de honig aan de keel der kroonbuis in 4 druppels te voorschijn (dit hebben wij in ♂ bloemen waargenomen). Gewoonlijk vloeien de 4 druppels samen.

Nooit bezoekers gezien. (Misschien niet inheemsch.)

FAM. LXXXIII. RHAMNACEÆN.

556. Rhamnus Frangula L. — Witachtige bloem met half verborgen honig. (*Fl. blanchâtre à nectar partiellement caché*). — MÜLLER, Fertil., blz. 163; KIRCHNER, Flora, blz. 363; — SCHULZ, Beiträge, I, blz. 31 en II, blz. 61.

Bloemen gewoonlijk schuin of verticaal naar onderen gekeerd. De bloembodem (kelkbuis) heeft de gedaante van een half-kogelvormigen vleezigen beker, waarin honig afgescheiden en behouden wordt. Aan zijn rand draagt deze beker 5 driehoekige, witachtige kelk- lippen die tijdens den bloei meer of minder naar buiten zijn getrokken. Tusschen de kelk- lippen en aan zijne binnenzijde draagt de rand van den beker 5 kleine, witte, tweelobbige, in tweeën geplooide kroonbladen. Onder ieder kroonblad staat een meeldraad die in den beginne van den bloei aan zijne buitenzijde door het overeenkomstige
kroonblad omgeven wordt (ieder kroonblad heeft als het ware de gedaante van een schelpvormige nis, waarvan de opening naar bin-
en gekeerd is, en waarin de helmknop zit). Helmknoppen aan
weerszijden opengaande; helmdragers kort. Vruchtbeginsel cen-
traal; stijl kort; stempel tweelobbig, lager dan de helmknoppen
(naar Müller).

Als de helmknoppen opengaan zijn de stempellobben nog klein en
waarschijnlijk nog niet geslachtsrijp. Later worden de stempels
groter (Müller zegt viermaal groter) dan bij het begin van den
bloeï. De bloemen zijn dus proterandrisch (de door Schulz in
Thüringen onderzochte exemplaren waren minder volkomen pro-
terandr.). Door insecten wordt gewoonlijk kruising, somwijlen zelf-
bestuiving bewerkstelligd. — Bij 't einde van den bloei verlaten de
helmknoppen hunne nissen: zij worden naar binnen gebogen en
aldus met den stempel in aanraking gebracht (spont. zelfbestuiving).

Schulz heeft opgemerkt dat deze soort tweeërlei bloemen draagt:
1° kortstijlige bloemen, waarin de stempel het niveau der helmknop-
pen niet bereikt; — 2° langstijlige bloemen, waarin de stempel de
basis of het midden der helmknoppen bereikt, of zelfs nog hooger
staat. — De beide vormen schijnen niet door dezelfde exemplaren
gedragen te worden, en op iedere groeiplaats schijnt slechts één
vorm voor te komen (Schulz).

Bezoekers: Langtongige bijen: Apis, talrijk, Mei 94, Gentbrugge; 6. 6. 91, Deurel; 25. 7. 92, Heusden. Bombus
agrum F. ♂, 25. 5. 90, Bellem. — Allotrope Dipteren: Empis
tessellata F., 31. 5. 86, Moortzele. — Coleopteren: Agriotes
pallidulus Illiger, bloemdeelen vretend, 6. 6. 91, Deurel.

557. Rhamnus cathartica L. — Kirchner, Flora, blz 363. — Schulz, Beiträge, II, blz. 185.

Bloemen groenachtig, met rudimentaire kroonbladen, welriekend,
tweehuizig, met overblijfsels van het ander geslacht in iedere bloem.

De ♂ bloemen zijn groter dan de ♀, en hebben een onvolkomen
stamper, met of zonder stempel. Somwijlen zijn stamper en stempel
echter zoo volkomen ontwikkeld, dat het niet mogelijk is die
organen tijdens den bloei van de overeenkomstige deelen der ♀
bloemen te onderscheiden. Later constateert men echter dat de bloem geen vrucht zet.

De ♀ bloemen hebben rudimentaire meeldraden; haar stomper komt in tweeërlei lengten voor (zie Nr 556). — Deze soort hebben wij zelf niet onderzocht.

Fam. LXXIV. Euphorbiaceae.

Euphorbia. Bloemen vereenigd tot kleine schermpjes: ieder schermpje ziet als een bloem (schijnbloem) uit.

Ieder schermpje of schijnbloem wordt omgeven door een klokk- of bekervormig, 8-10-lobbig, kelkachtig omwindsel. De lobben zijn tweeërlei: 1° de eene dragen een eivormige (fig. 91,1, h) of sikkelvormige (fig. 91,3, h) vlezig plaatje, die aan hare bovenzijde honig afscheidt; 2° de andere lobben (fig. 91, o) wisselen met de eerstgenoemde af; en zijn veel kleiner (soms moeilijk te bespeuren) en vliezig. — Binnen het omwindsel treffen wij doorgaans 10 à 20 σ bloemen en 1 ♀ bloem aan. De ♀ bloem bevindt zich in 't centrum: zij bestaat uit een driehokkig gesteeld vruchtbeginsel met 3 stijlen welke elk 2 stempels dragen. Rondom de ♀ bloem zijn de σ bloemen geplaatst: ieder σ bloem bestaat uit een enkel meeldraad, waarvan de helmdrager zelf door een bloemsteltje gedragen wordt (1) (zie fig. 91,3, m). De σ bloemen staan binnen ieder kelkachtig omwindseltje in 4 of 5 groepjes, tusschen welke telkens (op den bodem van het kelkachtig omwindsel) een gewimperd schubbetje wordt aangetroffen.

Ieder schermpje of schijnbloempje gedraagt zich als een proterogynische bloem: gedurende het eerste stadium zijn de helmknoppen gesloten en volkomen verborgen in het kelkachtig omwindseltje (fig. 91,1), terwijl de 3 stijlen met hunne stempels zich boven het omwindseltje verheffen. Later verlengt zich de steel der ♀ bloem (stamper), en daardoor wordt het vruchtbeginsel boven het omwindseltje gebracht; eindelijk buigt de steel der ♀ bloem zich naar buiten, zoodat de stamper buiten den rand van het omwindseltje

(1) Iedere helmknop wordt gedragen door een steel, die nagenoeg op halver hoogte een soort geleding vertoont: het gedeelte dat zich boven de geleding bevindt is het eigenlijke filament of helmdrager, het gedeelte dat zich onder de geleding bevindt is de bloemsteel der eenhelmige bloem.
komt te liggen (fig. 91,3). Gedurende het tweede stadium verheffen zich de meeldraden één voor één (soms enkele te gelijk) boven het omwindseltje, en tevens gaan hunne helmknoppen open. (Zie Heinsius, Bot. Jaarb., IV, 1892, blz. 59).

Fig. 91. — Schijnbloemen (schermmpjes) van Euphorbia. (Naar de natuur.)
1. Euphorbia helioscopia: begin van het eerste stadium — De stijlen s verheffen zich boven het omwindsel.
2. Id., verder gevorderd: het vruchtbeginsel v verheft zich boven het omwindsel.
3. Euphorbia Peplus: begin van het tweede (mannelijk) stadium: de steel van het vruchtbeginsel v heeft zich naar buiten gebogen, en de stamper ligt buiten den rand van het omwindseltje. — De eerste meeldraad m verheft zich boven het omwindsel (de geleding tusschen den helmdrager en den bloemsteel is duidelijk zichtbaar). Aan den ingang van het omwindsel bespeurt men een aantal helmkoppen m' die later successievelijk aan de beurt zullen komen. — h, honigaf scheidend lobben van het omwindsel. — o, vliezige lobben id.
558. **Euphorbia helioscopia** L. — Geel met blootliggende honig. (*Jaune, à nectar librement exposé*). — Kirchner, Flora, blz. 366.

De eerste bloem (voor het gemak zullen wij de scherpjjes nu ook maar zoo noemen) aan t uiteinde der hoofdas, tusschen de stralen van den eersten rang, is zuiver ♂: hare helmknoppen gaan reeds open en hare klieren scheiden honig af als de eindbloemen der stralen van den eersten rang (die doorgaans ten getale van 5 zijn) zich nog in het ♀ stadium bevinden en nog geen honig afscheiden. Als deze 5 eindbloemen der stralen van den eersten rang haar ♂ stadium hebben bereikt bevinden zich de eindbloemen der 15 stralen van den tweeden rang in het ♀ stadium, enz. — Wordt weinig bezocht.—De eerste bloem is vijftallig, al de volgende zijn viertallig.

559. **Euphorbia Peplus** L. — Als N° 558. (Comme le N° 558).

560. **Euphorbia exigua** L. — Als N° 558. (Comme le N° 558).

Wij hebben nooit de gelegenheid gehad het insectenbezoek gade te slaan.

561. **Euphorbia dulcis** Jacq. — Geel, later roodbruin en eindelijk zwartbruin, met blootliggenden honig. (*Jaune, plus tard rouge-brun et enfin brun-noirâtre, à nectar librement exposé*).

Deze soort is nieuw voor ons gebied; zij werd in 1894 te Maria-kerke bij Gent door den heer De Ruyck ontdekt.

562. **Mercurialis annua** L. — Tweehuizig, windbloemig. *(Dioique, anémophile).*

De ♀ bloemen hebben een vruchtbeginsel met 2 stijlen, die aan de
binnenzijde vrij groote, koraalvormige, onregelmatige verhevenheden dragen, en 2 onvruchtbare meeldraden. De ♂ bloemen zijn veel talrijker, met 9-12 meeldraden en een drietallig bloemdek.

Bloempjes groenachtig; de bestuiving geschiedt door den wind. Deze plant wordt, evenals andere windbloemigen, wegens haar stuifmeel toevallig door insecten bezocht.

Fig. 92. — Mercurialis annua (Naar de natuur).

1. Vrouwelijke bloem, begin van den bloei.
2. Id., verder gevorderd. — m, onvruchtbare meeldraad.

Besoeikers: Hemitrope Dipteren: *Syrphus balteatus* Deg. en *Melanostoma mellina* L., beide smvrd., op akkerland, 8. 9. 91, Nevel. (Op dezelfde plaats werd *Polygonum Persicaria* door talrijke insecten bezocht; zie hooger, Nr 422).

Fam. LXXV. Callitrichaceeën.

563. *Callitriche aquatica* Huds. — (Verscheidene soorten en varieteiten.) — Kirchner, Flora, blz. 369.

Waterplanten. De ondergedompelde stengels hebben vrij lange stengelbeden en dragen dunne, teedere, tegenoverstaande bladen. De toppen der stengels bereiken gewoonlijk de oppervlakte van het water: zij dragen drijvende, dikkere, stevigere bladen, welke door de verkorting der stengelbeden tot een drijvende rozet vereenigd zijn.

De plant kan ook op de slib groeien: hare stengels en bladen zijn alsdan steviger en korter.

De bloemen zijn doorgaans alleenstaande in de oksels der bladen, eenslachtig (zeer zelden ♀). De bloemen der onderste bladokseis zijn gewoonlijk ♀, die der bovenste ♂, maar dit is geenszins een
vaste regel. In vele gevallen staat een ♀ bloem tegenover een ♂ (zooals in fig. 93,1 en 4), en dit wordt aan de onderste (ondergedompelde) stengelknoop evenals aan de bovenste (drijvende) waar-ge-nomen. Het heeft ons geschenen dat de luchtstengels die aan de oevers der slooten in de slib groeien meer ♀ bloemen dragen dan de gewone waterstengels, maar onze waarnemingen zijn te deze aanzien niet talrijk genoeg.

Bloemdek ontberekend. Iedere bloem is voorzien van 2 zijdelingsche (transversale, sikkelvormige, witte, teedere, holle steelblaadjes zonder nerven. (Bij vele soorten zijn de ♀ bloemen soms van steelblaadjes verstoken; bij sommige soorten ontbreken zij altijd aan den voet der ♀ bloemen; —naar Eichler, Blüthendiagramme, II, blz. 398). Ieder ♂ bloem bestaat uit één meeldraad : de stevige helmdrager wordt 4-5 mill lang; de vrij groote, gele helmknop gaat aan zijne convexe zijde met een half-cirkelvormige spleet open. De ontwikke-ling van den meeldraad geschiedt zeer langzaam.

Ieder ♀ bloem bestaat uit een zeer kort gesteeld, naakt vruchtbeginsel, dat zelf uit 2 transversale vruchtbladen is samengesteld en 2 stempels draagt. Dit vruchtbeginsel is oorspronkelijk tweehekkig, maar iedere helft wordt (evenals bij de Labiaten) door een insnoering in tweeën gedeeld. De vrucht is een vierdeelige splitvrucht (Eichler), Behalve de gewone eenslachtige bloemen komen ook (zie Eichler, loc. cit.) ♀ bloemen voor : in een volledige ♀ bloem vinden wij de 2 steelblaadjes en den stamper der ♀ bloemen terug, en daarenboven een voorsten en een achtersten meeldraad. In de meeste gevallen ontbreekt echter een der 2 meeldraden; dit is nu eens met den voorsten, dan weder met den achtersten meeldraad het geval. (Wij hebben nooit ♀ bloemen aangetroffen).

(Hier dient nog opgemerkt te worden dat de ♂ zoowel als de ♀ bloemen soms vergezeld worden van groene bladknoppen of van kleine bebladerde takjes, die uit denzelfden bladoksels als de beschouwde bloem ontstrijken).

De bloemen vertoonen geen duidelijke aanpassingen tot een bepaald bestuivingsmiddel. De bloemen (♂ en ♀) welke door de drijvende bladrozetten worden voortgebracht ontwikkelen zich in de lucht, en worden misschien (Kirchner, loc. cit.) bevrucht door de tusschenkomst van insecten die aan de oppervlakte van het water
rondkruipen, terwijl de bestuiving der ondergedompelde bloemen

Fig. 93. — Callitriche aquatica (Naar de natuur, Melle, 13. 6. 94).

1. Stengelknoop, met een σ^+ en een Ω bloem. De σ^+ bloem bestaat uit één meeldraad: de helmknop is nog zeer klein en groenachtig. — De Ω bloem is geslachtsrijp. — sl, stengel, dwars doorgesneden — b_{σ^+}, b_{Ω}, bladen die de afgebeelde bloemen in hun oksel dragen. — h, helmknop. — v, vruchtbeginsel. — s, stijlen (3 mill. lang.) — sb, steelblaadjes.

2. Stijl eener andere Ω bloem: deze stijl was slechts 2 mill. lang.

4. Centraal gedeelte eener drijvende bladrozet, met een σ^+ en een Ω bloem die tegenover elkander staan. — De Ω bloem is geslachtsrijp, maar de helmknop is nog gesloten. De helmdrager is 4 mill. lang. — h duidt de plaats aan, waar een half-cirkelvormige spleet in den wand van den helmknop zal ontstaan. — $b_{\sigma^+}, b_{\Omega}, sb, s$ als voren. — k, eindknop.

5. Opperhuidscellen der steelblaadjes.
onder het water geschiedt. — De bestuiving der ♀ bloemen welke door de (op slib groeiende) luchtstengels gedragen worden kan slechts moeilijk verklaard worden, en nochtans vormen deze bloemen alle eene vrucht. Bestuiving door den wind is niet onmogelijk, maar het stuifmeel wordt in kleine hoeveelheid voortgebracht, de helmdragers zijn stevig (niet buigzaam), en de geheele plant is weinig geschikt om door den wind heen en weer geschud te worden. Door deze kenmerken wijkt Callitriche van de meeste windbloemigen af. De stempels zijn, wel is waar, vrij lang (zoals bij de meeste windbloemigen), maar de stempel tepels zijn klein. Gewoonlijk zijn de ♀ bloemen vóór de ♂ bloemen van denzelfden stengel geslachtsrijp ; daardoor wordt bestuiving door het uitvallen van het stuifmeel uit de helmknoppen op de stempels van denzelfden tak verhinderd.

Ofschoon de bestuiving slechts zeer onvolkomen verzekerd is hebben wij noot mislukte vruchtjes aangetroffen: wellicht grijpt hier apogamie plaats (1).

Vegetatieve vermeerdering zeer actief. De plant overwintert in het water.

FAM. LXXVI. ARALIACEEÍN.

(1) Bij Funkia, Allium fragrans, Citrus, Mangifera, Coelebogyne ilicifolia, enz. ontstaan de kiemen niet uit de eicel, maar in den vorm van uitspruitseel ten koste van cellen der zaadkern (nuellus) die zich in de nabijheid van den kiemzak bevinden. Dit verschijnsel wordt apogamie genoemd (Strasburger).
gewoonlijk kruisbevruchting. Spontane zelfbevruchting is in vele bloemen mogelijk.

In het jaargetijde waarin deze plant bloeit (September-October) zijn er weinig honigrijke bloemen voorhanden: ten gevolge daarvan zijn de bezoekers (Eristalis, Vespa, enz.) doorgaans zeer talrijk.

Bladen lederachtig, glanzig, laag aan de stammetjes of takken hartvormig, vijflobbig, aan de bloeiende takken gaafrandig en eirond (overgangsvormen). Op schaduwrijke plaatsen (in bosschen, enz.) bloeit deze soort gewoonlijk niet.

Fam. LXXVII. Cornaceeën.

Cornus mas L. is misschien niet inheemsch in ons gebied (zie Crépin, Flore de Belgique, 5e édition, blz. 151). De gele bloemen stemmen in hoofdzaak met *C. sanguinea* overeen, maar spontane bestuiving bij uitblijvend insectenbezoek is bijna onmogelijk. Bloeit Maart-April. Wordt in den plantentuin te Gent onder anderen door *Apis mellifica*, *Calliphora vomitoria* en door andere allotrope Dipteren bezocht. Deze insecten hebben wij op 30. 3. 89 waargenomen: zij bleven verkleumd op de bloemen zitten, telkens de zon achter een voorbijrijdende wolk verborgen werd. Zoodra de zon opnieuw verscheen zag men ze van de eine bloem na de andere vliegen.
Fam. LXXVIII. Umbelliferen.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>16</td>
<td>23(24)</td>
<td>20(24)</td>
<td>13</td>
</tr>
</tbody>
</table>

1 soorten.

567. Sanicula europaea L. — Wit of rose met volkomen verborgen honig. (Blanc ou légèrement rosé à nectar caché). — Müller, Weit. Beobacht., I. — Kirchner, Flora, blz. 375. — Schulz, Beiträge I en II.

Schaduwplant. Aan den top van den stengel gewoonlijk (te Melle-bij-Gent) één samengesteld scherm, dat meestal uit een eindelingslanggesteeld hoofdje en een drietal zijdelingsche, eveneens langgesteelde hoofdjes bestaat. De stelen der zijdelingsche hoofdjes dragen vaak 1 of 2 secundaire, kleinere (soms iets geaborteerde) hoofdjes. Ieder hoofdje bestaat uit ♀ en ♂ bloempjes: de ♂ bloempjes 8-25 in getal (volgens Schulz gewoonlijk aan den rand, somwijlen in het midden van het hoofdje), de ♀ bloempjes 1-5 in ge'αl, (doorgaans centraal, soms randstandig; Schulz). Te Melle zijn de ♀ en de ♂ bloempjes vaak zonder orde doorengemengd (volgens Schulz is dit slechts zelden het geval). De ♂ bloempjes kortgesteeld, de ♀ zittend. In ieder hoofdje zijn de ♀ doorgaans vóór de ♂ ontwikkeld: gewoonlijk hebben de ♀ bloempjes reeds hunne meeldraden.
en hunne kroon verloren als de \(\sigma \) hun stuifmeel onlasten. In de beiderlei bloempjes blijven de kroonbladen met hun top naar binnen gebogen totdat zij afvallen (vergel. fig. 94 met den bloemknop van *Heracleum*, fig. 97,1), zoodat hier van een eigenlijk opengaan der bloem geen sprake kan zijn. De honigklier der beiderlei bloempjes heeft de gedaante van een witachtige, ondiepe schotel op den bodem der bloem. De \(\sigma \) bloempjes hebben een kleinere klier dan de \(\varphi \). In de \(\varphi \) bloemen ontspringen de stijlen uit het centrum der honigschotel. — Tusschen de randen der 5 kroonbladen bevinden zich 5 nauwe openingen, die in den beginne, als de helmdraden nog naar binnen gebogen zijn, door deze draden grootendeels versperd worden (op dezelfde wijze als in de helmknop van *Heracleum*, zie fig. 97,1), maar die later vrij worden, als de helmdragers uitgespreid zijn (zie fig. 94). Ook in het centrum bevindt zich een zeer nauwe opening, tusschen de toppen der samengebogen kroonbladen. De honig is derhalve *volkomen verborgen*, en niet blootliggend, zooals daarentegen bij de meeste Umbelliferen (met uitgespreide kroon) het geval is.

Fig. 94. — Sanicula europaea (Naar de natuur).

Tweeslachtige bloem. — \(k \), kroonblad. — \(s \), stijl. — \(o \), \(o \), openingen tusschen de kroonbladen, waardoor de honig kan bereikt worden. De haakjes waarmede het vruchtbeginsel is bezet zijn slechts ten deele geteekend.

De \(\varphi \) bloempjes zijn proterandrisch: vooreerst komen de stijlen buiten de bloem te voorschijn, maar zij zijn alsdan (volgens Schulz) nog niet geslachtsrijp. Daarna worden de meeldraden de eene na de
andere rechtgebogen, en de helmknoppen onlasten hun stuifmeel. Intusschen nemen de stijlen aan lengte toe: zij worden (volgens SCHULZ) geslachtsrijp als de helmknoppen afgevallen of althans geledigd zijn. Eindelijk vallen de meeldraden en de kroonbladen af; de stijlen divergeeren nu wijd, en eindelijk krommen zij zich zoover naar onderen, dat hunne stempels soms met de buitenzijde van het vruchtbeginsel in aanraking komen (SCHULZ).

De φ bloempjes hebben geen stijlen: hun vruchtbeginsel is onvolkomen en niet stekelig, terwijl het onderstandig vruchtbeginsel der σ bloempjes met talrijke, roodachtige, en haakvormige stekeltjes is voorzien. De meeldraden der σ bloempjes stemmen met die der φ bloempjes volkomen overeen.

Petroselinum sativum Hoffm. — Niet inheemsch. — Groenachtig-geel met blootliggenden honig. (Jaune-verdâtre à nectar librement expose.) — φ proterandrische en σ* bloemen. De eindelingsche schermen doorgaans zuiver φ, soms met een of meerdere σ* bloempjes in 't centrum der schermeg. De schermen van den tweeden rang gewoonlijk φ met een zestal σ* bloempjes, soms geheel φ. De schermen van den 3* en van nog hogeren rang zijn gewoonlijk nog rijker aan σ* bloempjes, zelden zuiver σ* of bijna zuiver φ. (Naar SCHULZ, Beiträge II, blz. 82). In ons gebied niet onderzocht.

Schermen minder in 't oog springend dan bij de meeste Umbelliferen, tegenover de bladen staande, zeer kort gesteeld, 7-11-stralig, met ongelijke stralen; schermegs klein, van elkander verwijderd (niet tot een gesloten inflorescentie vereenigd, hetgeen daarentegen met de meeste Umbelliferen het geval is). Kroonbladen aan den top niet ingesneden, meer of minder spits, met een middenerf die aan hunne binnenzijde vrij sterk vooruitspringt. Bloemen φ (onze waarnemingen werden 6-8 Juli 1894 gedaan; wij weten niet of deze soort later eenslachtige bloemen vertoont), volkomen proterandrisch.
Eerste (♂) stadium: als de bloem ontluikt gaan de helmknoppen successievelijk open. De stijlen zijn alsdan nog kort; zij staan niet dicht bijeen (zooals bij de meeste Umbelliferen het geval is; zie b. v. fig. 96 en 97), maar zij zijn aan hunne basis door een kleine tusschenruimte van elkander gescheiden. De top van iederen stijl is naar binnen en naar onderen omgebogen, op zulke wijze dat iedere stijl de gedaante heeft van een half-cirkelvormig staafje. (Door den vorm van den stijl gedurende het eerste stadium verschilt Heliosciadium nodiflorum van al andere ons bekende Umbelliferen; tot ons spijt hebben wij niet kunnen onderzoeken of de beide andere inheemsche Heliosciadium-soorten zich op dezelfde wijze gedragen).

Tweede (♀) stadium: als de helmknoppen geledigd en verdroogd zijn vallen de meeldraden af, en daarna worden de stijlen langer en spreiden zij zich uiteen. Zij worden echter niet volkomen rechtgebogen. Zij divergeeren een weinig, maar hunne toppen (stempels) blijven meer of minder naar binnen gebogen, en worden iets verdikt. Na den bloei, als de kroonbladen afgevallen zijn, spreiden de stijlen zich horizontaal uit: hun basaal gedeelte is alsdan naar boven iets convex, hun terminaal gedeelte naar boven iets concaaf. (Vergel. met fig. 96,2: hier zijn de stijlen over hun geheele lengte naar boven convex).

In ieder schermpje schrijdt het ontluiken der bloemen van den omtrek naar het centrum voort: de buitenste bloemen hebben vaak reeds hunne meeldraden verloren als de binnenste bloemen van hetzelfde schermpje nog niet volkomen ontloken zijn. In ieder scherm ontluiken de bloemen der schermpjes die zich aan den omtrek bevinden iets vroeger dan de bloemen der binnenste schermpjes, maar later bevinden zich al de schermpjes van ieder scherm nagenoeg in hetzelfde stadium.

Als al de bloemen van het schermpje hunne meeldraden hebben verloren worden de stijlen op de hooger beschreven wijze geslachtsrijp: dit schijnt in al de bloemen van ieder schermpje en zelfs in al de bloemen van ieder scherm gelijktijdig of bijna gelijktijdig plaats te grijpen. (Nooit hebben wij een scherm aangetroffen, waarin meeldraden en tevens geslachtsrijpe stempels voorkwamen). Zelfbevruchting onmogelijk; kruisbevruchting is alleen tussen verschillende schermen mogelijk.

Honigafscheiding: De honigklier is vrij groot. Gedurende het
♂ stadium wordt een dun laagje honig afgescheiden. Als de helm-knoppen verdroogd zijn houdt de honigafscheiding op: de bloem is alsdan, uit een physiologisch oogpunt, geslachteloos. Het ♀ stadium is immers ten einde (de meeldraden vallen weldra af), en het ♀ stadium is nog niet begonnen. De bloemen die zich aan den omtrek der schermpjes bevinden blijven een tijd lang in dezen geslachtelozen overgangstoestand: hare meeldraden zijn immers reeds afgevallen, als de binnenste bloempjes van hetzelfde schermpje zich nog in het ♀ stadium bevinden. (Wij weten niet met zekerheid of de binnenste bloempjes eveneens eenigen tijd geslachteloos blijven.) — Als de stijlen geslachtsrijp worden (dit schijnt in al de bloemen van ieder schermpje gelijktijdig plaats te grijpen, zooals hooger werd gezegd) begin de honigafscheiding opnieuw. Als de kroon afvalt houdt de afscheiding definitief op. — De honigafscheiding grijpt dus plaats telkens insecten moeten aangelokt worden.

Bloempjes 2 mill., zwak proterandrisch. Spontane zelfbestuiving mogelijk (Knuth).

571. Heliosciadium repens Koch. — Zooals N° 569. (Comme le N° 569).

Niet onderzocht. Wij hebben nooit levende exemplaren gezien.

572. Aegopodium Podagraria L. — Wit met blootliggende honig. (Blanc à nectar librement exposé).

Evenals vele andere Umbelliferen draagt deze soort ♀ en ♀ bloemen. De ♀ bloemen hebben een goed ontwikkeld vruchtbeginsel en (gedurende het tweede stadium) vrij lange stijlen. De ♀ bloemen hebben dunnere steeltjes en een kleinere vruchtbeginsel; de stijlen ontbreken.

De schermen van den eersten rang bestaan bij krachtige exemplaren schier uitsluitend uit ♀ bloemen. Bij gewone exemplaren
bestaan hunne schermpjes uit ♂ en ♀ bloemen; gewoonlijk vindt men in ieder scherpmpje een ♂ kortgesteelde centrale bloem (in sommige schermpjes heeft deze bloem slechts 1 stijl; zij ontbreekt somwijlen); rondom de centrale bloem staan enkele ♂ bloemen, en rondom deze een groter getal ♂ bloemen. Na den bloei, als de kroonbladen afgevallen zijn, is het verschil tusschen de ♂ bloemen, die alsdan lange stijlen hebben, en de ♂ bloemen, die kleiner en van stijlen verstoken zijn, zeer in 't oog springend.

Schermen van den tweeden rang: bij zeer krachtige exemplaren stemmen deze schermen met die van den eersten rang in hoofdzaak overeen. — Bij gewone exemplaren bestaan de schermen van den 2nd rang en die van hoogeren rang uitsluitend uit ♂ bloemen zonder stijlen. — Als de bloemen der schermen van den 2nd rang opengaan is het scherm van den eersten rang in vele gevallen reeds uitgeblooid.

De ♂ bloemen zijn proterandrisch: de toppen der stijlen steken reeds in 't centrum van den bloemknop naar buiten uit (zoaals in fig. 97,1), maar de stijlen zijn alsdan nog kort en de stempels zijn nog niet geslachtsrijp. — Als de meeldraden afgevallen zijn worden de stijlen langer en uitgespreid, en tevens worden de stempels geslachtsrijp. Als de kroon afgevallen is divergeeren de stijlen nog meer.

Neuropteren: Panorpa, 5. 7. 91, Nevel.

574. Pimpinella magna L. — Zoals N° 573. (Comme le N° 573). — Kirchner, Flora, blz. 380. — Schulz, Beiträge, I, blz. 43 en II, blz. 82.

Zeer zeldzaam in ons gebied. De volgende beschrijving naar Schulz (Duitsland):

♀ en ♂ bloemen op dezelfde exemplaren. — ♀ bloemen doorgaans proterandrisch; als de bloem ontluikt gaan de helmknoppen open, terwijl de stijlen nog niet zichtbaar of slechts 1 mill. lang zijn. Later, als het stuifmeel volkomen of grootendeels onttast is, worden de stempels geslachtsrijp. — De ♂ bloemen hebben gewoonlijk nog stijlen, noch vruchtbeginsel. — Schermen van den eersten rang doorgaans zuiver ♀ ; id. van den tweeden rang doorgaans met 2-4 ♀ bloempjes in 't centrum van ieder schermpje ; id. van den derden rang doorgaans kleiner, veel later bloeiend en zuiver ♂.

In Zuid-Tirol en in de aangrenzende deelen van Italië komen daarenboven exemplaren met ♀ en geslachteloze bloemen voor. — De ♀ bloemen hebben meeldraden die zich bij het begin van den bloei niet uiteenspreiden. De helmknoppen zien vaak normaal uit (doorgaans iets groenachtig-wit in plaats van zuiver wit) en gaan vaak
open, maar de stuifmeelkorrels zijn ten deele geaborteerd. In andere gevallen zijn de helmknoppen kleiner, zonder stuifmeel of met korrels die alle geaborteerd zijn. De kroonbladen spreiden zich zeer laat of in 't geheel niet uiteen. Zij vallen doorgaans laat af; soms zijn zij op de rijpe vrucht nog behouden. — De geslachteloze bloemen staan doorgaans in 't centrum der schermpjes, op dezelfde plaats als de ♂ bloemen bij de gewone exemplaren. Het vruchttbeginsel en de stempels ontbreken, en de helmknoppen zijn in meerdere of mindere mate geaborteerd, zooals in de ♀ bloemen. In ons gebied tot nog toe niet onderzocht.

575. Pimpinella Saxifraga L. — Zooals N° 573. (Comme le N° 573). — SCHULZ, Beiträge, I, blz. 44 en II, blz. 84. — Algemeen in ons gebied. — De volgende beschrijving naar SCHULZ (Duitschland):

♀ en ♀ bloemen op dezelfde exemplaren. — ♀ bloemen sterk proterandrisch. Als de bloem ontluikt zijn de stijlen zeer klein. De stempels worden gewoonlijk geslachtsrijp nadat de helmknoppen afgevallen zijn. — ♂ bloemen zooals bij de vorige soort — Schermen van den eersten rang doorgaans zuiver ♀; id. van den tweeden rang zuiver ♀ of met enkele ♂ bloempjes in ieder schermpje; id. van den derden rang veel later bloeiend, doorgaans zuiver ♂, vooral goed ontwikkeld bij exemplaren die op vochtige plaatsen groeien.

In Zuid-Tirol komen exemplaren met ♀ en geslachteloze bloemen voor, zooals bij de vorige soort.
In ons gebied niet onderzocht.

♀ en ♂ bloemen op dezelfde exemplaren. De ♀ bloemen sterk proterandrisch, zoals bij vele andere Umbelliferen. De ♂ bloemen doorgaans zonder stijlen en zonder vruchtbeginsel. — Schermen van den eersten rang doorgaans zuiver ♀, in enkele gevallen zuiver ♂. In ieder scherm schrijdt de ontwikkeling der bloemen van den omtrek naar het midden vaak zeer langzaam voort, zoodat de vruchten der peripherische bloemen reeds half rijp zijn alvorens de centrale bloemen ontloken zijn. Een gevolg daarvan is, dat de centrale bloemen van het eindscherm en ook van de andere schermen in vele gevallen geen vrucht zetten, ofschoon zij volkomen
normaal (♀) gebouwd zijn. (Hetzelfde doet zich, in meerdere of mindere mate, bij vele andere Umbelliferen voor). De schermen van
den tweeden rang zijn vaak zuiver ♀, of ♀ met enkele ♂ bloemen.
Zelden zijn zij zuiver ♂. De schermen van den derden rang zijn
zuiver ♂. In ons gebied niet onderzocht. Waterplant. 4.

Bezoekers: Allotrope Hymenopteren: Thyreopus cribriatus L., ♀, 29. 8. 88, Gentbrugge. Lissonota bellator
Gr., ♂, 24. 7. 92, Id. Allantus Schaefferi Kl., ♀, 29. 8. 88, Id. — Hemitrope Dipteren: Eristalis tenax L., 29. 8. 88. Id.
E. arbustorum L., 24. 7. 92, 29. 8. 88. Gentbrugge; 23. 8. 87, Drongen. E. pertinax Scop., 29. 8. 88, Gent-
brugge. Syrphus Ribesii L., 25. 8. 90, Drongen.—Allotrope
Dipteren: Myobia fenestrata Meig., talrijk, 24. 7. 92,
Gentbrugge. Lucilia Caesar L., 23. 8. 87, Drongen; 29. 8. 88,
Gentbrugge. Cyrtoneura hortorum Fall., 25. 8. 90, Drongen;
talrijk, 29. 8. 88, Gentbrugge. Tetanocera robusta Loew,
♂ en ♀ gepaard, 9. 9. 91, Nevel. — Coleopteren: Rhago-
nychia fulva Scop., 24. 7. 92, Gentbrugge.

577. Sium angustifolium L. — Als voren. (Comme
l’espèce précédente).

Waterplant. Overwintert door wortelstandige knoppen. Niet
onderzocht. Minder verspreid dan de vorige soort.

578. Oenanthe Phellandrium Lmk. — Wit met bloot-
liggenden honig. (Blanc à nectar librement expose).

Proterandrisch (Schulz, Beiträge, II, blz. 190). Waterplant. ♀ of
♀. Schermen kortgesteeld, veelstralig. Kelktenen vrij lang (de
kelktanden en de kroonbladen die naar den rand van het schermpje
gekeerd zijn langer dan die welke naar het centrum van het schermpje
gekeerd zijn). In 1894 (Melle-bij-Gent) waren de eerste bloemen van
den derden rang omstreeks 20 Juni ontloken.

De schermen van den eersten rang zijn zuiver ♀ (al de bloemen
hebben een duidelijk vruchtbeginsel): de bloemen zijn proteran-
drisch. In den bloemknop zijn de stijlen reeds duidelijk zichtbaar:
hunne stempels zijn in ’t centrum van den knop, tusschen de naar
binnen gebogen kroonbladen zichtbaar (op dezelfde wijze als in fig. 97,1). Daarna spreiden de kroonbladen zich uit, en de meeldraden worden successievelijk rechtgebogen en onlasten hun stuifmeel. Somwijlen gaan de helmknoppen open alvorens de meeldraden volkomen rechtgebogen zijn, zoals in fig. 95; somwijlen worden de helmdragers tusschen de kroonbladen naar onderen gebogen als de helmknoppen geledigd zijn. De weersgesteldheid schijnt op deze bewegingen veel invloed te hebben.

De schermen van den tweeden rang bestaan eveneens uit ♀ bloemen.

Fig. 95. — Oenanthe Phellandrium (Naar de Natuur).
Tweeslachtige bloem, mannelijk stadium.

579. Oenanthe fistulosa L. — Als voren. (Comme l’espèce précédente). — Schulz, Beiträge I, blz. 47. — Müller, weitere Beobachtungen, I.

De volgende waarnemingen werden gedaan te Melle-bij-Gent, Juni 1894:

Eindscherm (scherm van den eersten rang) 2-3-stralig, met vrij dikke stralen, zijsschermen (schermen van den tweeden en van hoogeren rang) 3-5-stralig.

Schermen van den eersten rang: stralen 1-2 cm. lang, ongelijk. Ieder schermje bereikt eene middellijn van 1,5-2 cm. als het volkomen uitgespreid is, en bestaat uit een twintigtal peripherische gesteelde σ bloempjes en een zeker aantal centrale, zittende of bijna zittende φ bloempjes. Gewoonlijk zijn de φ bloempjes in ieder schermje talrijker dan de σ. De kroonbladen der σ bloempjes zijn vrij groot (de buitenste groter dan de binnenste); zij worden vlak of bijna vlak uitgespreid. De σ bloempjes hebben een zeer onvolkomen vruchtbeginsel. Als de bloei begint worden de meeldraden successievelijk rechtgebogen en tevens gaan hunne helmknoppen open: alsdan zijn de 2 stijlen in ’t centrum der bloem reeds duidelijk zichtbaar. Later worden deze nuttelooze stijlen veel langer: zij zien volkomen normaal uit, met een duidelijken stempel aan hun top, maar zij blijven nochtans korter en dunner dan de stijlen der φ bloempjes.

De φ bloemknoppen hebben dezelfde gedaante als bij Heracleum (fig. 97, 1): hunne stijlen hebben reeds een zekere lengte bereikt en de stempels kijken in ’t centrum van den knop naar buiten uit. Als de bloei begint worden de meeldraden successievelijk rechtgebogen, en de helmknoppen gaan open. De kroonbladen worden slechts onvol-
komen uitgespreid en blijven tot het einde meer of minder recht-opstaande. De ♂ bloemen houden in dit opzicht het midden tusschen de bloemen van Sanicula (fig. 94), waarvan de bloemkroon tot het einde gesloten blijft, en de bloemen der gewone Umbelliferen (b. v. fig. 97,2) waarvan de kroon vlak uitgespreid wordt. In de ♀ bloemen van Oenanthe fistulosa is de honig half verborgen.

Bij sommige Umbelliferen (Sanicula, Eryngium) zijn de bloemen zittend en tot hoofdjes samengedrongen, en de bloemkroon blijft tot het einde gesloten (fig. 94); — bij de meeste Umbelliferen zijn de bloempjes langgesteeld, en bijgevolg verder van elkander verwijderd (bloemen in schermpjes), en de kroonbladen worden uitgespreid.

Er schijnt dus een correlatie te bestaan tusschen de lengte der bloemsteeltjes en het opengaan der bloemkroon.

De schermen van den eersten rang bij Oenanthe fistulosa vertonen de beide inrichtingen in hetzelfde schermje vereenigd.

Als de 5 helmknoppen hun stuifmeel ontlast hebben worden de stijlen langer en tevens spreiden zij zich uiteen. De meeste helmknoppen blijven tot het einde van den bloei behouden, zoodat spontane zelfbestuiving niet onmogelijk is. De helmdragers zijn lang en dun; de stijlen der ♀ bloemen bereiken eene lengte van meer dan 4 mill. De kelktanden zijn vrij lang.

De schermen van den 2°, 3° en 4° rang zijn schier altijd zuiver ♀.

Te Melle hebben wij, op 22. 6. 94, honderde exemplaren onderzocht: bijna al de schermen van den eersten rang waren open, en vele hadden reeds het laatste stadium bereikt, terwijl de schermen van hoogeren rang geen enkel ontloken bloempje vertoonden. Hieruit meenen wij te mogen besluiten dat de schermen van den tweeden rang en van hoogeren rang volkomen of bijna volkomen nutteloos zijn (vermits zij schier altijd opengaand nadat de ♂ bloemen uitgebloeid zijn). — Te Halle a. S. draagt deze plant zeer zelden zijdelingsche schermen (Schulz). Ook in Zweden schijnt zij zich anders te gedragen dan in onze streken (Areschoug, cit. naar Müller).

B e z o e k e r s : Hemitrope Dipteren: Eristalis (arbustorum ?) talrijk, 23. 6. 94, Melle.

580. Oenanthe peucedanifolia Poll. — Wit met blootliggende honig. (Blanc à nectar librement exposé).

De schermen van den eersten rang hebben zelden meer dan 5 stralen. De schermpjes bestaan uit talrijke ♀ bloemen en enkele langer gesteelde ♂ bloemen aan den rand.
De schermen van den tweeden rang zijn gewoonlijk 6-8 stralig; zij bestaan eveneens uit ♂ en ♀ bloempjes, maar de ♂ randbloempjes zijn over 't algemeen talrijker dan in de schermen van den eersten rang.

De schermen van den derden rang zijn gewoonlijk 7-8 stralig, en zuiver ♂.

De buitenste kroonbladen van de randbloemen der schermpjes zijn groter dan de binnenste, aan hun voet tot een nagel versmald, met ingebogen topslip.

Schermen doorgaans 5-7 stralig, ieder scherpje met ongeveer 4-8 ♀ bloemen (♂ bloemen komen niet voor); homogaam, of iets proterandrisch, maar in dit geval zijn de stempels reeds geslachtsrijp vóór het einde van het ♂ stadium. Spontane zelfbestuiving schijnt dus de regel te zijn. — De lage akkervorm heeft weinig in 't oog springende bloemen, scheidt doorgaans weinig honig af, en wordt betrekkelijk weinig bezocht (SCHULZ).

De exemplaren die wij in ons gebied (Melle, Nevel) als onkruid aan wegen en in moestuinen aangetroffen hebben, droegen tamelijk in 't oog springende schermen, maar werden weinig bezocht. De plant is o.

582. Silaus pratensis Bess. — Geel met blootliggende honig. (Jaune à nectar librement exposé).

Volgens SCHULZ (Beiträge, I, blz. 49) draagt deze plant uitsluitend ♀ bloemen. — Wij hebben zelf deze soort in ons gebied nooit aangetroffen.
583. Selinum carvifolia L. — Wit met blootliggenden honig. (*Blanc à nectar librement exposé*). — SCHULZ, Beiträge, I, blz. 49.

♀ en ♂ bloemen. De ♂ bloemen zijn sterk proterandrisch. In de ♂ bloemen is de stamper (vruchtbeginsel en stempels) bijna volkomen geaborteerd. De schermen van den eersten rang doorgaans zuiver ♀, soms met enkele ♂ bloemen in ieder schermmpje. De schermen van den tweeden rang bloeien doorgaans veel later, en zijn louter ♂, louter ♀ of gemengd. Van de ♀ bloemen (in de schermen van den eersten evenals in die van den tweeden rang) zijn er vaak vele die geen vrucht zetten, en die dus als ♂ bloemen fungeeren, ofschoon de stamper normaal gevormd is.

Wij hebben zelf deze plant in ons gebied nooit aangetroffen.

Schermen groot. Bloemkroon betrekkelijk klein, wit of bleekrose (de rose tint vooral in den beginne van den bloei duidelijk). In 't midden der bloem een vrij groote, tweedeelige schijf, die door de bovenzijde van het onderstandig vruchtbeginsel gedragen wordt, en blootliggenden honig afscheidt. Uit het centrum dezer klier ontspringen de 2 stijlen; rondom deze klier zijn de kroonbladen en de meeldraden ingeplant.

Als de bloem ontluikt zijn de stijlen kort en tegen elkander aangedrukt (fig. 96,1). De meeldraden, die in den bloemknop naar binnen omgebogen zijn, worden successievelijk rechtgebogen, en hunne helmknoppen gaan tevens open (fig. 96,1). Later, als de helmknoppen alle (of bijna alle) afgevallen zijn worden de stijlen iets langer en een weinig uiteengespreid. Na het afvallen der kroonbladen bereiken de stijlen hunne volle lengte en divergeeren zij volkomen, zooals in fig. 96,2 aangewezen wordt.

De voorafgaande beschrijving heeft betrekking op ♀ bloemen (in Vlaanderen onderzocht).

Archangelica officinalis Hoffm. (SCHULZ, loc. cit.) heeft ♀ en

Wij hebben niet onderzocht of Angelica silvestris eveneens ♂ bloemen draagt.

[Fig. 96. — Angelica silvestris (naar de natuur).
1. Tweeslachtige bloem, mannelijk stadium. De meeldraden ontwikkelen zich successievelijk. — De meeldraad m is nog naar binnen omgebogen.
2. Stamper blijkt einde van den bloei.

30
De schermen van den 2ᵉ rang zijn soms zuiver ♀, in vele gevallen zijn de buitenste bloemen der schermpjes alleen ♀, terwijl de binnenste bloemen en de centrale bloom ♂ zijn. Zeer zelden zijn deze schermen geheel ♂.

De schermen van den 3ᵉ rang stemmen in hoofdzaak met die van den 2ᵉ rang overeen; zuiver ♂ schermen zijn hier eveneens zeldzaam.

Het getal der ♂ bloemen neemt toe naarmate de beschouwde schermen van hoogeren rang zijn. De samenstelling van den grond enz. schijnt op het geslacht der bloemen geen invloed te hebben.

De ♀ bloemen zijn proterandrisch. In de ♂ komt een zeer klein overblijfsel der stijlen voor. (De voorafgaande beschrijving hebben wij (met verkortingen) ontleend aan SCHULZ. In ons gebied hebben wij de plant niet onderzocht).

587. **Heracleum Sphondylium** L. — Wit met blootliggende honig. (*Blanc à nectar librement exposé*). — SCHULZ, Beiträge, I. — KIRCHNER, Flora.

Naar SCHULZ en KIRCHNER draagt deze soort geen ♂ bloemen. De bloemen zijn betrekkelijk groot, tot groote schermen vereenigd. De plant wordt 15 dm. hoog.

In fig. 97,1 hebben wij een bloemknop afgebeeld: de meeldraden *m* en de kroonbladen zijn naar binnen gebogen, de stempels *s* steken buiten den bloemknop uit (evenals bij vele andere Umbelliferen) maar in dit stadium zijn zij zeer waarschijnlijk nog niet geslachtsrijp.

Als de bloem ontluikt worden de helmknoppen successievelijk rechtgebogen en hunne helmknoppen gaan open, maar de stijlen zijn nog kort (♂ stadium, fig. 97,2 en 3). In het laatste (♀) stadium divergeeren de stijlen, en hunne stempels worden volkomen ontwikkeld (fig. 97,4).

Bezoekers: Korttongige bijen: *Halictus cylindricus*
Fig. 97. — *Heracleum Spondylium* (naar de natuur).

1. Bloemknop. — h, h, kroonbladen. — s, stempels (niet geslachtsrijp). — m, m, helmdragers (= filamenten der meeldraden).

2. Tweeslachtige bloem, mannelijk stadium.

F., σ, 1. 8. 86, Melle. *H. zonulus* Smith., φ, 24. 6. 88, Ingelmunster. *Sphecodes gibbus* L., φ, 6. 8. 86, Melle. —

Allotrope Hymenopteren: *Vespa silvestris* Scop., niet zeer

+ 588. Daucus Carota L. — Wit met blootliggenden honig. (Blanc, à nectar librement expose). Beyerinck, Nederlandsch kruidkundig archief, 4e deel, 1885, blz. 245. — Staes, Botanisch Jaarboek, I, 1889. — Schulz, Beitritte, I en II.

Fig. 98. — Daucus Carota (naar de natuur). — Exemplaar met witte bloemen. 1. Mannelijke bloem. 2. Tweeslachtige bloem, vrouwelijk stadium. De meeldraden zijn afgevallen.

De volgende beschrijving ontleend aan Staes:

In Vlaanderen treft men exemplaren aan met sneeuwwitte schermen, die dikwijls een of meerdere roode bloemen in het midden van het scherm vertoonden, en andere exemplaren met groenachtig roode of bruine schermen.

Sneeuwwitte schermen: ieder scherpje bestaat doorgaans uit
drieërlei bloemen: l° een zeker aantal randbloemen, met ongelijke kroonbladen. De meeldraden zijn soms alle 5 voorhanden; in vele gevallen zijn zij ten getale van 4, 3, 2, 1, of zij ontbreken geheel. Zij vallen zeer vroeg af, in den regel nadat hunne helmknoppen opengegaan zijn. Soms blijven hunne helmknoppen gesloten. Het vruchtbeginsel en de stijlen zijn volkomen ontwikkeld.— 2° meer naar binnen tref men een zeker aantal † bloemen met een verkrompen vruchtbeginsel aan — 3° in 't centrum doorgaans één groote bloem, die gewoonlijk ♀, somwijlen † of ♂ is. — (Volgens Schulz is het getal der † bloemen gewoonlijk groter in de binnenste schermpjes dan in die welke zich aan den omtrek van het scherm bevinden, en in de schermpjes van hoogeren rang talrijker dan in die van lageren rang. Tweeslachtige bloemen proterandrisch.)

Groenachtig-roode schermen: Vertoont veel verscheidenheid wat de kleur betreft (steenrood, bruin, enz.) de bloemen zijn minder in 't oog vallend dan de witte, en maken den indruk alsof zij reeds uitgeblooid waren. Ieder schermje vertoont tweeërlei bloemen (zie verder). De middelbloem ontbreekt steeds. De kroon valt na den bloei niet af: zij blijft behouden totdat de vrucht rijp is. In vele schermpjes gaan de helmknoppen niet open, en de meeldraden blijven soms langen tijd na den bloei behouden. In andere gevallen (in de randbloemen zoowel als in de meer naar binnen gelegen bloemen) onlasten de helmknoppen stuifmeel. De meeldraden zijn soms in meerdere of mindere mate tot kroonbladen vervormd. (Volgens Schulz spreiden de kroonbladen zich gewoonlijk niet uit, en na den bloei worden zij vaak iets groter).

De bloemen der groenachtig-roode schermen zijn dus: a) ♀ (randbloemen der schermpjes met opengaande helmknoppen); b) ♂ (randbloemen met niet opengaande helmknoppen); c) † (binnenste bloemen der schermpjes: met een onvolkomen vruchtbeg. en opengaande helmknoppen); d) geslachteloos (binnenste bloemen der schermpjes: vruchtbeg. onvolkomen en niet opengaande helmknoppen).

Vele exemplaren verschillen in meerdere of mindere mate van de hier beschreven typische vormen: zie daarover Staes.

Bezoekers: Allotrope Hymenopteren: Crossocerus (Crabro) varius Lep., 2 ♀, 1. 8. 88, Gentbrugge. Thyreopus (Crabro) patellatus Panz., ♀, id. Id. Mellinus arcensis L., ♀,

589. *Torilis Anthriscus* Gmel. — Wit met blootliggende honig. (*Blanc, à nectar librement exposé*). — Schulz, Beiträge, I.

De scherpmpjes hebben in de meeste gevallen ♀ en ♂ bloemen. De ♂ bloemen staan in 't midden: zij zijn half zoolang gesteeld als de ♀, het vruchtbeginsel en de stijlen ontbreken bijna volkomend. De ♀ bloemen zijn sterk proterandrisch.

De ♂ bloemen worden talrijker naarmate de beschouwde schermen van hoogeren rang zijn. Bij zwakke exemplaren zijn de schermen van den 3^{en} rang in vele gevallen reeds zuiver ♂; bij krachtige exemplaren is dit met de schermen van den 4^{en} rang het geval, ofwel er zijn geen zuiver ♂ schermen. (Beschrijving ontleend aan Schulz.)

590. **Scandix pecten-Veneris** L. — Wit met blootliggenden honig. (*Blanc à nectar librement exposé*). — *Schulz, Beiträge*, I en II. — *Kirchner, Flora*.

Fig. 99. — Scandix Pecten-Veneris (naar de natuur).

1. Tweeslachtige bloem (met twee meeldraden, waarvan de hemknoppen bijna geheel geledigd zijn. De overige meeldraden zijn reeds afgevallen).

Exemplaren te Melle onderzocht: Ieder scherm bestaat uit 2 à 3 scherpmpjes. Aan den voet van ieder schermpje een veelbladig omwindseltje, waarvan de meeste blaadjes gespleten zijn. In ieder schermpje doorgaans een zeker aantal ♀ en ♂ bloemen. In de schermen van hoogeren rang zijn de ♂ bloemen doorgaans talrijker en de ♀ bloemen doorgaans minder talrijk dan in de schermen van lageren rang. Soms zijn de schermen van den hoogsten rang zuiver ♂.
De ♂ bloemen zijn kortgesteeld, met een duidelijk vruchtbeginsel hetwelk van een langen snavel is voorzien. De ♀ bloemen zijn lang gesteeld; haar vruchtbeginsel is zeer klein, somtijds (vooral in de schermen van hooger rang) bijna geheel verdwenen. De stijlen onttreken volkomen. In de schermen van den eerstern rang staan de ♂ bloemen doorgaans in ’t midden der schermpjes.

Later (2ᵉ stadium) worden de stijlen geslachtsrijp, langer, en een weinig uiteengespreid, en tevens wordt de honigafscheiding geringer of zij houdt volkomen op. De steeltjes der ♀ bloemen en vooral de snavel van haar vruchtbeginsel worden langer, en nu steken de ♂ bloemen gewoonlijk 1 à 2 mill. boven het omwindseltje uit. Als de stempels geslachtsrijp zijn blijven er gewoonlijk nog eenige recht-opstaande of weinig divergerende meeldraden in de bloem over: indien de helmknoppen alsdan niet volkomen geledigd zijn kan spontane zelfbestuiving in de meeste gevallen plaats grijpen.

Als de ♀ bloemen haar tweede stadium bereikt hebben zijn de ♂ bloemen van hetzelfde schermpje volkomen ontloken. Zij bevinden zich alsdan nagenoeg op gelijke hoogte als de toppen der bladjes van het omwindseltje, dus gewoonlijk iets lager dan de ♀ bloemen en tusschen deze. Zij scheiden veel honig af, terwijl de honigafscheiding der ♀ bloemen grootendeels of volkomen opgehouden heeft.

Later nemen de ♂ bloemen slechts zeer weinig aan lengte toe, terwijl de ♀ bloemen na den bloei zeer lang worden, voornamelijk door de aangroeiing van den snavel, die een lengte van 3 centime-
ters kan bereiken. De bloemkroon blijft langen tijd behouden: als de ♀ bloemen reeds 1 cm. boven het omwindseltje uitsteken hebben zij gewoonlijk, evenals de ♂ bloemen van hetzelfde schermpje, hare 5 kroonbladen behouden, maar alsdan hebben de ♂ bloemen reeds hare meeldraden verloren. In schermpjes waarvan de ♀ bloemen reeds 2 cm. boven het omwindseltje uitsteken hebben deze bloemen doorgaans nog enkele kroonbladen behouden, maar de ♂ bloemen van dezelfde schermpjes hebben alsdan hare kroon geheel verloren.

De honigklier heeft doorgaans de gedaante van een omgekeerden afgeknotted kegel (soms is zij bijna cyndrisch): hare bovenzijde is groen en honigafscheidend, vlak of bijna vlak. Haar zijdelingsche oppervlakte is in den beginne groen, en wordt later rood. De roode kleur kan tot het onderste gedeelte van het orgaan beperkt blijven of zich tot den bovenrand uitstrekken; zij is in de ♀ bloemen doorgaans sterker ontwikkeld dan in de ♂ bloemen.

(Onze exemplaren stemmen niet volkomen overeen met die, welke Schulz en Kirchner hebben bestudeerd).

591. Anthriscus silvestris Hoffm. — Wit met blootliggenden honig. — (Blanc à nectar librement exposé).

— Schulz, Beiträge, I en II. — Kirchner, Flora.

Exemplaren te Melle onderzocht: ieder schermpje is voorzien van een omwindseltje, en bestaat gewoonlijk uit ♀ bloemen aan den omtrek en ♂ bloemen in 't midden.

In de schermen van den eersten rang heeft ieder schermpje doorgaans 5 ♀ bloemen (dit getal wisselt echter af van 1 tot 8) en een zeker aantal ♂ bloemen.

In de schermen van den tweeden rang bestaan de randschermpjes doorgaans uit ♀ en ♂ bloemen, de binnenste schermpjes zijn doorgaans zuiver ♂.

In 't algemeen wordt het getal der ♂ bloemen groter naarmate de schermen tot een hoogeren rang behooren.
Fig. 100. — *Anthriscus silvestris* (naar de natuur).

1. Een schermpje waarin de ♀ bloemen l hunne helmknoppen reeds verloren hebben, maar waarin de stijlen nog niet te voorschijn gekomen zijn.

De ♂ bloemen vertoonden de successieve toestanden harer ontwikkeling:

- a, ♂ bloemknop, teruggeslagen; — b, id. verder gevorderd, rechtopstaande;
- c, ♂ bloem, pas opengegaan, met teruggeslagen meeldraden en gesloten helmknoppen; — c', id.; de bloemsteel heeft zijn definitieve lengte bereikt;
- d, ♂ bloem, verder gevorderd; één der meeldraden is naar boven gebogen, en zijn helmknop is open. — e, ♂ bloem die hare meeldraden verloren heeft (laatste toestand). — (Half-schematisch).

5. Een ander mannelijke bloem, laatste toestand. Hier is het vruchtbeginsel minder volkomen geaborteerd dan in 4, en er zijn 2 stijlen, die echter veel korter zijn dan in de ♀ bloemen.

Al de bloempjes hebben 5 ongelijke kroonbladen, waarvan de buitenste (die naar den rand van het schermpjie gekeerd zijn) langer en breeder zijn dan de binnenste. De ♀ bloemen verschillen van de ♂ bloemen door de volgende bijzonderheden: 1° de kroon der ♀ bloemen is groter dan die der ♂ bloemen; — 2° de ♀ bloemen hebben dikkere stelen dan de ♂ bloemen; bij het begin van den bloei en bij het einde van den bloei hebben de ♀ bloemen langere stelen dan de ♂ bloemen (zie verder); — 3° de ♀ bloemen hebben een vrij groot vruchtbeginsel, dat hooger is dan breed, en waarvan het bovenste gedeelte (snavel) donkergroen en gestreept is; de ♂ bloemen hebben een kleiner of zeer klein, doch duidelijk zichtbaar vrucht- beginsel; — 4° de honigklier der ♀ bloemen is groter dan die der ♂ bloemen.

In den bloei van ieder schermpjie (scherm van den eersten rang) onderscheidt men de volgende stadia:

1° tijdperk: de ♀ bloemen ontluiken; hare kroon spreidt zich uit, en de meeldraden buigen zich weldra tusschen de kroonbladen zoover naar onderen, dat hunne helmknoppen soms met het vrucht- beginsel in aanraking komen. De ♂ bloemen zijn alsdan nog gesloten of onvolkomen geopend, veel korter gesteeld, en soms ten deele teruggeslagen. De stijlen der ♀ bloemen zijn nog niet zichtbaar. De meeldraden der ♀ bloemen worden nu successievelijk naar boven gebogen: de helmknoppen worden aldus boven de honigschijf gebracht en gaan open.

2° tijdperk: de ♂ bloemen gaan op hare beurt de eene na de andere open. Hare kroonbladen spreiden zich uit, hare meeldraden worden tusschen de kroonbladen naar onderen teruggeslagen (evenals in de ♀ bloemen) en daarna opnieuw naar boven gebogen, en de helmknoppen gaan open. Tevens worden de steeltjes der ♂ bloemen langer, waardoor zij op hetzelfde niveau als de ♀ bloemen worden gebracht. De ontwikkeling der bloempjes in ieder schermpjie geschiedt vrij langzaam. In een enkel schermpjie vindt men soms te gelijkertijd 1° ♂ bloemen die nog niet ontloten zijn; 2° ♂ bloemen met uitgespreide kroon en helmknoppen die nog gesloten zijn; 3° ♂ bloemen waarvan de helmknoppen reeds open-
gegaan zijn; 4° een zeker aantal σ en φ bloemen die reeds hare meeldraden verloren hebben. (Fig. 100, 1.)

3° tijdperk : als de φ en de σ bloempjes hare meeldraden hebben verloren komen de stijlen der φ bloemen voor den dag (dit geschiedt eveneens zeer langzaam); tevens nemen de stelen en de vruchtbeginsels der φ bloemen aan lengte toe, terwijl de stelen der σ bloemen niet langer worden. Tengevolge daarvan worden de φ bloemen opnieuw op een hooger niveau gebracht (zie fig. 100, 2). — De σ bloemen, die nu geslachteloos geworden zijn, behouden nog een tijd lang hare bloemkroon en zij dragen nog bij om het scherpje in 't oog vallend te maken; wij weten niet of zij in dit stadium nog honig afscheiden. De σ en de φ bloemen verliezen gewoonlijk hare kroonbladen één voor één en te gelijkertijd. In fig. 100, 3 hebben wij een scherpje afgebeeld, waarvan al de kroonbladen afgevallen zijn.

Na de schermen van den eersten rang komen de schermen van den tweeden rang aan de beurt, daarna de schermen van den derden rang, enz. : op een enkel exemplaar kan men dus al de successieve toestanden bestudeeren.

De talrijke verschijnselen, die gedurende den bloei van ieder scherpje elkander opvolgen, ondergaan den invloed der uitwendige omstandigheden (licht, temperatuur, vochtigheidsgraad, enz.) Ieder van die verschijnselen kan in meerdere of mindere mate versneld of vertraagd worden : de volgorde waarin zij zich voordoen kan dus meer of minder gewijzigd worden. De bloemen van ieder scherpje zouden kunnen vergeleken worden met de leden van een tooneelgezelschap, die de eene na de andere optreden, zich op het tooneel groepeeren en hunne rol spelen. — De hooger gegeven beschrijving werd gemaakt naar krachtige exemplaren, bij helder, warm weder (einde Mei 1894).

Bezoekers: Allotrope Hymenopteren: Pycnocryptus peregrinator Grav., σ, 29. 5. 87, Heusden. Tryphon rutilator Grav., σ, 20. 5. 88; talrijk, σ, φ, 1. 6. 88, Gentbrugge; φ, 5. 6. 87, Destelbergen. — Allotrope Dipteren: Pachyrhina (Tipula) pratensis L., σ, φ, 29. 5. 87, Heusden; σ, 5. 6. 87, Destelbergen. Dilophus vulgaris Meig., 29. 5. 87, Heusden. Bibio marci L., σ, φ, id. Id. Leptis vitripennis

592. **Anthriscus vulgaris** Pers. — Groenachtig wit, als voren. — *(Blanc verdâtre, comme l’espèce précédente).*

In ons gebied hebben wij deze soort nooit aangetroffen. De volgende beschrijving naar SCHULZ, Beiträge, II, blz. 89:

Bloemen klein, homogaam, steeds Ø. Zoohaast de kroonbladen zich uitgespreid hebben buigen de meeldraden zich zoover naar buiten, dat hunne helmknoppen ¼ à ½ mill. van den rand der honigklier komen te staan. Na korten tijd buigen de meeldraden zich opnieuw naar het centrum toe; hunne helmknoppen, die successievelijk beginnen open te gaan terwijl deze beweging volbracht wordt, worden gewoonlijk tegen de volkomen ontwikkelde stempels aangedrukt, zoodat spontane zelfbestuiving onvermijdelijk is. Honigafscheiding gering. Schermen 1-4-stralig, ieder schermje 2-6-bloemig. Wordt weinig bezocht. Zelfvruchtbaar.

Anthriscus Cerefolium Hoffm. (Tuinkervel). Niet inheemsch.
Bezoekers: Allotrope Dipteren: *Anthomyia pusilla* Meig., 22. 6. 88, Ingelmunster. — Coleopteren: *Cantharis fusca* L., id. Id.

593. **Chaerophyllum temulum** L. — Wit met blootliggenden honig. *(Blanc à nectar librement expose).* — SCHULZ, Beiträge, 1.

De Ø bloemen zijn duidelijk proterandrisch. Als de bloem ontluikt (♂ stadium) zijn de stijlen reeds duidelijk zichtbaar, maar zeer kort en tegen elkander aangedrukt. Als de helmknoppen afgevallen zijn
(♀ stadium) worden de stijlen geslachtsrijp: zij worden tevens iets langer en zij komen van elkander los.

Behalve de ♀ bloemen draagt de plant ook ♂ bloemen. De ♂ bloemen hebben een zeer klein vruchtbeginsel; zij worden door dunnere steeltjes gedragen, en er is geen overblijfsel van de stijlen te bespeuren. De schermmpjes die uit ♀ en ♂ bloemen bestaan zijn samengesteld als volgt: 1° in 't centrum één kortgesteelde of zittende ♀ bloem; 2° rondom de centrale bloem een zeker aantal ♂ bloemen; 3° rondom de ♂ bloemen (aan den rand van het schermje) een zeker aantal ♀ bloemen.

Het getal der ♂ bloemen groeit aan naarmate de beschouwde schermen van hoogeren rang zijn. De schermen van den eersten rang zijn soms zuiver of bijna zuiver ♀; de schermen van den derden rang en de binnenste schermmpjes der schermen van den tweeden rang zijn in vele gevallen zuiver ♂.

Vóór den bloei hangen de schermen over, alsof zij verslenst waren.

Fig. 101. — Sedum Telephium (naar de natuur).
Fam. LXXIX. Crassulaceeën.

Als de bloemkroon zich uitgespreid heeft (eenigen tijd na het ontluiken der bloem) gaan de helmknoppen der epipetale meeldraden open. Deze meeldraden staan rechtovereind tusschen de vruchtbladen; de epipetale meeldraden zijn alsdan, evenals de kroonbladen, naar buiten gebogen. Daarna worden de 5 epipetale meeldraden naar binnen gebogen, en hunne helmknoppen gaan open. Alvorens deze helmknoppen verslenst zijn worden de stempels geslachtsrijp. Bij zonnig weder wordt het stuifmeel (naar Müller) door insecten weggehaald Alvorens de stempels geslachtsrijp zijn. Bij ongustig weder, als de bloem geen voldoende insectenbezoek ontvangt, blijven de helmknoppen met stuifmeel beladen, en zelfbestuiving wordt aldus mogelijk.

Bij de door ons onderzochte exemplaren (Melle) waren de stijlen gedurende het eerste stadium reeds naar buiten gebogen, en niet naar binnen, zooals door Müller in zijn fig. 83 afgebeeld wordt. De honigafscheiding is in ons gebied zeer gering, en het insectenbezoek zeer schaarsch. Spontane zelfbestuiving schijnt slechts moeilijk te kunnen plaats grijpen; in vele bloemen worden de epipetale meeldraden niet naar binnen gebogen als zij opengaen. Vegetatieve vermeerdering actief.

595. Sedum Telephium L. — Bleekpurper met half verborgen honig (Violet pâle à nectar partiellement caché).

— Müller, Fertilisation, blz. 253.

Fig. 101. — 1. Bloem. — 2. Bloem in de lengte doorgesneden, geschematiseerd. — st, stempel. — h, honigklier. — m', epipetale meeldraad. — m, epipetale meeldraad.

Bloemen in bloemrijke tuivormige inflorescentiën. Evenals bij
de vorige soort zijn de bloemen proterandrisch: vooreerst gaan de 5 epipetale helmknoppen open, en daarna de 5 episepale. Als de laatste helmknoppen verslenten zijn komen de stempelpetels aan 't uiteinde der stijlen te voorschijn. De kroonbladen en de meeldraden zijn wijd uitgespreid; dientengevolge is spontane zelfbestuiving onmogelijk.

Vruchtbladen 5. Aan de basis van ieder vruchtblad, tusschen dit vruchtblad en het overeenkomstige kroonblad bevindt zich een schub, die aan haar top honig afscheidt. Door insecten wordt gewoonlijk kruisbevruchting, zeldzamer zelfbestuiving bewerkstelligd. (Beschrijving ontleend aan MüLLER.)

De plant heeft onderaardsche knollen en vermeerdert zich vegetatief.

Fam. LXXX. Saxifragaceeën.

Bloemen klein, wit, nu eens zwak proterandrisch, dan weder zwak proterogynisch. Als de bloem proterandrisch is gaan de helmknoppen gedurende het eerste tijdperk van den bloei successievelijk open. Daarna spreiden de 2 stijlen zich uit. — Als de bloem proterogynisch is zijn de stempels geslachtsrijp als de bloem ontluikt; korten tijd daarna gaan de helmknoppen successievelijk open. Zij komen van zelf met de stempels in aanraking, en aldus grijpt spontane zelfbestuiving plaats. — Plant zelfvruchtbaar. Bij regenachtig weder blijven de bloemen gesloten.

De twee hoogervermelde vormen der dichogamie schijnen op verschillende groeiplaatsen voor te komen. (MÜLLER, Fertilis., blz. 244).

Honig wordt afgescheiden door een schijf die zich rondom de basis der stijlen, aan de bovenzijde van het (onderstandig) vruchtbeginsel bevindt.

Wij hebben zelf de bloemen niet onderzocht. De plant is in ons gebied zeer zeldzaam. In de zeeduinen, waa zij daarentegen overvloedig voorkomt, hebben wij nooit bezoekers gezien.

597. *Chrysosplenium alternifolium* L. — Geel met
blootliggend henig. *(Jaune à nectar librement exposé).*
— Kirchner, Flora, blz. 406.

Bloemen klein, vereenigd tot fraaie, tuilvormige, vlakke inflorescentiën. Stengel slechts 10-15 cm. hoog.

Fam: LXXXI. Onagraceeën.

Bloemen vrij groot, in fraaie rechtopstaande trossen. Honig afgescheiden door een groene klier, rondom de basis van den stijl, op den bodem der kelkbuish (vruchtbeginsel onderstandig). De onderste gedeelten der helmdragers vormen samen een hollen kegel, waarin
de basis van den stijl en de honig verborgen zijn. De stijl komt aan
den top van dien kegel te voorschijn, en draagt op die plaats haren,
die den honig tegen het binnendringen van regengruppels beschut-
ten; insecten kunnen tusschen de helmdragers den honig bereiken.
Gedurende het eerste tijdperk steken de meeldraden naar voren
uit; zij vormen een landingsplaats voor de insecten, en de boven-
zijde hunner helmknoppen is met stuifmeel bedekt. De stijl is alsdan
naar onderen gebogen, en zijne vier stempels zijn tegen elkander
aangedrukt.
Gedurende het tweede tijdperk zijn de meeldraden verslenst en
naar onderen gebogen, en hunne helmknoppen zijn geledigd. De stijl
wordt langer; hij steekt nu naar voren uit, en zijn vier stempel-
armen hebben zich uitgespreid en omgebogen.
Kruiisbevruchting door insecten is dus onvermijdelijk; spontane
zelfbestuiving is daarentegen onmogelijk.
Zeer zeldzaam in ons gebied.

![Fig. 102. — Epilobium angustifolium (naar de natuur).](image1)
Links: Bloem in het eerste stadium: stempelarmen gesloten, 4 helmknoppen
reeds open.
Rechts: Bloem in het tweede stadium: stempelarmen uitgespreid, meeldraden
verslenst.

599. *Epilobium hirsutum* L. — Rose met volkomen
verborgen honig. (*Rose, à nectar complètement caché*).—
Müller, Fertilis., blz. 263. — Kirchner, Flora, blz. 413.

Naar Kirchner zijn de bloemen gewoonlijk ♂. De exemplaren
met zeer groote bloemen zijn sterk proterandrisch; de stijlen zijn
zoo lang dat zelfbestuiving onmogelijk is. — De exemplaren met
middelmatige bloemen zijn gewoonlijk proterandrisch; de stempel-
armen buigen zich soms zooverre naar onderen om, dat zij met de helmknoppen der 4 lange meeldraden in aanraking komen: spontane zelfbestuiving bij uitblijvend insectenbezoek grijpt aldus plaats. — Bij de kleinbloemige exemplaren is de stijl niet langer dan de lange meeldraden; de bloemen zijn homogaam, en spontane zelfbestuiving is onvermijdelijk.

De exemplaren die wij te Melle hebben onderzocht vertoonen eveneens veel verscheidenheid. — Bij sommige exemplaren gaan de helmknoppen van binnen in den bloemknop open. De helmknoppen der 4 langere (episepale) meeldraden zijn met het onderste gedeelte der stempels in aanraking, en gaan eerst open. De stempelarmen zijn alsdan tegen elkander aangedrukt. Niet alleen hunne geheele binnenzijde, maar ook een groot gedeelte hunner buitenzijde is met stempeltepels bezet (fig. 103,2). Als de bloemknop gereed staat open te gaan schijnen de stempeltepels volkomen te zijn: spontane zelfbestuiving grijpt dus zeer waarschijnlijk vóór het ontluiken der bloem plaats. In vele gevallen hebben de 4 stempelarmen een ongelijke lengte. — Bij andere exemplaren gaan de helmknoppen open als de bloem ontluikt, terwijl de stempels alsdan met hunne binnenzijde tegen elkander aangedrukt zijn; hunne buitenzijde is van stempeltepels verstoken: de bloem bevindt zich dus in haar mannelijk stadium. Later spreiden de 4 stempelarmen zich uit, maar in dezen toestand is spontane zelfbestuiving onmogelijk, want de stijl is gewoonlijk naar ééne zijde gebogen, en merkelijk langer dan de lange meeldraden. Bij het einde van den bloei (fig. 103,1) worden de stempelarmen naar onderen teruggeslagen; in sommige bloemen komt hunne binnenzijde alsdan met de helmknoppen der lange meeldraden in aanraking (spontane zelfbestuiving). In de meeste bloemen is de stijl echter zoó lang, dat de vrije uiteinden der teruggeslagen stempelarmen zich boven de helmknoppen der lange meeldraden bevinden; in dit geval is spontane zelfbestuiving onmogelijk.

Honig wordt, evenals bij de overige Epilobium's, op den bodem der kelkbuis afgescheiden, en rondom de basis van den stijl ver zameld. Aan de basis der helmdragers draagt de kelkbuis van binnen een krans van haren, waarvan de toppen met den centralen stijl in aanraking zijn. Deze haren vormen een honigdeksel, en tevens een verzamelborstel voor het stuifmeel, dat uit de helmknoppen op deze haren valt. Ofschoon de bloemen vrij groot zijn (20 à 30 mill.)
worden zij (te Melle) door insecten weinig bezocht. Stuifmeel zooals bij *E. roseum*.

Fig. 103. — *Epilobium* (naar de natuur).

600. **Epilobium roseum** Schreb. — Bleekrose met volkomen verborgen honig. (Rose pâle à nectar partiellement caché).

Bloemen veel kleiner dan bij de vorige soorten. — Alvorens de bloem ontluikt gaan de helmknoppen (althans die der 4 lange meeldraden) open; zij bevinden zich op gelijke hoogte als de stempelknots, en ontlusten hun stuifmeel op dezen (spontane zelfbestuiving). Bij het begin van den bloei zijn de 8 helmknoppen open; de helmknoppen der 4 epipetale (lange) meeldraden staan alsdan bij sommige exemplaren op gelijke hoogte als de geslachtsrijpe stempel, maar zijn van dezen verwijderd; de helmknoppen der 4 epipetale meeldraden staan $\frac{1}{2}$ à 1 mill. lager dan de stempel, maar zij zijn minder uitgespreid dan de 4 eerstgenoemde. Spontane zelfbestuiving is alsdan onmogelijk; door insecten kan zelfbevruchting evengoed als kruisbevruchting bewerkstelligd worden. — Bij andere exemplaren kleven de helmknoppen der 4 lange meeldraden aan de stempelknots nadat zij hun stuifmeel hebben ontlust. Later worden hunne helmdragers langer, maar de helmknoppen komen van den stempel niet los: dientengevolge worden de genoemde helmdragers als veren _gespannen_ en naar binnen gekromd. In sommige gevallen blijven zij in dien toestand tot het einde van den bloei, en kruising door insecten is alsdan bijna onmogelijk; in andere gevallen springen zij successievelijk van den stempel los (eenigen tijd nadat de bloem ontloken is), waarbij het grootste gedeelte van hun stuifmeel op den stempel achtergelaten wordt.

Als de bloem zich sluit worden de helmknoppen tegen den stempel aangedrukt; spontane zelfbestuiving is alsdan onvermijdelijk.

De 4 stempelarmen kleven aaneen tot een knots, die geheel met stempeltepels is bezet. Deze knots is korter en naar boven dikker dan bij _Epilobium tetragonum_. Wordt weinig bezocht.

Bij onze exemplaren waren de bloemen wit of bijna wit (iets rose), met bleekroode, aan de basis samenvloeiende strepen. Na den bloei wordt de bloemkroon rose. Honig wordt op den bodem der kelkbluis, rondom de basis van den stijl, afgescheiden en verzameld. De haren aan de basis der meeldraden (zie N° 599) zijn weinig talrijk. De stuifmeelkorrels zijn tot tetraden vereenigd. Ieder tetrade is voorzien van 4 _zeer dunne_ draden; door deze draden worden de tetraden _zeer los_ met elkander verbonden.

601. Epilobium tetragonum L. — Bleekpurper met volkomen verborgen honig. (Purpurin pâle à nectar complètement caché).

Kenmerken: bladen tegenoverstaande of bijna tegenoverstaande, de bovenste soms afwisselend, zittend, aan de basis weinig of niet versmald. De beide randen van ieder blad aan hun voet in den vorm van twee verheven lijnen aan de oppervlakte van den stengel afloopend: deze lijnen zijn ofwel over hare geheele lengte afgezonderd, ofwel de lijnen van twee tegenover elkander staande bladen vloeiend twee aan twee samen (deze beide inrichtingen kunnen aan hetzelfde exemplaar waargenomen worden); soms worden deze lijnen naar ouderen onduidelijk. Uitgespreide bloemen gewoonlijk 8-10 mill. breed. Stempelknots ongeveer 2½ mill. lang, ongeveer 1 mill. dik; stijl (zonder de knots) 1,75 à 3 mill. laag. (Cossen et Germain hebben door cultuurproeven bewezen dat E. virgatum Fries. (= obscurum Rchb.) en E. tetragonum L. tot één soort moeten vereenigd worden).

Kelkslippen 3,5-5 mill. lang, aan den top spits en iets kapvormig. Kelkbuis klok-kegelvormig, ongeveer 1-1,5 mill. diep. Honig rondom de basis van den stijl, op den bodem der kelkbuis afgescheiden, beschut door een haarring aan de basis der meeldraden (zooals in fig. 103,1). De helmknoppen gaan van binnen in den bloemknop open.

Eerste stadium: gesloten bloemknop, ongeveer 5,5 mill. lang. De toppen der kroonbladen steken ongeveer 0,25 mill. boven de toppen der kelkslippen uit. De helmknoppen der 4 lange (episepale) meeldraden staan op halver hoogte der stempelknots; zij zijn met deze knots in aanraking, en hebben reeds het grootste gedeeltel van hun stuifmeel ontlust op de stempeltepels, waarmede de knots dicht bezet is. De stuifmeelkorrels zijn geel, los vereenigd tot tetraden. Reeds hebben enkele korrels een korte stuifmeelbuis in den stempel gedreven. — Van de 4 korte (epipetale) meeldraden zijn er slechts 2 die beginnen open te gaan; zij staan lager dan de stempelknots. (2. 7. 94; 4 ure 's namiddags; zeer warm weder).

Derde stadium: volkomen ontloken bloem. De lange meeldraden zijn gewoonlijk afstaande: hunne dragers zijn langer geworden, hunne helmknoppen staan iets hoger dan de top der stempelknots. De helmknoppen der korte meeldraden staan op halver hoogte van de stempelknots. De helmknoppen zijn bruin en ledig, de stempel zelf heeft een onooglijke bruinachtige kleur. (De stempel en de helmknoppen beginnen gewoonlijk reeds bruin te worden alvorens de bloem ontluikt.) De bloem sluit zich bij het einde van den bloei; de helmknoppen worden alsdan tegen den stempel aangedrukt.

De hier beschreven waarnemingen werden bij zeer warm weder gedaan (2. 7. 94); als het weder minder warm is worden de helmknoppen en de stempel eerst bij het einde van den bloei bruin, en de ontwikkeling der voortplantingsorganen schijnt iets vertraagd te zijn.

In ieder geval is spontane zelfbestuiving onvermijdelijk; kruisbevruchting is niet onmogelijk, maar zeer onwaarschijnlijk, want wij hebben nooit insectenbezoek gezien. Daar de zaadknoppen in ieder vruchtbeginsel vrij talrijk zijn is er een aanzienlijke hoeveelheid stuifmeel tot de bevruchting noodig.

602. Epilobium montanum Lam. — Als Nr. 601. (Comme le N° 601). — Schulz, Beiträge, I.

Bloemknop: De 4 stempelarmen zijn tegen elkander aangedrukt; hunne buitenzijde is aan deu rand met tepels bezet. De helmknoppen der 4 lange meeldraden zijn gewoonlijk reeds open alvorens de bloem ontluikt; zij staan rondom de stempels en onttaken een gedeelte van hun stuifmeel op de buitenzijde der stempelarmen: spontane zelfbestuiving is dus, in de meeste gevallen, vóór het ontluiken der bloem onvermijdelijk.

Ontloken bloem: als de bloem ontluikt steken de stempelarmen gewoonlijk een weinig boven de helmknoppen der lange meeldraden uit, en tevens beginnen zij zich aan hun top uit te spreiden. De epipetale meeldraden zijn nog kort, met gesloten helmknoppen. De stijl wordt naar één zijde gebogen: daarbij komen de stempelarmen schier altijd in aanraking met een der helmknoppen der lange meeldraden. Later, als de kroonbladen vlak of bijna vlak uitgespreid zijn, zijn de stempelarmen geheel uitgespreid. De stijl is nu nog meer naar één zijde gebogen, en in sommige bloemen zijn de meeldraden (vooral de lange meeldraden) naar de tegenovergestelde
zijde gebogen. De lange meeldraden zijn iets langer geworden. De korte meeldraden zijn nu ook langer geworden, en hunne helmknoppen zijn open.

Als de bloem zich sluit worden de stempelarmen opnieuw meer of minder volkomen tegen elkander aangedrukt. De kroonbladen sluiten zich, en aldus worden de helmknoppen der lange meeldraden, die gewoonlijk op gelijke hoogte als de toppen der stempelarmen staan, met de stempels in aanraking gebracht. De helmknoppen worden eindelijk bruin.

De relatie van de stijl en van de meeldraden is iets verschillend van de eene bloem tot de andere. De volkomen uitgespreide bloem is gewoonlijk 15 mill. breed. Honigafscheiding en honigdekseal zoals bij E. hirsutum.

Bezoekers: Hemitrope Dipteren: Syrphus balteatus Deg., 14. 9. 91, Nevel.—Coleopteren: Melighetes, 6. 7. 94, Melle.

603. Epilobium (parviflorum Schreb.) molle Lam. — Als voren. (Comme l'espèce précédente).

Stemt in hoofdzaak met Nr 602 overeen, maar de stempelarmen zijn iets korter, en blijven tot het einde tegen elkander aangedrukt, of komen slechts aan den top van elkander los. De bloei begint een paar weken later dan bij Nr 602.

Bezoekers: Pieris, 4. 8. 94, Melle.

604. Epilobium palustre L. — Als voren. (Comme les espèces précédentes).

Stempel knotsvormig. Niet nader onderzocht.

De stijl staat iets lager en steekt iets verder naar voren uit dan de 2 meeldraden: ten gevolge daarvan zetten de bezoekers zich gewoonlijk eerst op den stijl neder, en daarbij komt hun lichaam met den stempel in aanraking. Als het insect daarna dieper in de bloem kruip t om den honig te bereiken grijpt het de basis der beide meeldraden met de pooten vast; het buigt deze meeldraden (waarvan de basis zeer dun is) naar binnen en naar onderen, en brengt aldus de helmknoppen in aanraking met zijne buikzijde. Somwijlen grijpt het insect slechts één der meeldraden en den stijl vast.

Het mechanisme der bloem gelijkt op dat van Veronica Chamaedrys. — Bij uitblijvend insectenbezoek gewoonlijk onvruchtbaar.

Bezoekers: Korttongige bijen: Andrena parvula K., ♀, smvrd., 6. 7. 89, Melle. — Hemitrope Dipteren: Melanostoma mellina L., 5. 7. 89, Id.

Fam. LXXXII. Haloragideeën.

606. Myriophyllum spicatum L.
Bloemen roodachtig, alle boven het water (Kirchner, Flora). — Bestuiving door den wind?

607. Myriophyllum alterniflorum D. C.
Bestuiving door het water?

608. Myriophyllum verticillatum L. — Kirchner, Flora. — Ludwig, Kosmos; X, 1881.
Bloemen groenachtig-wit, boven het water (bestuiving door den wind?). De plant draagt daarenboven ongedompelde bloemen, die onder het water bevrucht worden.

Fam. LXXXIII. Hippurideeën.

Bloemen klein, met 1 meeldraad en 1 stamper, alleenstaande in de oksels der bladen, groenachtig, proterogynisch.
Fam. LXXXIV. Lythraceeën.

Bloemen talrijk, in fraaie rechtopstaande aren, horizontaal afstaande of schuin naar boven gericht. Kelkbuis met 10-12 tanden, die afwisselend langer en korter zijn. Kroonbladen 5-6, aan de keel der kelkbuis vastgehecht, de 3 onderste doorgaans iets langer dan de 2-3 bovenste. Als de bloem volkomen uitgespreid is staan de bovenste kroonbladen verticaal, terwijl de onderste schuin naar voren zijn gericht (de bloemen staan dicht bijeen, zodat de kroonbladen niet altijd de noodige plaats hebben om zich regelmatig uit te spreiden). De meeldraden en de stijlen bevinden zich aan de onderzijde der bloem, en hunne uiteinden zijn naar boven gebogen, waaruit volgt dat insecten, die den honig op den bodem der kelkbuis trachten te bereiken, de voortplantingsorganen met hunne buikzijde aanraken. Honig wordt afgescheiden door den vleesigen bodem der bloem, en wordt rondom den korten steel van het vruchtbeginsel verzameld. De binnenzijde van den kelk is donkerrood.

De meeldraden zijn twaalf (soms 10) in getal. Het vruchtbeginsel draagt 1 stijl met 1 vrij dikke stempel.

Deze plant komt (evenals vele Oxalis-soorten) in drieërlei exemplaren voor;

1° Exemplaren met langstijlige bloemen. De stijl steekt 6-8 mill. buiten de kelkbuis uit. De 6 (5) lange meeldraden steken 3-4 mill. buiten de kelkbuis uit, en de 6 (5) korte meeldraden zijn van binnen in de kelkbuis verborgen (fig. 104,1).

2° Exemplaren met middelstijlige bloemen. De lange meeldraden hebben ongeveer dezelfde lengte als de stijlen der langstijlige exemplaren, terwijl de stijl ongeveer evenlang is als de lange meeldraden m der langstijlige exemplaren; de korte meeldraden zijn in de kelkbuis verborgen (fig. 104,2).

3° Exemplaren met kortstijlige bloemen. De lange en de korte meeldraden hebben respectievelijk dezelfde lengte als de stijlen in de langstijlige en in de middelstijlige exemplaren; de stijl is in de kelkbuis verborgen (fig. 104,3 en 4).
Fig. 104. — *Lythrum Salicaria*.

2. Middelstijlige bloem, id. (Naar Müller).

De stempel en de twee groepen helmknoppen bevinden zich dus, in iederen vorm, op drie verschillende niveaus, *l*, *m* en *k*.

Deze inrichting doet aan de heterostylie (zie *Primula, Hottonia, Polygonum Fagopyrum*, enz.) denken, en wordt *trimorphisme* of *trimorphe heterostylie* genoemd.

De stuifmeelkorrels der langste meeldraden *l* (middelstijlige en kortstijlige bloemen) zijn groen, die der middelste *m* en der kortste *k* zijn geel. De grootte der stuifmeelkorrels is evenredig aan de lengte
der meeldraden die ze voortbrengen; het verschil tusschen de korrels der middelste en der kortste meeldraden is echter gering. De stempel tepels der lange stijlen zijn langer en meer uiteengespreid dan die der middelste en der korte stijlen; in dit opzicht bestaat er tusschen de stijlen \(m \) en \(k \) slechts een gering verschil.

Een insect dat, met inbegrip der slurf, 12 à 15 mill. lang is, zal de kortste organen \(k \) (\(\sigma^* \) en \(\varphi \)) met zijne slurf of met de onderzijde van zijn kop, de middelste organen \(m \) (\(\sigma^* \) en \(\varphi \)) met de buikzijde van zijn lichaam, en de langste organen \(l \) (\(\sigma^* \) en \(\varphi \)) met een meer naar achteren gelegen gedeelte van zijn lichaam aanraken. Als het insect nu achtereenvolgens bloemen van de verschillende vormen bezoekt zal legitieme kruising in de meeste gevallen plaats grijpen. (Zie hooger, Bot. Jaarb., V, blz. 192).

Legitieme kruising is op 6 verschillende wijzen mogelijk, nl.:

- \(l \ \sigma^* \) (middelstijlige bloem) \(\times l \ \varphi \)
- \(l \ \sigma^* \) (kortstijlige) \(\times l \ \varphi \)
- \(m \ \sigma^* \) (langstijlige) \(\times m \ \varphi \)
- \(m \ \sigma^* \) (kortstijlige) \(\times m \ \varphi \)
- \(k \ \sigma^* \) (langstijlige) \(\times k \ \varphi \)
- \(k \ \sigma^* \) (middelstijlige) \(\times k \ \varphi \)

Illegitieme kruising is op 12 verschillende wijzen mogelijk, nl.:

- \(l \ \sigma^* \) (middelstijlige bloem) \(\times m \ \varphi \)
- \(l \ \sigma^* \) () \(\times k \ \varphi \)
- \(l \ \sigma^* \) (kortstijlige) \(\times m \ \varphi \)
- \(l \ \sigma^* \) () \(\times k \ \varphi \)
- \(m \ \sigma^* \) (langstijlige) \(\times l \ \varphi \)
- \(m \ \sigma^* \) () \(\times k \ \varphi \)
- \(m \ \sigma^* \) (kortstijlige) \(\times l \ \varphi \)
- \(m \ \sigma^* \) () \(\times k \ \varphi \)
- \(k \ \sigma^* \) (langstijlige) \(\times l \ \varphi \)
- \(k \ \sigma^* \) () \(\times m \ \varphi \)
- \(k \ \sigma^* \) (middelstijlige) \(\times l \ \varphi \)
- \(k \ \sigma^* \) () \(\times m \ \varphi \)

Darwin heeft de resultaten der 18 mogelijke bevruchtingswijzen proefondervindelijk bestudeerd, en bevonden dat legitieme bevruchting alleen door volle vruchtbaarheid wordt gevolgd, terwijl illegitieme bevruchting minder goede gevolgen heeft. Illegitieme bevruchting kan met een kruising tusschen verschillende plantensoorten
van hetzelfde geslacht (bastaardvorming) vergeleken worden, wat de eigenschappen der nakomelingen en de vruchtbaarheid betreft.

611. Peplis Portula L. — Rose met blootliggende honig. (Rose a nectar librement expose).

Gedurende den bloei staat de kelk wijd open. Het opengaan van den kelk wordt echter op de middellinie door het overeenkomstige
stengelblad eenigszins belemmerd, waaruit volgt dat de openstaande kelk in de transversale richting wijder uitgespreid is dan in de mediane richting. De 6 meeldraden zijn aan hun top een weinig naar binnen gebogen. De voorste en de achterste meeldraad spreiden zich niet zoo ver uit als de 4 andere meeldraden, daar zij in hunne uitspreiding tegengehouden worden door den kelk, die zelf op middellinie tusschen den stengel en het draagblad geklemd wordt. Daaruit volgt dat de helmknoppen van den voorsten en van den achtersten meeldraad bijna steeds in aanraking komen met den stempel: spontane zelfbestuiving is dus onvermijdelijk. Als de bloem zich sluit worden al de helmknoppen tegen den stempel aangedrukt.

De voorafgaande beschrijving werd gemaakt naar exemplaren die in een droge sloot groeiden (Meirelbeke bij Gent, 4.7.94). Exemplaren met drijvende stengels hebben wij niet onderzocht. — Nooit bezoeckers gezien.

FAM. LXXXV. ROSACEÆN.

612. Crataegus Oxyacantha L. — Wit met blootliggende honig. (Blanc à nectar librement exposé).

Door haren bouw stemt de bloem in hoofzaak met die van Pyrus communis overeen (fig. 105). Bij de door ons onderzochte exemplaren was er nooit meer dan 1 stijl.

Het onderstandig vruchtbeginsel wordt omgeven door den beker-vormigen bloembodem (kelkbuis), en is met dezen beker volkomen vergroeid. Aan den rand van den beker treffen wij 5 kelkslippen, 5 witte kroonbladen en talrijke meeldraden aan. In 't centrum der bloem, rondom de basis van den stijl, een geelachtige honigschijf. De honig wordt gedeeltelijk beschut door de wollige haren, die zich aan den voet van den stijl bevinden.

Bloem sterk riekend. Proterogynisch. Als de bloem ontluikt is de stempel geslachtsrijp; de buitenste meeldraden staan rechtovereind, de binnenste zijn naar binnen gebogen. In dit stadium is kruisbevruchting door insecten alleen mogelijk. Een à 2 dagen later beginnen de helmknoppen der buitenste meeldraden open te gaan. Bij koud, betrokken weder blijven de binnenste meeldraden omgebogen; de buitenste staan hooger dan de stempel, en daar zij een weinig naar den stempel gebogen blijven kan spontane zelfbestuiving in vele
gevallen plaats grijpen. Bij helder, warm weder spreiden al de meeldraden zich uit; de helmknoppen worden aldus van den stempel verwijderd, en de honig wordt geheel ontbloot. (Kirchner, Flora).

613. Pyrus Malus L. (Appelboom). — Wit of iets rose met blootliggenden honig. (Blanc ou rosé à nectar libre-ment exposé). — Kirchner, Beiträge, 1890, blz. 36.

De grootste der bloemen verschilt van de eene variëteit tot de andere. Over dag zijn de bloemen bijna reukeloos; 's nachts verspreiden zij daarentegen een aangename lucht. Zij worden door nachtvinders veel bezocht. De bloemen hebben van den regen veel te lijden. Kirchner heeft meermalen waargenomen dat al de helmknoppen na een regenvlaag bedorven waren.

Honigafscheiding zooals bij Nr 614 (fig. 105). Als de bloem ontluikt zijn de stempels geslachtsrijp; de meeldraden staan alsdan rechtovereind en hunne helmknoppen zijn gesloten. In dezen toestand is kruisbevruchting door insecten alleen mogelijk. — Bij sommige variëteiten zijn de meeldraden nagenoeg evenlang als de 5 stijlen; bij andere variëteiten zijn zij korter dan de stijlen. Ongeveer 2 dagen na het ontluiken der bloem beginnen de helmknoppen der buitenste meeldraden open te gaan, en daarna komen de binnenste aan de beurt. De meeldraden spreiden zich daarbij slechts weinig uiteen: bij de variëteiten met lange meeldraden, waar de helm-
knoppen nagenoeg op gelijke hoogte staan als de stempels, kan spontane zelfbestuiving dus gemakkelijk plaats grijpen. Dit kan ook bij 't einde van den bloei plaats grijpen, daar de stijlen zich alsdan naar buiten krommen, waardoor de stempels met de helmknoppen in aanraking gebracht worden. Gedurende het tweede tijdperk kunnen de bezoekers kruisbevruchting en zelfbevruchting bewerkstelligen. De bloei van iedere bloem duurt 5-6 dagen. (Naar Kirchner.)

Het ware interessant de bevruchting der bloemen onzer voor- naamste cultuurvarieteiten zorgvuldig te bestudeeren, in verband met de vruchtbaarheid, enz.

Waarachtig is deze soort niet inheemsch in ons gebied.

614. Pyrus communis L. — Zooals N° 615. (Comme le N° 615). — Müller, Fertilisation. — Kirchner, Beiträge, 1890, blz. 35.

Fig. 105. — Pyrus communis (naar de natuur).

Bloem, in de lengte doorgesneden. Een zeker aantal meeldraden hebben zich reeds uitgespreid en hebben hun stuifmeel onthast; de overige zijn nog naar binnen omgebogen, en hunne helmknoppen zijn nog gesloten.

Als de bloem ontluikt zijn de stempels geslachtsrijp; de helmknoppen zijn gesloten en de meeldraden zijn naar binnen omgebogen. Indien de bloem in dezen toestand insectenbezoek ontvangt is kruisbevruchting alleen mogelijk. Deze toestand duurt 2-4 dagen. Later worden de meeldraden successievelijk rechtgebogen en uitgespreid (de buitenste komen eerst aan de beurt) en tevens gaan
hunne helmknoppen open. Spontane zelfbestuiving is mogelijk door de uitspreiding der stijlen, zooals bij Nr 613. De stempels staan *op een lager niveau* dan de helmknoppen. Rondom de basis der stijlen een geelachtige, schotelvormige honigklier. De stijlen zijn aan hunne basis behaard. — Honigafscheiding gering.

De bloei van ieder bloem duurt 5-7 dagen. De verschillende varie- teiten dienen nader onderzocht en vergeleken te worden. Wordt in ons gebied weinig bezocht. De bloemen worden door den regen weinig beschadigd. Waarschijnlijk niet inheemsch.

615. Sorbus Aucuparia L. — Wit met blootliggende honig. (*Blanc à nectar librement exposé.*) — Müller, Fertilisation.

Proterogynisch. Als de bloem ontluikt zijn de stempels geslachts- rijp en de helmknoppen gesloten. De buitenste meeldraden staan recht overeind; de binnenste zijn naar binnen gebogen, en hunne helmknoppen staan lager dan de stempels. De helmknoppen worden geheel met stuifmeel bedekt als zij opengaan. Bij koud, betrokken weder blijven de binnenste meeldraden naar binnen gebogen nadat hunne helmknoppen opengegaan zijn, terwijl de buitenste meeldra- den naar de stempels gebogen zijn, met hunne helmknoppen boven de stempels: bij uitblijvend insectenbezoek grijpt spontane zelfbe- stuiving dus plaats. — Bij helder, warm weder spreiden de meel- draden zich uit, en hunne helmknoppen worden van de stempels verwijderd: daardoor wordt kruisbevruchting (door insecten) bevorderd.

Honig afgescheiden zooals bij Nr 614, door haren aan de basis der stijlen beschut. Bloemen klein, maar vele bijeen.

Bezoekers: Langtongige bijen: *Apis*, Mei 1894, Gent.

Bloembodem (kelkbuis) urnvormig. Kelkslippen 5, vrij lang. De rand van den urnvormigen bloembodem verheft zich tot een dikken, vleezigen ring (*g*), die in 't midden de stijlen doorlaat, zoodat de
stempels naar buiten uitsteken. De vruchtbeginsels zitten op steeltjes, geheel verborgen in den hollen bloembodem, die inwendig behaard is. De stempels hebben een onregelmatige gedaante en zijn zeer kleverig. Meeldraden zeer talrijk, uitgespreid als de bloem ontluikt. De stempels en de vleezige ring vormen de gewone landingsplaats voor de bezoekers. De bloem is homogaam, en verspreidt een aangename geur; zij is echter van honig verstoken.

Fig. 106. — *Rosa canina* (naar de natuur).

Bloem, in de lengte doorgesneden; de kroon is nog niet volkomen uitgespreid.

b, wand van den urnvormigen bloembodem. — *g*, vleezige ring die in 't midden de stijlen doorlaat.

De kelkbuis is ondiep, schoteltvormig: zij draagt de kelk- en bijkelkslippen, de kroonbladen en de meeldraden aan haren rand. Het centrum der schoteltvormige kelkbuis wordt ingenomen door den sterk verheven, bijna rolronden bloembodem, waarop een groot aantal eenbladige stampers zitten.

Het bovenste gedeelte der vruchtbeginsels is behaard; hun onderste gedeelte is kaal; tusschen de vruchtbeginsels is de bloembodem behaard. De stijlen zijn op de helft hunner hoogte knievormig gebogen.

Fig. 107. — Geum urbanum (naar de natuur).

Bloem in de lengte doorgesneden.

k, kroonblad. — *kl*, kelkslip. — *h*, *h*, honigklier. — 1, 2, 3, 4, successieve toestanden der meeldraden (iets geschematiseerd).

Honig wordt afgescheiden door een groene, vlezig, ringvormige klier (*h*), aan de binnenzijde van de basis der meeldraden.

Als de bloem ontlukt zijn de meeldraden naar binnen gebogen (zoals 1 in fig. 107), op zulke wijze dat hunne helmknoppen rondom de buitenste stampers liggen, terwijl de geslachtsrijpe stempels der binnenste stampers in 't centrum der bloem uitsteken. De
buitenste meeldraden worden nu rechtgebogen, en hunne helm- knoppen gaan open (zoals 2 en 3 in fig. 107), en eindelijk richten zij zich naar buiten, en de helmknoppen vallen af (zoals de meeldraad 4). De ontwikkeling der meeldraden schrijdt op de aangegeven wijze van buiten naar binnen voort, zoodat men in een enkele bloem te gelijker tijd al de successieve toestanden der meeldraden kan aantreffen. Als de meest naar binnen staande meeldraden hunne beurt krijgen ontlasten zij schier altijd een gedeelte van hun stuifmeel op de buitenste stempels (spontane zelfbestuiving). Door de zwakke proterogynie wordt kruisbevruchting door insecten bevorderd.

Wordt in ons gebied weinig bezocht. Honigafscheiding gering.

Bezoekers: Allotrope Dipteren: klein vliegje, 28. 5. 94, Melle.

Kelk 5spletig, zeer groot, aan de binnenzijde fraai bruin gekleurd. Daarenboven een bijkelk, waarvan de bladen, afwisselend met de deelen van den kelk en daarbuiten ingeplant, veel kleiner en eveneens van binnen gekleurd zijn. Het is de kelk, die de bloemen het meest in 't oog doet vallen. De 5 kroonbladen zijn veel kleiner dan de kelkslippen en helderder rood van kleur. Al verder naar binnen treffen wij een twintigtal meeldraden aan, geplaatst in drie kransen (zoals bij Fragaria, N° 620). Aan hun voet, naar de binnenzijde (op dezelfde plaats als bij Fragaria, zie fig. 108), vindt men honig in groote hoeveelheid. De honigklief is groen, tegenover ieder kroonblad verbreed tot een schoteltje dat aan zijn buitenrand, aan
de basis van den overeenkomstigen epipetalen meeldraad, een duidelijken inham vertoont. De 5 schoteltjes worden door de bases der epispale meeldraden van elkander gescheiden.

Het centrum der bloem wordt ingenomen door den sterk verheven bloembodem, waarop een groot aantal eenbladige stappers zitten, die bestaan uit een vruchtbeginsel met een zijdelings ingeplanten stijl en een enkelvoudigen stempel. — Bloemen proterandrisch: in het θ stadium vindt men de meeldraden bijna loodrecht overeind staande, met opengesprongen helmknoppen. In oudere bloemen zijn de helmdragers achterover gebogen en de helmknoppen afgevallen. Daarentegen zijn nu de stempels in staat, stuifmeel te ontvangen. (Beschrijving grootendeels ontleend aan HEINSIUS, loc. cit.). — Wij hebben nooit de gelegenheid gehad het insectenbezoek gade te slaan.

Kelkbuis kort, bijna vlak uitgespreid. Aan de basis en aan de binnenzijde der meeldraden een honigafscheidende ring (h); honig tusschen de meeldraden en de buitenste stampers verborgen. Aan de basis der bloembroen treffen wij een twintigtal meeldraden aan, geplaatst in 3 kransen. De binnenste krans bevat 5 episepale meeldraden (1); daarop volgt naar de binnenzijde een tweede krans van 5 epipetale meeldraden (2); de buitenste krans bevat tien meeldraden (3), die in stand afwisselen met de 10 meeldraden der beide eerstgenoemde kransen, als één krans beschouwd. Het centrum der bloem wordt ingenomen door den sterk verheven bloembodem, waarop een groot aantal eenbladige stampers zitten. De witte kroonbladen zijn veel groter dan de kelkslippen. Er is een bijkelk, waarvan de 5 deelen aan de binnenzijde der kroonbladen staan en soms meer of minder tweedeelig zijn. Als de bloem ontlukt zijn de stempels geslachtsrijp; eenigen tijd daarna gaan de helmknoppen

Fig. 108. — Fragaria vesca (naar de natuur).

Bloem in de lengte doorgesneden.

h, honigklier. — 1, episepale meeldraden. — 2, epipetale meeldraden. — 3, meeldraden van den buitensten krans.

621. **Potentilla Anserina** L. — Geel met half verborgen honig. (*Jaune à nectar partiellement caché*).

De bloem is naar hetzelfde plan als *Fragaria* gebouwd. Kroonbladen 5, langer en breeder dan de kelkslippen. De kelkbuis heeft de gedaante van een ondiepen schotel, die aan zijn rand (aan de basis der kelkslippen en der kroonbladen) een twintigtal meeldraden draagt. Door hun stand stemmen deze meeldraden met die van *Fragaria vesca* overeen (de epipetale zijn de kortste, de episepale zijn de langste; de 10 meeldraden van den buitensten krans houden, wat hunne lengte betreft, het midden tusschen de episepale en de
Het centrum der bloem wordt ingenomen door den bloembodem, die hier minder sterk verheven is dan bij *Fragaria*, en, evenals bij deze, talrijke eenbladige stampers draagt. Tusschen de stampers is de bloembodem behaard. Ieder stamper bestaat uit een kaal vruchtbeginsel met een zijdelings ingeplanten stijl en een stempel. Aan de basis der meeldraden en aan hunne binnenzijde een gele, glanzige, honigafscheidende ring, die rondom de bloem loopt; tusschen den genoemden ring en de buitenste stampers treffen wij een aantal korte, witte haren aan. Aan de binnenzijde der meeldraden is de kelk (vooral de basis der kelkslippen) eveneens geel, glanzig en iets honigafscheidend. De helmknoppen zijn, evenals bij *Fragaria*, van buiten naar binnen samengedrukt, en gaan aan hunne randen open. De bloem is homogaam. Spontane zelfbestuiving kan plaats grijpen, daar stuifmeel uit de helmknoppen op de stempels (althans op de buitenste stempels) kan vallen. — (Bij de door ons onderzochte exemplaren waren de kelkslippen gaaf, de slippren van den bijkelk meer of minder regelmatig in slipjes gedeeld). — Wordt weinig bezocht.

622. *Potentilla reptans* L. — Zooals Nr 621. (Comme le N° 621).
Stemt (volgens Müller) met de vorige soort overeen. Bloemen 5-tallig.

Stemt in hoofdzaak met de vorige soorten overeen. Bloemen gewoonlijk 5-tallig, doorgaans groter dan bij de volgende soort.

Bellem. — Allotrope Hymenopteren: *Cephus pygmaeus* L., 23. 6. 88, Ingelmunster.

624. **P. Tormentilla** Nestl. — Zooals N° 621. (*Comme le N° 621*).

Stemt in hoofdzaak met N° 621 overeen, maar bloemen gewoonlijk kleiner, 4-tallig. Kroonbladen aan hun voet donkergeel. Stampers weinig talrijk. De stijlen staan in 't centrum der bloem, onregelmatig tot een bundeltje vereenigd; de meeldraden zijn afstaande, de helmknoppen zijn van de stempels verwijderd. Dientengevolge is spontane zelfbestuiving bijna onmogelijk. Honig wordt op dezelfde wijze als bij *P. anserina* (aan de binnenzijde en ook aan de buitenzijde der meeldraden) afgescheiden.

625. **Potentilla Fragariastrum** Ehrh. (*sterilis* Gke.) — Wit met half verborgen honig. (*Blanc à nectar partiellement caché.*) — Mac Leod, Archives de Biologie, VII, 1886, blz. 149, figg.

Bij het einde van den bloei (*derde stadium*) grijpt spontane zelfbestuiving plaats: de meeldraden, die gedurende het tweede stadium recht overeind stonden, neigen zich nu allengs schuin naar binnen: daarbij worden hunne helmknoppen met de stempels in aanraking gebracht.

Deze plant bloeit in April en gedurende de eerste helft van Mei; zij wordt weinig bezocht. Door den tijd van 't jaar waarin zij bloeit, door de wijze waarop de helmknoppen opengaan en waarop de zelfbestuiving geschiedt, alsook door hare behaarde honigklier verschilt *P. Fragariastrum* van de andere *Potentilla*-soorten van ons gebied.

Bezoekers: kleine Vliegjes, kleine Kevertjes, een *Acari*.

April 1885.

De kelkbuist heeft de gedaante van een zeer ondiepen, bijna vlakken schotel. Het centrum van den schotel wordt ingenomen door den sterk verheven bloembodem, waarop een zeker aantal eenbladige stampers zitten. Aan den rand van den schotel, aan de basis en aan de binnenzijde der meeldraden wordt honig \((h) \) afgescheiden. — Als de bloem ontluikt worden de kelkslippen teruggeslagen; de smalle, witte kroonbladen staan recht overeind of neigen zelfs een weinig naar binnen samen. De meeldraden spreiden zich niet uit, maar blijven tot het einde van den bloei recht overeind of iets samen- neigend. De bloemen zijn weinig in 't oog vallend, te meer daar de kroonbladen vroeg afvallen. De helmdragers zijn talrijk, dicht aan- eengesloten en wit: na het afvallen der kroonbladen vormen zij het eigenlijke omhulsel der bloem. — Een insect, dat tot den honig wil doordringen, moet zijne slurf tusschen de meeldraden en de stampers in de bloem voeren, en komt daarbij onvermijdelijk met de voort- plantingsorganen in aanraking: als hetzelfde insect achtereenvolgens meerdere bloemen bezoekt grijpt kruisbevruchting plaats. Wij beschouwen deze bloem als eene bijenbloem, want de honig is ongeveer 4,5 mill. diep verborgen en de bloem is overhangend.

Fig. 100. — *Rubus Idaeus* (naar de natuur, iets geschematiseerd).

\(h \), honig. — \(k \), kroonblad (aan de rechterzijde is het kroonblad afgevallen). De meeldraden zijn ongeveer 4,5 mill. lang.

Bij uitblijvend insectenbezoek kan spontane zelfbestuiving plaats grijpen, daar de stempels in vele bloemen met de helmknoppen in aanraking komen; daarenboven kan stuifmeel uit de helmknoppen op de stempels vallen.
De voorafgaande beschrijving heeft betrekking op in 't wild groeiende exemplaren. De veredelde varieteiten die men gewoonlijk in onze tuinen kweekt dragen grootere bloemen en ontvangen meer insectenbezoek dan de wilde vorm. — Deze plant schijnt vooral 's namiddags en 's avonds door insecten bezocht te worden.

Bezoekers:

2° **In 't wild groeiende exemplaren:** Langtongige bijen: *Bombus*, 2 soorten. — Coleopt. : 1 soort. — Microlepidopt. : 1 soort. — Alle te Melle, 16. 5. 94, 6 ure 's avonds.

627. *Rubus fruticosus* L. — Wit met volkomen verborgen honig. (*Blanc à nectar complètement caché*). — Müller, Fertilisation. — Kirchner, Flora.
Vertoont veel verscheidenheid wat de grootte der bloemen, der kroonbladen, enz. betreft.

De bloemen zijn naar hetzelfde plan als die van *R. Idaeus* gebouwd; zij zijn echter nooit overhangend. De kroonbladen zijn vrij groot, uitgespreid, en niet zoo vroeg afvallend als bij *R. Idaeus*. De meeldraden zijn zeer talrijk; het opengaan der helmkoppen schrijdt van de peripherie naar het centrum der bloem voort. De meeldraden staan niet recht overeind, maar zijn uitgespreid: derhalve kan de honig (die tusschen de meeldraden en de stampers, op dezelfde plaats als bij *R. Idaeus*, in groote hoeveelheid afgescheiden wordt) gemakkelijker bereikt worden dan bij *R. Idaeus*.

De bloemen zijn gewoonlijk homogaam: in vele gevallen heeft kruisbevruchting door insecten reeds plaats gegrepen als de binnenste meeldraden hun stuifmeel ontlasten. Als de helmknoppen der binnenste meeldraden opengegaan zijn komen zij met de buitenste stempels in aanraking. Wordt veel bezocht. In ons gebied worden de vruchten van vele exemplaren niet volkomen rijp.

628. **Rubus caesius** L. — Gelijk op Nr 627.

†629. **Agrimonia Eupatoria** L. — Gele pollenbloeem. *(Fl. jaune à pollen).* — Müller, Fertilisation. — Kirchner, Flora.

Meeldraden 5-20 of meer. — "De goudgele bloemen zijn homogaam en schijnen pollenbloeemen te zijn; op den kelkstandigen ring die de stijlen aan hun voet omgeeft werd althans geen honig waargenomen. De zijdelings opengaande helmknoppen staan op gelijke
hoogte als de stempels en komen met deze van zelf in aanraking, daar zij zich naar binnen buigen. Ieder bloem bloeit slechts één dag. Zij gaat 's morgens zeer vroeg open: in den beginne zijn de meeldraden wijd uitgespreid, in den loop van den dag krommen zij zich naar binnen, totdat zij met elkander en met de 2 stempels in aanraking komen. » (Naar Kirchner). — In ons gebied niet onderzocht. Word weinig bezocht.

630. **Sanguisorba officinalis** L. — Roodachtig met half verborgen honig. (*Rougeâtre à nectar partiellement caché*). — Müller, Alpenblumen.

Bloemen klein, in dichte eivormige of langwerpige hoofdjesachtige aren, 4-tallig, homogaam. Kroonbladen ontbreken. De kelkbuis (bloembodem ?) is urnvormig; het vruchtbeginsel is in deze kelkbuis verborgen. Aan hare keel is de kelkbuis voorzien van een vleezigen honigafscheidenden ring die de basis van den stijl omgeeft. Kelkslippen 4, uitgespreid, naar den top zwartachtig-purper of karmijn-roodachtig; de uitgeholde basis der kelkslippen fungeert als honigbehoudert. De 4 meeldraden divergeeren. De stijl draagt een aantal straalvormig divergerende stempeltakken: dit wordt als een nutteloos geworden erfdeel van windbloemige voorouders (die op **Poterium** geleken) beschouwd. Door insecten kan zelf- en kruisbevruchting bewerkstelligd worden. Spontane zelfbestuiving waarschijnlijk mogelijk. — De ontwikkeling der bloemen schrijdt in iedere aar van boven naar onderen langzaam voort, op zulke wijze dat nooit meer dan één horizonale rij bloempjes gelijktijdig ontloken is. — In ons gebied misschien niet inheemsch.

632. *Alchemilla arvensis* Scop. — (Proletariër.)

De bloemen zijn zeer klein, en vereenigd tot weinig in 't oog vallende klwunies. Ieder bloemkluwen staat tegenover een blad, en wordt door de beide steunblaadjes van dit blad omgeven.

Ieder bloem heeft een urvnvormigen bloembodem (kelkbus), waarvan het centrum door den enkelvoudigen, vrijen stamper wordt ingenomen (zoaals bij *Prunus* enz.; zie fig. 111). Er zijn 4 groene kelkslippen, en 4 daarmede afwisselende kleinere slippen (bijkelk). De kroon ontbreekt. Aan de keel van den urvnvormigen bloembodem een vleesige, groene ring (zoaals bij *Rosa*, fig. 106), die in 't midden den stijl doorlaat. Deze ring scheidt een geringe hoeveelheid honig af (volgens Kirchner — Neue Beobacht., 1886, blz. 35 — is er geen honig). Er is slechts één meeldraad, die schuin naar het centrum gebogen en met den stempel in aanraking is. Spontane zelfbestuiving is onvermijdelijk.

Alchemilla arvensis is zeer waarschijnlijk een verbasterde nakomeling van andere *Alchemilla*-soorten (b. v. *Alchemilla vulgaris*), die grootere bloemen met 4 meeldraden hebben, en door een rijke honigafscheiding insecten aanlokken. Bij *A. Arvensis* is de honigaf scheiding te gering om nuttig te kunnen zijn. Wordt nooit bezocht.

Bezoekers: Langtongige bijen: *Apis*, 5. 7. 91, Bellem. *Bombus terrestris*, var. *lucorum* L., ♀, over de inflorescentie verscheidene malen rondloopend, vlijtig stuif-

634. Prunus avium L. (zoete kers). — Witte bijenbloem (Fl. blanche mét littophile). — Kirchner, Beiträge, 1890, blz. 32.

Geur aangenaam, maar zwak. De kroonbladen worden gewoonlijk niet vlak uitgespreid, maar blijven meer of minder klokvormig samengebogen. Bloemen meer of minder overhangend. De bloembo-
(kelkbuis) is hol, klokvormig, en scheidt aan de binnenzijde honig af. Het centrum wordt door het vruchtbeginsel ingenomen. De honig wordt tusschen het vruchtbeginsel en den wand der klok verzameld (zooals in fig. 111), en wordt tegen den regen volkomen beschut. Bij gunstig weder blijft iedere bloem gedurende 7-8 dagen frisch. — Homogaam, maar gewoonlijk is spontane zelfbestuiving onmogelijk. De meeldraden zijn aan den rand der klokvormige kelkbuis ingeplant: de buitenste zijn de langste (9-11 mill.), de binnenste zijn de kortste (2-3 mill.). Als de bloem ontluikt is de stempel geslachtsrijp; de stijl is 11½-14 mill. lang, van onderen over een lengte van 3½ mill. in de kelkbuis verborgen. De stempel staat nagenoeg op gelijke hoogte als de helmknoppen der langste meeldraden. Bij het opengaan der bloem zijn de meeldraden uitgespreid; de helmknoppen van enkele der kortste meeldraden zijn reeds open, maar spontane zelfbestuiving kan slechts moeilijk plaats grijpen. Het opengaan der helmknoppen schrijdt nu onregelmatig naar buiten voort; in den loop van den tweeden dag gaan de laatste helmknoppen open. De stijl staat nu in 't midden der bloem en de meeldraden zijn schuin naar buiten gericht, en deze stand der voortplantingsorganen blijft tot het einde behouden, zoodat spontane zelfbestuiving slechts toevallig en bij uitzondering kan plaats grijpen. Door insecten kan zelfbestuiving evenals kruisbestuiving bewerkstelligd worden (naar Kirchner).

De verschillende variëteiten vertonen kleine verschillen in de constructie der bloemen. — Misschien niet inheemsch.

635. Prunus spinosa L. — Wit met volkomen verborgen honig. (Blanc à nectar complètement caché). — Müller, Fertilisation.

De bloemen komen vóór de bladen voor den dag, en daar zij zeer talrijk zijn is de bloeiende boom zeer in 't oog vallend. Evenals bij de andere soorten van het geslacht Prunus is de bloembodem (kelkbuis) klokvormig. Op den bodem der klok is de stamper ingeplant; de wand der klok scheidt aan zijn binnenzijde, onder de basis der meeldraden, een aanzienlijke hoeveelheid honig af (zie fig. 111). Als de bloem ontluikt steekt de geslachtsrijpe stempel
tusschen de half-uitgespreide kroonbladen naar buiten uit. De helmknoppen zijn nog gesloten; zij staan enkele millimeters lager dan de stempel, en hunne helmdragers zijn naar binnen gebogen. In dezen toestand zullen de bezoekers den stempel aanraken en met vreemd stuifmeel bevruchten, indien zij te voren oudere bloemen hebben bezocht. — De kroonbladen worden later vlak uitgespreid; de meeldraden worden rechtgebogen en spreiden zich uit; de helmknoppen gaan successievelijk (te beginnen met de buitenste) open. De stijl wordt langer, en steekt een weinig uit boven de kortste meeldraden, die onmiddellijk rondom hem staan. De stempel is nog frisch, en in dezen toestand kunnen de bezoekers zelfbevruchting en kruising bewerkstelligen. De bloemen keeren zich naar de zon. Stuifmeel kan uit de helmknoppen op den stempel vallen: bij uitblijvend insectenbezoek grijpt spontane zelfbestuiving aldus plaats.

636. *Prunus domestica* L. — Wit met volkomen verborgen honig. (*Blanc à nectar complètement caché*). — Kirchner, Beiträge, 1890, blz. 35.

[Fig. 111. — *Prunus domestica* (naar de natuur).
Bloom, in de lengte doorgesneden, laatste toestand. — h, bovenste grens van het honigafscheidend gedeelte der klokvormige kelkbuis.

De bloemen gelijken op die der vorige soorten. De bloemkroon spreidt zich vlak uit. Proterogynisch (naar Müller homogaam). De binnenste meeldraden zijn 5-7 mill., de buitenste 7½-10 mill. lang; de stijl is 11-12 mill. lang, en steekt 8½-9 mill. buiten de kelkbuis uit. Honigafscheiding zooals bij de vorige soorten. De eerste (♀)
toestand duurt bijna 2 dagen. Daarna gaan de helmknoppen open; dit schrijdt langzaam van binnen naar buiten voort (bij *P. spinosa* is het, naar MÜLLER, anders om). De bloem blijft ruim 3 dagen in dezen toestand (Naar Kirchner).

Volgens MÜLLER is spontane zelfbestuiving mogelijk.

Besoekeurs: Langtongige bijen: *Apis*, zeer talrijk, einde Maart 1894.

Fam. LXXXVI. Papilionaceeen.

De inheemsche Papilionaceeën hebben de volgende eigenaardigheden gemeen:

1° De kroon is vlindervormig. Zij bestaat uit 5 kroonbladen, nl. de vlag, de twee vleugels en de kiel, die zelf uit twee kroonbladen (= kielhelften) samengesteld is.

2° De meeldraden zijn 10 in getal; zij staan theoretisch in 2 kransen, nl. een buitenste krans van 5 episepale en een binnenste van 5 epipetale meeldraden. Gewoonlijk vormen de 10 meeldraden *schijnbaar* slechts één krans; de meeldraden der beide kransen zijn nietemin in de meeste gevallen duidelijk onderscheiden door verschillen in hun lengte, in hun gedaante, enz. (zie b.v. fig. 112, 113, 117). De meeldraden zijn één- of tweebroederig; de bovenste meeldraad, die bij de tweebroederige soorten vrij is, behoort tot den epipetalen krans. — De stamper staat in 't centrum der bloem.

3° Honig wordt bij de tweebroederige soorten afgescheiden door de basis der vergroeide meeldraden, en rondom den voet van het vruchtbeginsel, van binnen in den koker der meeldraden, verzameld. Insecten kunnen den honig bereiken door 2 openingen, aan beide zijden der basis van den vrijen meeldraad (zie b.v. fig. 120; *Trifolium pratense* maakt hierop uitzondering). Deze openingen zijn verborgen onder den nagel der *vlag*, die tegen de overige bloemdeellen aangedrukt is: een insect dat tot den honig wil doordringen moet dus zijne slurf onder de vlag in de bloem steken. — De soorten met eenbroederige meeldraden hebben geen honig.

4° De meeldraden en de stijl zijn tusschen de 2 kielhelften verborgen, *en aldus tegen regen en wind en tegen ongenoede gasten beschut*. Als een insect (gewoonlijk een bij) de bloem bezoekt wordt de kiel door den bezoeker naar beneden gedrukt, waarbij de stijl en de
meeldraden (of het stuifmeel : zie verder) met hun uiteinden naar buiten komen en het insect aanraken. Het insect leunt met zijn kop tegen de vlag, en zet zich tevens op de vleugels neder : hierbij worden de vleugels nedergedrukt, en daar deze, door eigenaardige verhevenheden, die correspondeeren met holten in de kiel (en omgekeerd) onwrikbaar met de kiel verbonden zijn (bij vele soorten wordt de verbinding door het ineengrijpen der opperhuidscellen nog steviger gemaakt), heeft het nederdrukken der vleugels een daling der kiel ten gevolge.

5° De wijze waarop de vleugels met de kiel verbonden zijn verschilt van de eene soort tot de andere. — Het mechanisme waardoor de draaiing van kiel en vleugels mogelijk wordt gemaakt, en waardoor de genoemde deelen hun uiteinden naar buiten komen en het insect aanraken, is zeer ingewikkeld en vertoont eveneens veel verscheidenheid (zie o. a. onze beschrijving van Trifolium repens en Lathyrus pratensis).

6° De stempel komt schier altijd, van binnen in de kiel, met het stuifmeel deszelfde bloem in aanraking, zoodat spontane zelfbevruchting bij de meeste soorten onvermijdelijk is. Kruisbevruchting door insecten heeft echter in de meeste gevallen beter gevolgen dan spontane zelfbevruchting, en het gebeurt niet zelden dat de bloemen bij uitblijvend insectenbezoek onvruchtbaar blijven.

7° Delpino (1) heeft de Papilionaceëen tot 4 groepen gebracht, naar gelang van de wijze waarop de stempel en het stuifmeel uit de kiel naar buiten komen en het lichaam der insecten aanraken. Deze groepen zijn:

1° Groep : bij 't neerdrukken van de kiel treden de stempel en de helmknoppen daaruit te voorschijn : beide worden tegen het achterlijf van het insect gewreven, de stempel ontvangt aldus stuifmeel van vroeger bezochte bloemen, terwijl de helmknoppen het achterlijf van een nieuw of voorraad stuifmeel voorzien — Voorbeelden: Trifolium, Melilotus.

2° Groep : de kiel heeft alleen aan den top een opening ; het stuifmeel wordt door de helmknoppen in het snavelvormig uiteinde der kiel onlast, en verzamelt zich onder de opening. Terwijl dit geschiedt verwelken de helmknoppen; de uiteinden der helmdragers.

(1) De verhandelingen van Delpino, waarin dit onderwerp behandeld wordt, zijn weergegeven door Hildebrandt (Bot. Zeit., 1867, 1870).
worden verdikt, en spelen te zamen de rol van den zuiger in een perspomp: bij het neerdrukken der kiel wordt het stuifmeel door de meeldraden er uit geperst. Wanneer al het stuifmeel weggedrukt is (dus na verscheidene bezoeken) treedt ook de stempel naar buiten en kan dan met vreemd pollen bestoven worden. (Voorbeelden: Lotus, Ononis; — Anthyllis, Lupinus.)

3e Groep: de stijl is van borstelharen voorzien, zoodat het stuifmeel telkens bij het neerdrukken van de kiel eruit wordt geperst. (Voorbeelden: Vicia, Lathyrus; — Pisum, Phaseolus.)

4e Groep: bij het drukken op de kiel springen de uiteinden der meeldraden en de stijl daaruit te voorschijn en drukken zich tegen het lichaam van het insect aan: losspringende bloemen. (Voorbeelden: Medicago, Genista, Sarothamnus.) (1)

637. Ulex europaeus L. — Gele bijenbloem. (Fl. mêlitophile jaune).

De volgende beschrijving naar Heinsius (Bot. Jaarb., IV, 1892, blz. 101, figg.):

Kelk diep 2deelig, met 2 schubbetjes aan zijn voet. De kiel bestaat uit 2 geheel vrije bladeren, die echter aan hun onderrand door ineengevlochten haren stevig verbonden zijn. Elk dezer bladen is van achteren voorzien van een vingervormig aanhangsel dat, naar binnen gebogen, tegen de basis der geslachtsorganen aandrukt. In de nabijheid van de basis van dit aanhangsel vertoont ieder kielhelft een verhevenheid, en daarnaast eene indeuking. De beide vleugels hebben bijna dezelfde gedaante als de kielhelften; alleen zijn zij iets langer, en missen het vingervormig aanhangsel. Zij hebben voorts eene verhevenheid en eene indeuking, die volkomen passen in de overeenkomstige oneffenheden der kiel. De vlag is omgekeerd hertvormig, en draagt een aantal naar de basis convergerende strepen (schijn-honigmerk). Aan den voet van de vlag vindt men aan elke zijde een verdikking, zoodat een gootvormige ruimte ontstaat, waarin een insect den zuiger kan steken (schijn-nectarium?). Meeldraden eenbroderig; de bloem bevat geen honig. — Onderzoekt men een vrij grooten bloemknop, dan vindt men dat 5 der helmknoppen reeds volwassen zijn, terwijl ook de bijbehorende

(1) Deze algemene aanwijzingen omtrent de Papilionaceeën hebben wij gedeeltelijk ontleend aan Heinsius (Bot. Jaarboek, IV. 1892, blz. 85-87).
helmdragers hunne volle lengte bereikt hebben; de 5 andere meeldraden echter, met de vorige alterneerend, zijn nog korter en hun helmknoppen kleiner. Ook de stijl heeft nog niet zijn volle lengte bereikt en ligt met eene flauwe bocht naar boven gekromd. De groote helmknoppen springen nu al spoedig open en onlasten hun stuifmeel in den top der kiel. Nu groeien ook de 5 andere meeldraden verder, terwijl hun helmknoppen volwassen worden. Zij drukken daarbij het stuifmeel der andere voor zich uit en, als zij bijna dezelfde lengte als deze bereikt hebben, zijn hun helmknoppen rijp en onlasten ook hun stuifmeel. De stijl is nu ook volwassen en verkeert in een spanning die naar boven gericht is: hij drukt dus tegen de bovenzijde der kiel aan en zou naar buiten treden, zoo niet de beide helften van deze ook van boven volkomen tegen elkaar sloten. Ook de kiel verkeert in een gespannen toestand, doch in tegenovergestelde richting. Deze beide spanningen nu maken evenwicht met elkaar. — Ulex europaeus behoort tot de vierde groep van Delpino, n. l. tot die met losspringende bloemen. Wanneer een insect zich op de bloem nederzet en de vleugels naar beneden drukt, wordt ook de kiel meegesleept. Haar beide vingervormige aanhangsels worden nu door den koker der meeldraden, waartegen zij aanliggen, uiteenge- drukt, en dientengevolge onstaat er van achteren naar voren een spleet, boven tusschen de beide kielhelften. Nauwelijks heeft deze spleet de plaats bereikt, waar de stempel tegen de bovenzijde der kiel ligt aangedrukt, of de spanning, waarin stijl en kiel verkeeren, doet zich gelden. Door de ontstane opening springt de stijl met kracht te voorschijn, terwijl de kiel zich iets naar beneden buigt, doch spoedig door de onderste helft van den kelk wordt tegengehouden. Bij het losspringen kromt de stijl zich achterwaarts en slingert het in den top der kiel liggend stuifmeel naar buiten. Aldus wordt de stempel tegen het lichaam van het insect aangedrukt, en tevens wordt een geheel wolkje van stuifmeelkorrels met kracht tegen het insect geworpen.

De stempel is bezet met lange, gekromde tepels: wanneer deze tegen de met (vreemd) stuifmeel beladen lichaamsharen van een bezoeker worden aangedrukt, zullen blijkbaar vele stuifmeelkorrels tusschen deze tepels blijven zitten. Zij werken dus bijna als grijporganen, wat hier meer noodig is dan bij andere Papilionaceën, omdat de aanraking maar eenmaal en slechts op één punt van het
lichaam des bezoekers geschiedt. — Op de hooger beschreven wijze is kruisbevruchting (tusschen verschillende exemplaren) niet waarschijnlijker dan takkruising (d. w. z. kruising tusschen bloemen van één exemplaar).

Bezoekers: Langtongige bijen: Apis, 8. 5. 87; talrijk, 18. 5. 90. Bombus terrestris L., ♀, 18. 5. 90. — Korttongige bijen: Halictus quadrinotatus K., ♀ en H. cylindricus F., ♀, 8. 5. 87. — Allotrepe Dipteren: Spiloga-ster duplicata Meig., 8. 5. 87. Nemoraea (Tachina) argen-tifera Meig., 18. 5. 90. Alle te Bellem. — De langtongige bijen alleen zijn krachtig en behendig genoeg om de bloemknoppen op de hooger beschreven wijze open te maken; de andere bezoekers moeten zich tevreden stellen met het stuifmeel dat na het openspringen der bloem (na het eerste bezoek) op de bloemdeelen is blijven liggen, en dragen tot de bevruchting weinig bij. Wanneer het weder in den vroegen morgen gunstig is worden al de volwassen bloemknoppen in korten tijd door bijen en hommels opengemaakt; later op den dag vindt men gewoonlijk niets anders meer dan openge- maakte, reeds bevruchte bloemen, en bloemknoppen die de volgende dagen aan de beurt zullen komen.

Bloemen losspringend, zonder honig; meeldraden eenbroederig. De vlag is vrij groot, en draagt een aantal naar de basis convergeerende strepen (schijn-honigmerk?). Ieder kielhelft vertoont een verhevenheid 'b' en boven deze verhevenheid een indeuking ')'. Ieder vleugel vertoont eveneens een verhevenheid 'b' en een indeuking 'f', die volkomen passen in de overeenkomstige oneffen- heden der kiel. In een volwassen bloemknop liggen de geslachtsorga- nen zooals in fig. 112,2 aangewezen wordt: de 5 korte meeldraden zijn opengegaan, en zijn aangedrukt tegen den naad waardoor de bovenranden der beide kielhelften verbonden zijn. De stijl ligt aan de onderzijde in de kiel, als een gespannen veer, waarvan de top (stempel) tegen den top der kiel aandrukt. De helmknoppen der
5 lange meeldraden zijn eveneens opengegaan, en hebben hun stuifmeel in het voorste gedeelte der kiel ontlast. Hunne helmdragers verkeeren, evenals de stijl, in een gespannen toestand. Wanneer de honigbij zich op een bloemknop nederzet grijpt zij de vleugels met hare middelste en hare achterste pooten vast, terwijl zij met haar voorste pooten en haar kop op de middellinie onder de vlag dringt. (Het maakt bijna den indruk, alsof het insect door het schijn-honigmerk \(h \) bedrogen werd en zijn krachten inspande om aan de basis der vlag tot den honig door te dringen.) Daardoor worden de vleugels naar beneden gedrukt, en de kiel wordt daarbij medegesleept (kiel en vleugels zijn door \(b, b', f, f' \), met elkander verbonden). De beide kielhelften worden aldus uiteengedrukt, en dientengevolge ontstaat er tusschen hunne bovenranden, van achteren naar voren een spleet. Nauwelijks heeft de spleet de plaats bereikt waar 5 korte meeldraden liggen, of deze meeldraden springen los: zij treden met kracht te voorschijn, en werpen een gedeelte van hun stuifmeel tegen den buik der bij. Wanneer nu de bij de vleugels en tevens de kiel verder naar beneden drukt bereikt de spleet weldra den top der kiel, en een tweede, sterkere ontploffing grijpt nu plaats: de stijl springt los, zijn stempel wordt tegen den rug der bij aangedrukt. Daarbij wordt het grootste gedeelte van het stuifmeel der 5 lange meeldraden door het verbreed gedeelte van den stijl, dat zich onder den stempel bevindt, weggesneld en met kracht tegen den rug der bij geworpen, en tevens springen de 5 lange meeldraden los. De bij blijft gedurende enkele seconden onbeweeglijk, als bedwelmd. Daarna keert zij zich om; zij ontdeet zich aldus van den stijl, die zich onmiddellijk oprolt (zie fig. 112,3), en zij verzamelt het stuifmeel, dat nog aan de helmknoppen achtergebleven is. De stuifmeelvoorraad is in deze bloemen zoo aanzienlijk, dat de bijen voor haar moeite rijkelijk beloond worden. De hommels gedragen zich op dezelfde wijze als de honigbij (zie \(\text{b e z} \text{o} \text{e k e r s} \)). Wanneer een insect achtereenvolgens verscheidene bloemen bezoekt, is zijn lichaam, na het eerste bezoek, geheel met stuifmeel bepoederd, en al de volgende bloemen zullen met vreemd stuifmeel bevrucht worden (zie Nr 637). Ook de eerste bloem kan naderhand bevrucht worden, want een aantal kleinere insecten (kleine bijen, vliegen, enz.) bezoeken de opengesprongen bloemen, en vergasten zich aan het stuifmeel dat de eerste bezoekers achtergelaten hebben. Bij
uitblijvend insectenbezoek springt de bloem niet open, en blijft zij schier altijd onvruchtbaar.

Fig. 112. — Sarothamnus Scoparius.

3. Rechterhelft der kiel met de voortplantingsoorganen, na het insectenbezoek. — l, k, s als voren. — (Naar de natuur, 11. 9. 93.)

4. De kiel met de voortplantingsoorganen, na het insectenbezoek. Letters als voren. — (Naar de natuur, 11. 9. 93.)

5. Buitenzijde van den linkermeegel. — b, verhevenheid. — f', indeuking. — (Naar de natuur, 11. 9. 93.)

6. Binnenzijde van den linkermeegel. — b en f als in 5. — (Naar de natuur, 11. 9. 93.)
Bezoekers: Langtongige bijen: *Apis*, tusschen 6 en 7 uren des morgens (24. 5. 89), zeer talrijk; bezoekt de bloemknoppen der planten, die reeds door de morgenzon beschenen worden, terwijl de met dauwdruppels beladen planten, die nog in de schaduw staan, niet bezocht worden. In vele gevallen is de honigbij niet krachtig genoeg om de vleugels, na de eerste ontploffing, verder naar beneden te drukken; dientengevolge blijven de *lange* meeldraden en de stijl na het insectenbezoek in de kiel verborgen; 24. 5. 89; — 29. 5. 87, Gentbrugge. *Bombus agrorum* F., ♀, 3. 5. 90. Bellem. *B. terrestris* L. ♀, en *B. lapidarius* L., ♀, 7. 5. 90, Id. (De hommels zijn krachtig genoeg om den bloemknop telkens geheel open te maken.) — Korttongige bijen: *Andrena convexiuscula* K., ♀, met veel krachtinspanning de bloemknoppen openmakend, 7. 5. 90, Bellem. *A. nigro-aenea* K., ♀, het overschot van het stuifmeel vretend; zoekt honig en tracht aan den voet der vlag te zuigen, 22. 5. 89, Meirelbeke. *A. Schenckii* Mor., ♂, in de kiel het overschot van het stuifmeel vretend, 29. 5. 87, Gentbrugge. — Hemitrope Dipteren: *Rhingia campestris* Meig., het overschot van het stuifmeel vretend; tracht daarenboven te zuigen (zie *Chelidonium*, Nr 488); 22. 5. 89, Meirelbeke. *Syrphus Ribesii* L., stuifmeel vretend, 24. 5. 89, Gentbrugge. *Eristalis pertinax* Scop., id. id. Id.

639. *Genista tinctoria* L. — Gele bijenbloem. (*Fl. jaune, à pollen*). — Müller, Fertilis., blz. 188.

Losspringende bloemen, zonder honig; meeldraden eenbroedergig. In den bloemknop zijn de 5 meeldraden van den buitensten krans langer dan die van den binnensten krans, en de 4 bovenste gaan eerst open. De 10 meeldraden en de stijl liggen van binnen in de kiel, waarvan de 2 helften boven en onder met elkander stevig vereenigd zijn. Daar de 4 bovenste helmknoppen van den buitensten krans aan de binnenzijde opengaan, blijft hun stuifmeel boven den stijl liggen; het wordt in het voorste gedeelte der kiel (die nog
steeds aan lengte toeneemt) geschoven door de meeldraden van den binnensten krans, die langer worden, en in korten tijd de 4 meeldraden waarvan de helmknoppen geledigd zijn aan lengte overtreffen. De 5e meeldraad van den buitensten krans, die onder den stijl ligt, groeit met de 5 binnenste meeldraden mede en ontlast zijn stuifmeel te gelijkertijd als deze. Het opengaans der 6 laatste helmknoppen geschiedt korten tijd vóór dat de vlag zich opricht. De kiel heeft alsdan een horizontalen stand: de meeldraden met den stijl verkeeren in een spanning die naar boven gericht is, ook de nagels der vleugels en de kiel verkeeren in een gespannen toestand, doch in tegenovergestelde richting. De vleugels en de kiel zijn op dezelfde wijze als bij Sarothamnus met elkander verbonden. Zoolang de bovenste randen der kiel tegen elkaar sluiten en de zakvormige lobben der vleugels boven den koker der meeldraden op de middellinie met elkander in aanraking blijven, behoudt het geheele stelsel zijn evenwichtstoestand. Wanneer een insect zijn kop onder de vlag steekt en de vleugels naar beneden drukt worden de beide zakvormige aanhangsels dezer organen door den koker der meeldraden uiteengedrukt, en er ontstaat van achteren naar voren een spleet, boven tusschen de beide kielhelften. Nauwelijks heeft deze spleet den top der kiel bereikt, of de spanningen, waarin de voortplantingsorganen en de kiel verkeeren, doen zich gelden. Bij het losspringen kromt de stijl zich naar boven: de stempel en het stuifmeel worden tegen het lichaam van het insect aangedrukt, en tevens springt de kiel naar beneden. Indien de bezoeker reeds beladen is met stuifmeel uit een andere bloem zal plantkruising of takkruising plaats grijpen. Bij uitblijvend insectenbezoek schijnen de bloemen niet open te springen en geen vrucht te zetten.

Gelijk op de vorige soort, maar de spanning waarin de voortplantingsorganen en de kiel verkeeren is niet zoo sterk: bij het losspringen bewegen de vleugels en de kiel zich slechts weinig naar beneden, en de stijl alleen (niet de meeldraden) kromt zich naar boven.

Gelijk op de vorige soort. Zelfonvruchtbaar.
Ononis spinosa L. — Rose bijenbloem. (Fl. mélittophile rose). — Müller, Fertilisation, blz. 174.

Meeldraden eenbroederig; geen honig. De vleugels omsluiten het bovenste gedeelte der kiel. Ieder vleugel draagt aan zijne binnenzijde een aanhangsel f' dat naar onderen en naar voren (naar den top der kiel) is gericht, en in een overeenkomstige indeling f' der kiel past. Daarenboven vindt men aan de basis van den bovensten rand van iederen vleugel een naar achteren gericht aanhangsel b: deze beide aanhangsels liggen boven den koker der meeldraden, maar raken dezen koker niet aan. De vleugels zijn niet met elkander verbonden. — De bovenste randen der kielheften sluiten in den beginne volkomen tegen elkander, uitgenomen aan den top, waar een kleine opening vrij blijft. De 10 met elkander vergroeide meeldraden zijn naar hun top verdikt, de 5 buitenste i meer dan de 5 binnenste e; de laatstgenoemde brengen meer stuifmeel voort. Reeds in den bloemknop bereiken de helmknoppen de basis van den kegelvormigen snavel der kiel; als zij opengaan wordt de kegel ki geheel met stuifmeel gevuld, en tevens verschrompelen zij. De stempel ligt midden in het stuifmeel, een weinig onder den top der kiel. Wanneer een insect zich op de vleugels nederzet en deze organen naar beneden drukt wordt de kiel meegesleept; terwijl de kiel zich naar beneden beweegt wordt het stuifmeel door de verdikte uiteinden der helmdragers weggedrukt; een gedeelte van het stuifmeel treedt door de opening aan den top der kiel naar buiten en raakt de buikzijde van den bezoeker aan. (Hierbij spelen de 5 buitenste meeldraden i een gewichtiger rol dan de 5 binnenste, die daarentegen meer stuifmeel voortbrengen dan de 5 buitenste. Dit is een begin van verdeeling van den arbeid tusschen de buitenste en de binnenste meeldraden.) (1) Als de drukking ophoudt neemt de kiel haren oorspronkelijken stand weder in. Na verscheidene bezoeken laten de bovenste randen der kielheften van elkander los: alsdan treden de meeldraden en de stempel naar buiten telkens de kiel naar beneden gedrukt wordt. Wanneer de kiel te ver naar beneden gedrukt wordt kan zij haar vorigen stand niet weder innemen, want hare elasticiteitsgrens wordt overschreden; dientengevolge kan zij de meeldraden en den stempel niet weder omsluiten als de drukking

(1) Zie Lotus corniculatus.
ophoudt. — Bij de eerste bezoeken wordt de buikzijde der insecten met stuifmeel beladen; bij de volgende bezoeken raakt de stempel de buikzijde der bezoekers aan. De vlag draagt een aantal donkere strepen (schijn-honigmerk?).

Fig. 113. — Ononis spinosa (naar de natuur).

1. Bloem. — v, vleugel. — k, onderste kelkslip, met klierharen.
2. Dezelfde bloem; kelk en vlag zijn weggenomen. — v, vleugel. — ki, kegelvormige snavel der kiel. — b, vingervormig aanhangsel van den vleugel. — m, koker der meeldraden, aan de onderzijde tusschen de beide kielhelften zichtbaar.

Melle. *B. hortorum* L., ♀, 25. 7. 92; — 4. 8. 86, Melle.—
Lepidopteren: *Pieris Napi*, tracht te zuigen, 6. 8. 86, Melle.

643. **Ononis repens** Auct. — Rose bijenbloem. (*Fl. mélittophile rose.*) — Kirchner, Neue Beobacht., 1886, blz. 39.

Bevruchting zooals Nr 642.

644. **Medicago sativa** L. — Violette of blauwe bijenbloem. (*Fl. mélittophile, violette ou bleue.*) — Müller, Fertilisation, blz. 175.

Losspringende bloem. Meeldraden tweebroederig: aan weerszijden van de basis van den bovensten (vrijen) meeldraad een opening waardoor de honig kan bereikt worden. Deze vloeistof wordt door de bases der 9 vergroeide meeldraden *m* afgescheiden, en verzamelt zich rondom den voet van het vruchtbegin *v*.

Vóór het insectenbezoek zijn de voortplantingsorganen in de kiel verborgen; de beide kielhelften sluiten van boven volkomen tegen elkaar. Als de kiel door een insect naar beneden wordt gedrukt verlaten de voortplantingsorganen de kiel en krommen zij zich achterwaarts; zij worden met kracht tegen het insect aangedrukt, en als het insect zich verwijderd heeft blijven zij tegen de vlag aangedrukt, waaruit volgt dat zij bij een tweede bezoek niet meer aangeraakt worden. — Bij deze soort is het losspringen der voortplantingsorganen een gevolg van de spanning waarin de bovenste meeldraden verkeeren: als men de meeldraden die zich aan de bovenzijde van den koker bevinden kunstmatig scheidt van die welke zich aan de onderzijde bevinden constateert men dat de eerstgenoemde zich nog meer naar achteren krommen, terwijl de laatstgenoemde zich daarentegen naar onderen krommen tot zij een nagenoeg horizontale stand hebben ingenomen. In een bloem die nog geen insectenbezoek ontvangen heeft wordt de koker der meeldraden in evenwicht gehouden door 2 naar binnen gerichte indeukingen *i* der kiel, die zich dicht bij den bovenrand, aan de basis der schijf van iedere kielhelft bevinden, met elkander op de middellinie boven den koker der meeldraden in aanraking zijn, en aldus een soort van *brug* vormen. Ieder vleugel is aan zijne binnenzijde voorzien van
een holle verhevenheid \(i\), die in de overeenkomstige indeuking \(i'\) der kiel past, en aldus de brug, die boven de voortplantingsorganen ligt, steviger maakt. Eindelijk vertoont ieder vleugel, aan de basis van zijn bovenrand, een vingervormig, gebogen, naar achteren gericht aanhangsel \(c\): deze beide aanhangsels zijn op de middellinie, boven den koker der meeldraden, met elkander bijna in aanraking, en vormen samen een tweede brug die bijdraagt om de voortplantingsorganen in evenwicht te houden. Wanneer een insect de vleugels en de kiel naar beneden drukt worden de hooger beschreven indeukingen en aanhangselen door den koker der meeldraden, waartegen zij aanliggen, uiteengedrukt: de twee bruggen gaan open, en de spanning waarin de bovenste meeldraden verkeeren, doet zich gel- den. De stempel steekt een weinig voorbij de helmknoppen uit: hij wordt door de meeldraden medegesleept en vóór de helmknoppen tegen het lichaam van den bezoeker aangedrukt. Indien het insect

![Diagram](image-url)

Fig. 114. — *Medicago sativa* (naar de natuur).

1. Bloem na het insectenbezoek: het bovenst gedeelte van den kelk en de vlag zijn weggenomen.
2. Binnenzijde der linker-kielhelft.
3. Buitenzijde » » »
4. Binnenzijde van den rechtervleugel. — \(k\), kelk. — \(c\), naar achteren gericht aanhangsel van den vleugel. — \(i\), naar voren gericht aanhangsel van den vleugel. — \(i''\), ondiepe indeuking aan de buitenzijde van den vleugel: deze indeuking vormt aan de binnenzijde het aanhangsel \(i\). — \(i'\), indeuking der kiel, waarin het aanhangsel \(i\) past. — \(k'i\), kiel. — \(m\), koker der meeldraden, losgesprongen en naar achteren gekromd. — \(m'\), vrije meeldraad. — \(v\), vruchtbeginsel. — \(h\), helmknoppen (de stempel is tusschen de helmknoppen verborgen).
met stuifmeel uit andere bloemen beladen is zal de stempel met dit stuifmeel bevrucht worden, en tevens wordt de voorraad stuifmeel op het lichaam van het insect vernieuwd. In de bloem die het eerste bezoek van het insect ontvangt grijpt echter zelfbestuiving plaats, daar de stempel en de helmknoppen tegen de vlag aangedrukt blijven als het insect zich verwijdt. Ook bij uitblijvend insectenbezoek bevrucht de bloem zich zelf van binnen in de kiel. Zelfvruchtbaar. —

De honigafscheiding duurt na het losspringen der bloem voort, zonder eenig nut voor de plant. De honigbij steelt den honig zonder de bloem te doen losspringen, door haar slurf van ter zijde in de bloem te voeren: op die wijze vermijdt het insect de onaangename gewaarwording die het losspringen veroorzaakt, tot groot nadeel der plant, die van haren honig beroofd wordt. De bevruchting wordt waarschijnlijk door vinders bewerkstelligd. (Beschrijving met verkortingen ontleend aan Müller.)

645. Medicago lupulina L — Gele bijenbloem. (Fl. mêlitthophile jaune). — Kirchner, Flora.

Bloemen zeer klein (2-3 mill.) Het mechanisme gelijkt op dat der vorige soort.

Besoekers: Langtongige bijen: Apis, 29. 5. 86, Melle; 12. 6. 87, Wondelghem.—Korttongige bijen: Halictus micans Schmied. (teste Schmiedeknecht), ♀, 29. 5. 86, Melle

Stemt in hoofdzaak met de M. sativa overeen. De twee bruggen omvatten den koker der meeldraden minder stevig: een geringe drukking op de kiel is dus voldoende om de bloem te doen losspringen. De honig kan door bijen moeilijker gestolen worden (zie Nr. 644), maar een dunne vinderslurf kan gemakkelijker in de bloem gevoerd worden zonder de voortplantingsorganen te doen losspringen. (Voor meer bijzonderheden, zie H. Müller). — Misschien niet inheemsch in ons gebied.

647. Melilotus altissimus Thuill. — Gele bijenbloem. (Fl. mêlitthophile jaune.)

De voortplantingsorganen zijn in de kiel verborgen; zij treden
naar buiten als de kiel naar beneden gedrukt wordt, en worden opnieuw door de kiel omsloten als de drukking ophoudt. Insecten met korte monddeelen kunnen tot den honig doordringen, daar de kelk slechts 2 mill. lang is. Ieder vleugel kleef op één plaats (op dezelfde wijze als bij T. repens) aan de overeenkomstige kielhelft: de kiel wordt dus bij iedere draaiing door de vleugels medesleept, en omgekeerd. Op de grens tusschen nagel en plaat is ieder vleugel voorzien van een vingervormig aanhangsel (zie d, d bij Trifolium repens, fig. 116,1,2): deze aanhangsels vormen samen een brug boven den koker der meeldraden. De stempel staat iets hooger dan de helmknoppen: daardoor wordt kruisbevruchting door insecten bevorderd, en zelfbestuiving bij uitblijvend insectenbezoek moeilijker gemaakt. (Beschrijving — met verkortingen — ontleend aan Kirchner, Flora).

648. Melilotus arvensis Wallr. — Als voren. (Comme l’espèce précédente.)

De bloembuis is 9-10 mill. lang. Zij wordt gevormd door de nagels der kroonbladen en de 9 onderste meeldraden: al deze deelen zijn met elkander vergroeid. Honig wordt door de bases der meeldraden afgescheiden en rondom de basis van het vruchtbeginsel, op den bodem der bloembuis verzameld. Een bijenslurf, die onder de vlag in de bloem gevoerd wordt, komt rechtstreeks in de honighoudende bloembuis terecht: de helmdrager van den tienden (vrijen) meeldraad bevindt zich niet op de middellinie, maar aan eene zijde, zoodat de weg naar den honig geheel vrij is. (Bij Trifolium repens, Medicago, Lotus, enz. kan de honig slechts door 2 kleine openingen aan de beide zijden van de basis van den vrijen meeldraad bereikt worden.) — De bloembuis draagt aan haar voorste uiteinde de volgende organen: 1° de vlag, die zich voordoet als een voortzetting van de bovenzijde en van de zijdelingsche gedeelten der buis, en die daarenboven, aan weerszijden van de middellinie, met de onderzijde der bloembuis vereenigd is door middel van de oorvormige aanhangselen q; 2° de kiel, die aan de onderzijde der bloembuis, tusschen de aanhangselen q vastgehecht is; 3° de 2 vleugels, waarvan de buigzame nagels
uit de gemeenschappelijke bloembuis ontspringen; de nagel van ieder vleugel is aan zijne basis naar buiten gewelfd: de gewelfde deelen d bedekken het voorste gedeelte van den koker der meeldraden, en dragen bij om dezen koker alsook de kroonbladen op hunne respectieve plaats te houden; 4° het voorste gedeelte van den koker der meeldraden m, die aan zijne bovenzijde, op de plaats van den vrien meeldraad m', gespleten is. De vrije gedeelten der meeldraden

Fig. 115. — Trifolium pratense (naar de natuur).

2. Bloem, van boven gezien. De vlag en de kelk zijn weggenomen. — v, vleugel. — k, kiel. — d, gewelfd aanhangsel van den vleugel. — m, voorste gedeelte van den koker der meeldraden. — m', vrije meeldraad. — s, stijl. — h, helm-knoppen. — De nagel der vlag werd van de overige deelen der bloembuis volgens de gebroken lijn r, r afgescheurd.
bevinden zich van binnen in de kiel: zij zijn stijf, naar boven gebogen, aan hun top iets verdikt. Tusschen de meeldraden ligt de stijl, die naar boven gebogen is en een weinig voorbij de helmknoppen uitsteekt.

Wanneer een bij haar slurf onder de vlag in de bloem voert houdt zij zich met haar voorste pooten aan de vleugels vast; zij drukt de vleugels en de kiel (die met de vleugels verbonden is) naar beneden; de voortplantingsorganen treden tusschen de bovenste randen der kielhelften naar buiten en raken de onderzijde van het lichaam der bij aan. De stempel, die een weinig boven de helmknoppen uitsteekt, ontvangt het vreemd stuifmeel waarmede de bij beladen is, en daarna wordt de bij door de helmknoppen met versch stuifmeel bepoederd. Zelfbestuiving is niet onmogelijk, maar het vreemd stuifmeel heeft hier zeer waarschijnlijk (evenals in vele andere gevallen) boven het eigen stuifmeel de overhand. — De bezoekers behoeven eene slurf van 9-10 mill. om den honig te bereiken. Het stuifmeel kan echter door vele insecten met korte mondwerktuigen verzameld worden. De bloemen scheiden veel honig af en worden veel bezocht.

Honig wordt rondom de basis van het vruchtbeginsel door de bases der meeldraden afgescheiden, en kan bereikt worden door twee openingen h aan weerszijden van de basis van den vrijen meeldraad. Een insect, dat tot den honig wil doordringen, houdt zich aan de vleugels vast, steekt zijn kop en zijne slurf onder de vlag, en drukt tevens de vleugels en de kiel naar beneden: de voortplantingsorganen treden daarbij naar buiten. De stempel wordt met het lichaam van het insect in aanraking gebracht: hij wordt aldus bevrucht indien het insect reeds met stuifmeel uit andere bloemen beladen is. Tevens worden de helmknoppen tegen het insect aan gedrukt, en zijn lichaam wordt aldus met nieuw stuifmeel bepoe- derd. Als het insect de bloem verlaat worden de voortplantings-organen opnieuw in de kiel verborgen.

Laten wij de structuur en de rol der verschillende deelen der bloem nader onderzoeken. De kelkbuis heeft de gedaante van een
stevigen koker, die de bloemdeelen aan hun basis, over een lengte van ongeveer 3 mill., omsluit en beschut. De vlag heeft een stevigen, breeden nagel, die bijna geheel in de kelkbuis verborgen is, en de overige bloemdeelen van boven en ook aan weerszijden bedekt. De vlag kan door een insect slechts weinig naar achteren gebogen worden; zij vormt een steunvlak waartegen het insect met zijn kop leunt, terwijl het de vleugels en de kiel naar beneden drukt. De koker der meeldraden is stijf; naar voren zijn de helmdragers vrij en, evenals de stijl, naar boven gebogen (fig. 116, 3 en 5).

Onderzoeken wij voor eerst de bewegingen der kiel, die wij afzonderlijk beschouwen, nadat wij den kelk, de vlag en de vleugels voorzichtig verwijderd hebben. De nagel van ieder kielhelft is over een aanzienlijk gedeelte zijner lengte (n. 1. tusschen den bloembodem Bo en E; fig. 116,4) met den koker der meeldraden vergroeid. Op de middellinie zijn de beide kielhelften aan de onderzijde over haar geheele lengte met elkander vergroeid; hare bovenranden (5: tusschen A' en D) zijn tegen elkander aangedrukt, maar niet vergroeid. Als wij de kiel naar beneden drukken door middel eener kracht FA (waarvan het aangrijpingspunt door A aangewezen wordt) beschrijft het uiteinde A eene curve AA'. Het draaipunt bevindt zich bij C: op deze plaats vertoonden de vergroeiende nagels der kiel een geleding. In de geleding C ontstaat een spanning, die wij door aa hebben voorgesteld, en die naar boven gericht is. Terwijl de kiel om het punt C draait worden de punten D, D (fig. 116,6) van elkander verwijderd: zij beschrijven daarbij de curven DD', DD', en tevens worden de boveuranden (AD, AD) der kielhelften van elkander verwijderd. De kiel gaat aldus van boven open (de opening heeft den vorm eener A, waarvan A den top vormt); de voortplantingsorganen, die stijf zijn en aan de beweging geen deel nemen, treden naar buiten (fig. 116,5). Terwijl de punten D, D de beweging DD', DD' volbrengen, worden de vrije gedeelten N, N van de nagels der kielhelften naar buiten gebogen (met andere woorden: van de middellinie verwijderd): daadloos worden de genoemde nagels N, N en de wanden der kiel zelf in een gespannen toestand gebracht. De spanningen hebben wij door O' O, O' O, N' N, N' N (116,6) voorgesteld. — Als de drukking FA ophoudt doen de spanningen aa, N' N en O' O zich gelden: het uiteinde A' neemt zijn vroegeren stand A weder in; de punten D, D worden weder dicht bij elkander gebracht,
Fig. 116. — *Trifolium repens* (naar de natuur).

1. Bloem van boven gezien: de vlag en de kelk zijn weggenomen.
 v, vleugel. — *n*, nagel van den vleugel. — *p*, plaats waar de binnenzijde van den vleugel aan de buitenzijde der kiel kleeft. — *d*, opgeblazen aanhangsel van den vleugel. — *h*, kiel. — *kr*, bovenrand der linker-kielhelft (in den toestand van rust passen de bovenranden der beide kielhelften bij elkander, zooals in 6; hier zijn zij daarentegen een weinig van elkander verwijderd). — *E'*, plaats waar de nagel van den vleugel met den koker der meeldraden vergrooid is. — *M*, koker der meeldraden. — *m*, vrije meeldraad. — *h*, opening waardoor de honig kan bereikt worden.

2. Bloem van ter zijde gezien, in den toestand van rust. De kelk en de vlag zijn weggenomen, het voorste gedeelte der kiel is door de vleugels geheel verborgen.
 p, plaats waar de vleugel aan de kiel kleeft. — *d*, opgeblazen aanhangsel van den vleugel. — *E'*, plaats waar de nagel van den vleugel met den koker der meeldraden vergrooid is.

3. Bloem van ter zijde gezien; de kelk en de vlag zijn weggenomen. De kiel en de vleugels zijn naar beneden gedrukt door een verticale kracht die in 'a' haar aangrijtingspunt heeft. — Hierbij hebben de toppen der vleugels den weg 'a'a' beschreven en er is in de geleding C (aan den voet van het beweglijk gedeelte der kielhelften) een spanning 'a' ontstaan. Tevens werden de nagels der kielhelften (N) en die der vleugels (n) naar onderen en ook naar buiten gebogen. — *E'* en *d* als in 2. — *v*, bovenrand van den rechtervleugel. — *kr*, bovenrand der rechterkielhelft. — *h*, onderrand der kiel.

4. Bloem van ter zijde gezien, in den toestand van rust: de kelk, de vlag en de vleugels zijn weggenomen. — *p*, plaats waar de linkervleugel aan de linkerkiel-
Fig. 116. — *Trifolium repens* (naar de natuur).
De A-vormige spleet wordt gesloten, en de voortplantingsorganen worden weder door de kiel omsloten.

De kracht FA is alleen voldoende om de zoo even beschreven bewegingen te veroorzaken: die kracht plant zich in de verschillende deelen der kiel volgens bepaalde richtingen voort, en wordt tevens in andere krachten ontbonden. Een volledige wiskundige analyse van die verschijnselen ware misschien niet onmogelijk, maar in ieder geval zeer moeilijk, want de kielhelften hebben de gedaante van gebogen vlakken, waarvan de kromming van de eene plaats tot de andere verandert, en zij worden doorloopen door bepaalde weerstandslijnen (nerven, b. v. n: 116,4), die eveneens kromme lijnen zijn, en die door haar weerstandsvermogen en door haren vorm de ontbinding der kracht FA beheerschen.

De hooger beschreven bewegingen grijpen plaats zelfs wanneer het voorste gedeelte der geslachtsorganen bij C afgesneden en weggenomen is. De koker der meeldraden speelt daarbij echter de rol van een hulporgaan, n.l. op de volgende wijze: als de kiel nedergedrukt wordt, worden de punten D, D (fig. 116,6) naar onderen en tevens naar voren gebracht, zooals duidelijk blijkt uit een vergelijking tusschen fig. 116,4 en 5; daarbij glijden de punten D, D over den koker der meeldraden, die nagenoeg cilindrisch is, en het spreekt van zelf dat de punten D, D aldus zullen uiteengedrukt en van elkander verwijderd worden, en dat de kiel tevens zal geopend worden. *Het opengaan der kiel grijpt dus plaats zonder de*

Verklaring van fig. 116, vervolg.

Helft vastgehecht was. — M, koker der meeldraden. — E, plaats waar de nagel der kiel (N) met den koker der meeldraden vergroeid is. — C, geleding waarin de kiel onder den invloed eener kracht FA kan gebogen worden. — n, nerf der kiel. — Bd, bloembodem.

5. Hetzelfde voorwerp als in 4: de kiel is door de kracht FA naar beneden gebogen; de top der kiel heeft de weg AA' beschreven, en in de geleding C is een spanning \approx ontstaan. — D, aanhangsel der kiel. — Bd, bloembodem.

A, top der kiel. — Door DD', DD' wordt de weg voorgesteld die beschreven wordt door de punten D, D als de kiel naar beneden gedrukt wordt; door OO', OO' wordt de spanning voorgesteld die daarbij in den *vand der kiel* ontstaat; door NN', NN' wordt de spanning voorgesteld die te gelijkertijd in *de nagels der kielhelften* ontstaat. — M, koker der meeldraden. — E wijst de plaats aan waar de nagels der kielhelften met den koker der meeldraden vergroeid zijn. — Bd, bloembodem. — h, opening waardoor de honig kan bereikt worden.
tusschenkomst van den koker der meeldraden, maar wordt door
dezo tusschenkomst bevorderd.

Ieder vleugel vertoont eene ondiepe indeuking p, die van binnen
aan het overeenkomstig gedeelte der kiel (p; 116,4) kleeft. De
nagels der vleugels zijn (evenals de nagels der kiel) over een gedeelte
hunner lengte (2: tusschen den bloembodem en E') met den koker
der meeldraden vergroeid. Ieder vleugel is op de grens tusschen
nagel en plaat voorziën van een rondachtig uitwassen d. De beide uit-
wassen d zijn op de middellinie met elkander in aanraking (zie de
verklaring van fig. 116,1), aan de bovenzijde van den koker der
meeldraden. De vleugels zijn langer dan de kiel, en spelen dus de rol
van hefboomen. Als men de vleugels door middel eener verticale
kracht naar beneden drukt (fig. 116,5) beschrijft hun uiteinde α de
curve α'α'; daar de vleugels met de kiel stevig verbonden zijn
(bij p) wordt de kiel medegesleept; hij volbrengt juist dezelfde
bewegingen als wij hooger beschreven hebben, en het draaipunt
blijft hetzelfde, n.l. C.

Terwijl de vleugels nedergedrukt worden verwijderen de aan-
hangsels d,d zich van elkander; deze aanhangsels glijden daarbij
over den koker der meeldraden en worden daardoor uiteengedrukt,
op dezelfde wijze als de punten D, D als de kiel alleen naar beneden
gedrukt wordt. De koker der meeldraden speelt hierbij slechts de
rol van een hulporgaan, want als men den koker achter d
afsnijdt en wegneemt wordt de beschouwde beweging niettemin
volbracht. Als men de vleugels nederdrukt worden de vrije gedeel-
ten hunner nagels n naar onderen en tevens naar buiten gebogen
(fig. 116,3) en daardoor ontstaat er in deze organen een spanning die
naar de middellinie is gericht, en tevens een spanning αα die naar
boven is gericht. Als de verticale drukking ophoudt doen de span-
ningen zich gelden, en de vleugels nemen hun vorigen stand weder
in. De bewegingen der vleugels en de spanningen die daarin ontstaan
gaan dus tot in hunne kleine bijzonderheden hand in hand met de
bewegingen en de spanningen der kiel: de vleugels helpen de kiel
bij het volbrengen zijner bewegingen. — Het heeft den schijn, alsof
de zoo even beschreven bewegingen der vleugels een eenvoudig
gevolg waren van de overeenkomstige bewegingen der kiel; dit is
echter geenszins het geval. Gelijk de kiel de hooger beschreven
bewegingen volbrengt nadat men de vleugels verwijderd en de
voortplantingsorganen doorgesneden heeft, zoo ook volbrengen de
vleugels hunne bewegingen nadat men ze van de kiel en de voortplantingsorganen gescheiden heeft: wij hebben de nagels der kielhelften en de voortplantingsorganen bij C (3) dwars doorgesneden, en daarna de beide kielhelften en het afgesneden gedeelte der voortplantingsorganen voorzichtig verwijderd, op zulke wijze dat de beide vleugels en het basaal gedeelte der voortplantingsorganen (tusschen den bloembodem en C) behouden bleven. Na die bewerking hebben wij de vleugels naar beneden gedrukt en weer losgelaten, en waargenomen dat de hooger beschreven bewegingen plaats grijpen, maar niet zoo volkomen als in de ongeschonden bloem.

De bewegingen der vleugels en der kiel hebben wij zoo even bestudeerd nadat de kelk en de vlag verwijderd waren. De vlag schijnt hierbij echter in zekere mate de rol van een hulporgaan te spelen. De nagels van de vleugels en van de kielhelften zijn immers aan de beide zijden van de bloem met de naar onderen omgebogen randen van den nagel der vlag in aanraking: als men nu de vleugels en de kiel naar beneden drukt worden hunne nagels naar buiten gebogen (zooals hooger werd gezegd); dientengevolge drukken zij tegen de randen van den nagel der vlag aan, en deze randen worden eveneens uiteengebogen. Op die wijze ontstaat er in ieder helft van den nagel der vlag een spanning die van buiten naar binnen (naar de middellinie) is gericht; deze spanning doet zich gelden als de drukking ophoudt, en draagt het hare bij om de naar buiten gebogen nagels van vleugels en kiel weer naar binnen te brengen. — Wij meenen dat de kelk bij de bewegingen geen rol speelt.

Uit onze beschrijving blijkt dat het mechanisme der bloem van Trifolium repens buitengewoon ingewikkeld is; wij zijn niet bevoegd om een mathematische analyse van dit mechanisme te geven.

De bloem van Trifolium repens bestaat uit twee samenwerkende (synergische) stelsels, n.l. de vleugels en de kiel, die met elkander verbonden zijn en zich telkens gelijktijdig en op dezelfde wijze bewegen; ieder van die organen kan echter afzonderlijk de beschouwde bewegingen volbrengen. Hierbij komen nog twee andere organen, n.l. de koker der meeldraden (die een passieve rol speelt) en de nagel der vlag (die een actieve rol schijnt te spelen) in aanmerking. Als men in een volledige bloem, de vleugels met de kiel dertig of veertig achtereenvolgende malen naar beneden drukt schijnt het mechanisme niet vermoeid te worden; de voortplantings-
organen worden door de kiel weder omsloten telkens de drukking ophoudt. Als men echter de kiel alleen, of de vleugels alleen eenige malen naar beneden drukt nemen die organen, wel is waar, hun oorspronkelijken stand telkens weder in, maar de bewegingen zijn als het ware aarzelend, en het mechanisme vertoont na eenige buigingen duidelijke teekens van vermoeienis. Door de vereeniging van verscheidene samenwerkende (synergische) organen heeft de de Natuur niet alleen meer zekerheid aan de bewegingen gegeven: zij heeft ook de vermoeienis weten te voorkomen.

Op een gelijke wijze worden de meeste bewegingen bij de hoogere dieren door groepen van samenwerkende (synergische) spieren volbracht: daardoor worden dezelfde voordeelen verkregen als door de samenwerking van vleugels, kiel en vlag in de bloem van *Trifolium repens*.

De tijd heeft ons ontbroken om de andere Papilionaceeën op een even grondige wijze als *Trifolium repens* te bestudeeren. De meeste onzer beschrijvingen hebben wij aan andere schrijvers ontleend. Wij hopen later het mechanisme der voornaamste inheemsche soorten vollediger te onderzoeken.

651. *Trifolium fragiferum* L. — Bleekrose bijenbloem. *(Fl. méllitophüe, rose pâle).*

Deze soort gelijkt (naar Müller) op T. *repens*. Bloemen kleiner. In ons gebied minder verspreid dan Nr. 650.

Bezoekers: Langtongige bijen: *Bombus lapidarius* L., ♀, 12.8.92, Zwijnaerde.
652. *Trifolium procumbens* L. — Gele bijenbloem. (*Fl. méllitophile jaune*). (Kirchner, Flora).

653. *Trifolium agrarium* L. — Zooals N° 652. (*Comme le N° 652*). — Zelfvruchtbaar. (Kirchner, Flora.)

Bezoekers: Korttongige bijen: *Halictus flavipes* F, ♀, smvzd., 22. 5. 89, Meirelbeke.

654. *Trifolium filiforme* L. — Zooals N° 652. (*Comme le N° 652*.)

655. *Trifolium arvense* L. — Bleekrose of witachtige bijenbloem. (*Fl. méllitophile blanchâtre ou rosée.*)

Bloemen klein, weinig in 't oog vallend. Zelfvruchtbaar.

N. B. *T. medium* L. en *T. striatum* L. hebben wij in ons gebied nooit aangetroffen.

De helmknoppen gaan open als de kiel en de vleugels nog door de vlag bedekt zijn, en als de 5 kroonbladen hun volle grootte nog niet hebben bereikt. De 10 meeldraden zijn alsdan evenlang, en hunne helmknoppen zitten aan de basis van den kegelvormigen snavel der kiel; de helmdragers der 5 buitenste meeldraden e zijn aan hun vooreinde iets verdikt, de 5 binnenste i (waaronder zich de bovenste vrije meeldraad bevindt) zijn niet verdikt. De 10 helmknoppen ontlasten hun inhoud in den kegel, die aldus geheel met stuifmeel wordt gevuld; daarna verschrompelen zij. Al de kroonbladen bereiken vervolgens hun volle grootte, en de 5 buitenste helmdragers worden langer; hunne vooreinden worden nog sterker verdikt, en vormen aldus, aan de basis van den stuifmeelhoudenden kegel, een soort van prop, zooals in fig. 117,4 aangewezen wordt. De 5 binnenste meeldraden i zijn thans volkomen nutteloos: zij liggen, verschrompeld, in het onderste, breedere gedeelte der kiel. De stempel s ligt in den stuifmeelhoudenden kielsnavel. De top van den snavel vertoont een nauwe opening, tusschen de randen der
kielhelften. Wanneer men de kiel naar beneden drukt worden de verdikte vooreinden der helmdragers e verder in den hollen kegel geperst; dientengevolge wordt een gedeelte van het stuifmeel door de opening aan den top naar buiten gedrukt. Als de drukking ophoudt nemen de verschillende deelen van het mechanisme hun vroegeren stand weder in. Wanneer de kiel verder naar beneden gedrukt wordt treedt het uiteinde van den stijl naar buiten, met den stempel die geheel met stuifmeel beladen is. Als de drukking ophoudt treedt de stijl weder in de kiel, en daarbij wordt bijna al het stuifmeel door de opening aan den top naar buiten gedrukt. Als de drukking ophoudt nemen de verschillende deelen van het mechanisme hun vroegeren stand weder in.

Fig. 117. — *Lotus corniculatus* (naar de natuur).
2. Vleugels en kiel. — v, c, k als voren.
4. Stand der voortplantingsorganen van binnen in de kiel (volkomen ontloken bloem). — s, stempel. — e, lange (episepale) meeldraden. — i, korte (epipetale) meeldraden.
stuifmeel dat aan den stempel kleeft door de randen der opening afgeveegd.

Als het hooger beschreven mechanisme klaar is richt de vlag zich op; de beide vleugels worden gewelfd en omsluiten de kiel; de verdikte vlezig basis der vergroeide meeldraden scheidt aan hare binnenzijde honig af; deze honig wordt rond de basis van het vruchtbeginsel verzameld en kan slechts bereikt worden door de openingen aan de beide zijden van de basis van den bovensten, vrijen meeldraad; de bloem is aldus toegerust om insectenbezoek te ontvangen.

De landingsplaats voor de insecten wordt door de beide vleugels gevormd. Ieder vleugel vertoont een diepe indeling c, die volkomen past in een overeenkomstige indeling c' der kiel. Van achteren kleven de bovenranden der vleugels aan elkaar. Wanneer een insect zijn kop en zijn slurf onder de vlag voert om honig te zuigen, en tevens de vleugels naar beneden drukt, wordt de kiel medegesleept: voor eerst treedt een zeker hoeveelheid stuifmeel naar buiten, en het insect wordt aldus met stuifmeel bepoederd. Indien het insect dieper in de bloem dringt en de vleugels met de kiel verder naar beneden drukt wordt de stempel tegen het insect aan gedrukt. Het insect is beladen met stuifmeel uit dezelfde bloem en uit andere (vroeger bezochte) bloemen: kruisbestuiving is dus niet waarschijnlijker dan zelfbestuiving, maar het vreemd stuifmeel heeft zeer waarschijnlijk de overhand boven het eigen stuifmeel. — Als men de kiel een weinig naar beneden drukt treedt slechts een klein gedeelte van het stuifmeel naar buiten: hetzelfde spel kan 8 à 12 maal herhaald worden, totdat de voorraad geheel uitgeput is.

Zygaena Filipendulae L., 10. 7. 1887, Bellem; 1.8.1886, Melle.

657. **Lotus major** Scop. — Stemt met Nr 656 volkom- men overeen.

Bloempjes zeer klein. Kelkbuis 2 mill. lang, uitwendig behaard. Plaat der vlag wit of witachtig, met roodpaarseaderen. De vleugels zijn van aderen verstoken, veel langer dan de kiel; hunne uiteinden divergeeren. Ieder vleugel vertoont dicht bij zijn bovenrand een diepe indeuking *p*, die past in een overeenkomstige indeuking der kiel: de vleugels zijn aldus met de kiel stevig verbonden. Daarboven is ieder vleugel voorzien van een zeer groot, opgeblazen vingervormig aanhangsel *c*. De beide aanhangsels raken elkander op de middellinie aan, en zijn aldus, boven de voortplantingsorganen tot een brug vereenigd. De kiel is kort, aan zijn top geel; de bovenranden der kielhelften passen op de middellinie bij elkander, maar zijn niet met elkander vergroeid. De koker der meeldraden *m*, de nagels der vleugels *n* en de nagel der vlag zijn tusschen den bloembodem en *aa* met den wand der kelkbuis vergroeid. Op de grens tusschen den nagel en de plaat vertoont de vlag een dik, gewelfd gedeelte, dat de vleugels op de hoogte van *kl* omarmt. — Als de kiel naar beneden gedrukt wordt gaat hij aan zijn bovenrand open, en de voortplantingsorganen treden naar buiten. De helmknoppen en de stuifmeelkorrels die zij hebben ontlast kleven meer of minder aaneen tot een soort van kluwen, waarin de stempel geheel verborgen zit. Als de kiel naar beneden gedrukt wordt gaat het kluwen open, en de stempel wordt ontbloot. De kans op kruisbevruchting is zeer gering, want de stempel is naar achteren omgebogen. De helmknop-
pen gaan van binnen in den bloemknop open, en de stuifmeelkorrels drijven hunne baizen in den stempel alvorens de bloem ontluikt. Wij hebben, evenmin als Müller, honig kunnen ontdekken. Het basaal gedeelte van den koker der meeldraden staat nochtans wijd open, en vormt een ruimen honigbehouder. De plant is schier ongetwijfeld zelfvruchtbaar, want zij draagt overvloedig zaad, ofschoon hare bloemen schier nooit bezocht worden.

Fig. 118. — Ornithopus perpusillus (naar de natuur).

Bloem, van boven gezien. Het bovenst gedeelte van den kelk en de vlag zijn weggenomen. k, kiel — p, indeling van den vleugel — c, opgeblazen aanhangsel van den vleugel. — kl, kelk (de haren zijn niet geteekend). — n, nagel van den vleugel. — m, koker der meeldraden. — m', vrije meeldraad. — v, vruchtbegin. — aa: tusschen den bloembodem en aa is de kelkbus met de overige bloemdeelen vergrooid.

Bezoekers: Langtongige bijen: *Bombus agrorum* F., ♂, zgd ?, 18 5. 90, Bellem. (Wij hebben de bloemen bij gunstig weer meermalen gadegeslagen.)

Bloemen blauw, in eenzijdige trossen. De vleugels zijn veel langer dan de kiel, en met deze verbonden door twee indeukingen, n.l.: l° een naar binnen gerichte plooi a, die past in een overeenkomstige holte a' aan de bovenzijde der kiel, onmiddellijk achter de beurs hb waarin het stuifmeel zich verzamelt; 2° een ondiepe, breede indeuking b, die past in een overeenkomstige indeuking b' der kiel. De binnenzijde van b en de buitenzijde van b' kleven aaneen (voor

Fig. 119. — Vicia Cracca (naar de natuur).

2. Dezelfde bloem als in 1; de vleugels zijn weggenomen. — t, hb, m als in 1. — a', indeuking der kiel die met a correspondeert. — b', indeuking der kiel die met b correspondeert. — v, nagel der linker-kielhelft.

De details, zie Müller). — Daarenboven is ieder vleugel voorzien van een aanhangsel c; de beide aanhangselen c vormen boven de voortplantingsorganen een soort van brug.

Evenals bij de andere Papilionaceënn zijn de voortplantingsorganen van binnen in de kiel verborgen. De stijl is kort, onder den stempel voorzien van haren, die samen een cilindrischen borstel vormen. De helmknoppen liggen (in den bloemknop) rondom dezen borstel, en onttasten hun stuifmeel op de haren als de bloem de helft harer grootte heeft bereikt. De haren steken aan alle zijden, en vooral aan de voorzijde, boven den stempel uit, en de stempel zelf wordt met stuifmeel beladen. De stuifmeeldragende borstel zit in een donker-blaue beurs hb dicht bij den top der kiel. Als de kiel naar beneden wordt gedrukt treedt de borstel door de opening t naar buiten.

Daar de vleugels veel langer zijn dan de kiel spelen zij bij het nederdrukken de rol van hefboom. Als de drukking ophoudt neemt de kiel haar vorigen stand weder in, en omsluit zij opnieuw de voortplantingsorganen. Het mechanisme der bewegingen van kiel en vleugels wordt door Müller beschreven.

Het stuifmeel wordt bij kleine gedeelten door de insecten weggehaald. Na een zeker aantal bezoeken wordt de stempel, door de wrijving tegen het lichaam der insecten, kleverig, en met vreemd stuifmeel bevrucht. — Honig wordt op de gewone wijze afgescheiden en kan bereikt worden door de openingen h. De nagel der vlag is breed, en vormt een dak boven de openingen h.

660. Vicia sepium L. — Paarse bijenbloem. (Fl. mé-littophile purpurine.) — Müller, Fertilis., blz. 204, dgg.

De vlag is bleekpaars, met een aantal paarse vertakte aderen; op de middellinie, boven de plaats waar de insecten hun slurf in de bloem moeten voeren, vertoont zij een grijze vlek zonder aderen. De
vleugels zijn langer dan de kiel, en met deze verbonden door de volgende inrichtingen: 1° ieder vleugel vertoont een naar binnen gerichte plooi \(a\) (minder duidelijk dan de plooi \(a\) bij \(V.\ cracca\)), die in een overeenkomstige indeuking der kiel past; — 2° achter de plooi \(a\) bevindt zich een indeuking \(b\), die aan de binnenzijde aan het overeenkomstig gedeelte van de buitenzijde der kiel kleeft. — Ieder vleugel is van achteren voorzien van een aanhangsel \(c\), zooals bij \(V.\ cracca\). De stijl is langer dan bij \(V.\ cracca\); hij is onder den stempel voorzien van haren, n.l.: 1° aan de voorzijde vrij lange, stijve haren, die te zamen een trechtervormig korfje vormen; — 2° aan de achterzijde een borstel van kortere haren.—In den bloem-

![Fig. 120. — *Vicia sepium* (naar de natuur).](image)

1. Bloem. — \(vl\), grijze vlek aan den voet der vlag. — \(t\), top der kiel. — \(v\), vleugel. — \(k\), kiel.

2. Vleugels en kiel, van boven gezien. — \(t\), opening aan den top der kiel. — \(k\), rand der linker-kielhelft (de kiel is grootendeels onder de vleugels verborgen). — \(k'\), nagel der linkerkielhelft. — \(a\), \(b\), indeukingen van den linker-vleugel. — \(c\), aanhangsel van den linkervleugel. — \(v\), nagel van den linkervleugel. — \(m\), koker der meeldraden. — \(h\), opening die naar den honig leidt.

knop ligt de behaarde stijl, door al de helmknoppen omgeven, in een soort van beurs aan den top der kiel. Als de kroonbladen bijna hun volle grootte hebben bereikt, gaan de helmknoppen open, en ontladen zij hun stuijsmeel rondom de haren. Door de samentrekking der helmdragers worden de geledigde helmknoppen uit de beurs teruggetrokken; onmiddellijk daarna ontluikt de bloem: de vlag richt zich op, en de vleugels worden naar buiten gewelfd en vormen een landingsplaats voor de insecten. — De bloem is groter en de kroonbladen zijn dikker en steviger dan bij *V. cracca*: dientengevolge is een grootere krachtinspanning noodig om de kroonbladen uiteen te drukken en om tot den honig door te dringen. Daarenboven zijn de vleugels (die als hefboom werken) betrekkelijk korter dan bij *V. cracca*.

De kelkbuisc is langer dan bij de laatstgenoemde soort. Bij *V. sepium* evenals bij *V. cracca* vertoont de vlag, aan haar bovenzijde, op de grens van nagel en schijf, twee indenkingen, die aan de onderzijde, in den vorm van twee verhevenheden tegen de vleugels aangedrukt zijn, en aldus den ingang tusschen de vlag en de vleugels sluiten. Bij *V. cracca* hebben die verhevenheden een dunnen wand, terwijl zij bij *V. sepium* veel dikker en steviger zijn. Tengevolge van al die bijzonderheden kan de honig van *V. sepium* slechts door krachtige bijen (b. v. *Bombus*) bereikt worden.

Zoals bekend is komt deze soort in vele variëteiten voor. (Naar 't voorbeeld van COSSON ET GERMAIN beschouwen wij V. angustifolia Rth. als een variëteit van V. sativa). De door ons onderzochte exemplaren groeiden te Melle-bij-Gent als onkruid op akkerland (Augustus 1894).

De vleugels zijn met de kiel op dezelfde wijze als bij de vorige Vicia-soorten verbonden (zie fig. 119), namelijk door een naar binnen gerichte plooi (a in fig. 119) en een indeuking (b in fig. 119), die met overeenkomstige oneffenheden der kiel correspondeeren (door het ineengrijpen der opperhuidscellen zijn vleugels en kiel stevig verbonden): daarenboven is ieder vleugel op de grens van nagel en schijf voorzien van een vrij lang vingervormig uitsteeksel (c in fig. 119). De vlag heeft een langwerpigen vorm, en is over een aanzienlijk gedeelte van haar lengte tegen de onderliggende deelen aangedrukt. De meedraden zijn tweebroederig; de bovenste meeldraad is echter over het grootste gedeelte zijner lengte met de overige meedraden vergroeid (deze vergroeiing is echter minder volkomen dan de vergroeiing der 9 overige meedraden met elkaander); aan zijn uiteinde en aan zijne basis is de bovenste meedraad vrij. De uiteinden der 10 meedraden zijn rechthoekig naar boven omgebogen. De stijl is eveneens loodrecht omhoog gebogen; hij heeft aan zijn achterzijde een reeks van korte, stijve borstelharen, aan zijn voorzijde een groot aantal veel langere haren die een kom- of trechertvormig korfje vormen (de haarbekleeding van den stijl gelijkt op die van V. sepium, zie fig. 120,3). Het voorste gedeelte der kiel is van ter zijde samengedrukt; onmiddellijk achter dit samengedrukt gedeelte vormen de wanden der kiel een stuifmeelbeurs, die van voren naar achteren samengedrukt is en aan haar top een nauwe opening vertoont. Evenals bij de vorige Vicia-soorten ligt het stuifmeel (dat grooteindeels op de haren van den stijl rust) in de ontloken bloem in deze beurs. Het wordt ten deele gesteund door de helmknoppen wier helmdragers zich na het openspringen een weinig hebben teruggetrokken. — Bij de eerste insectenbezoeken treedt het stuifmeel, bij de volgende bezoeken de stempel naar buiten. Oudere bloemen worden dus met stuifmeel uit jongere bloemen bevrucht. Daar er nooit meer dan twee bloemen in elkaars onmiddellijke nabijheid zitten, en deze van gelijken ouderdom zijn, zal er op deze wijze in den regel kruising tusschen verschillende planten plaats hebben. — DARWIN geeft op dat V. sativa, bij
afsluiting van insectenbezoek, even vruchtbaar is als bij toelating daarvan. — *B. terrestris* steelt den honig (zie *V. Sepium*). De

Fig. 121. — *Vicia* (naar de natuur).

1. *Vicia hirsuta* : vleugels en kiel, van boven gezien. In de wijd openstaande kiel ziet men het stuifmeel en een zeker aantal helmknoppen liggen; een dezer helmknoppen behoort tot den vrijen meeldraad. De nagels zijn onder den koker der meeldraden verborgen en in dit figuur dus niet zichtbaar. — *v* duidt de plaats aan waar de binnenzijde van den vleugel aan de buitenzijde der kiel kleeft. — *c*, rudimentair aanhangsel van den vleugel. — *h*, opening die naar den honig leidt.

3. *Vicia tetrasperma* : vleugels en kiel — *a, b*, deukingen van den rechtervleugel. — *c*, aanhangsel van den rechtervleugel. — *k*, nagel der rechterkielhelft. — *h*, opening die naar den honig leidt. — De vrije meeldraad is vrij breed, en vertoont een breeden middelmerf.

honigbij is niet sterk genoeg om tot den honig door te dringen. —
Wordt in ons gebied weinig bezocht.

(*Vicia angustifolia* Rth. stemt, evenals *V. sativa*, met Nr 660 overeen wat de stijlharen betreft; veel individuen (te Berlijn 10 %) dragen, behalve de gewone opengaande bloemen, onderaardsche niet opengaande bloemen, welke door bleeke uitloopers voortgebracht worden; Kirchner, *Flora.*) In ons gebied niet onderzocht.

Bloem klein; de bouw is eenvoudiger dan bij de vorige grootbloemige soorten. — De stijl heeft slechts 6 à 12 korte haren; de helmknoppen staan rondom den stempel en een weinig boven dezen; zij gaan reeds open als de vlag nog naar onderen samengebogen is. Als de bloem ontluikt is de stempel reeds bestoven. De kiel heeft geen beurs (zie fig. 119, hb); de indeukingen (a' en b', fig. 119,2) ontbreken evenzeer. De vleugels en de kiel zijn slechts op een plaats (v, fig. 121) door het ineengrijpen der offeredhuidscellen met elkander verbonden. De vleugels hebben geen indeukingen (a en b, fig. 119,1), en de vingervormige aanhangselen (c, fig. 119,1) zijn zeer onvolkomen. De kiel is over zijn geheele lengte open: als hij naar beneden gedrukt wordt treden de helmknoppen en de stempel naar buiten. Het mechanisme is dus zoo eenvoudig mogelijk. — De vleugels spelen de rol van hefboom, zooals bij de vorige soorten. — De bloem is betrekkelijk rijk aan honig: deze vloeistof treedt door de opening e aan de beide zijden van den vrijen meeldraad naar buiten, in den vorm van een grooten druppel die aan de onderzijde der vlag kleeft. — In ons gebied, waar deze soort overvloedig voorkomt, hebben wij nooit bezoekers gezien. Bij afsluiting van insectenbezoek zijn de bloemen vruchtbaar.

664. *Vicia tetrasperma* Mchn. — Bleekpaarse bijen-
bloem. (*Fl. mélittophile purpurine-pâle.*) — Kirchner, Flora, en Neue Beobacht, 1886.

De bloemen van dit sierlijk plantje zijn minder gereduceerd dan die van *V. hirsuta.* — Vlag bleekpaars met donkere aderen; vleugels bleekblauw, kiel wit met een donkerblauwe vlek aan den top. De basis der vlag omsluit de nagels der overige kroonbladen. Ieder vleugel vertoont de plooi *a*, de indeuking *b* en het aanhangsel *c*, zooals bij *V. cracca* (zie fig. 119), maar minder duidelijk. De bovenranden der kielhelften zijn, naar Kirchner, tegen elkander aangedrukt: het is ons echter onmogelijk geweest een bloem van haar kelk en van hare vlag te ontdoen zonder de kiel te openen (zie de kiel in fig. 121,3). De stijlharren zijn iets meer ontwikkeld dan bij *V. hirsuta*; de helmknoppen gaan open Alvorens de bloem ontlukt. Nooit bezoekers gezien.

665. *Lathyrus pratensis* L — Gele bijenbloem. (*Fl. mélittophile jaune*).

De nagel der vlag is tegen de overige bloemdeelen aangedrukt; daarenboven vertoont de vlag aan de basis van hare schijf, aan weerszijden van de middellinie, een diepe indeuking *o* die past in een overeenkomstige holte *o' van den vleugel. Dientengevolge worden vele insectensoorten (vliegen, enz.) verhinderd tot den honig door te dringen. Ieder vleugel vertoont aan zijn buitenzijde twee indeukingen *o' en a*. De indeuking *o'* correspondeert met de indeuking *o* der vlag, en doet zich aan de binnenzijde van den vleugel in den vorm van een verhevenheid *o'* voor. De indeuking *a* doet zich aan de binnenzijde eveneens voor in de gedaante van een verhevenheid *a*. Daarenboven is ieder vleugel voorzien van een vingervormig aanhangsel *c* en van een naar voren gericht uitsteeksel *b*. — Ieder kielhelft vertoont 1° een indeuking *o'', waarin de verhevenheid *o'* (aan de binnenzijde van den vleugel) past; 2° een overlangsche groef *a' b'* die evenwijdig is aan haren bovenrand, en bij *a' verbreed is. De verhevenheid *a* (aan de binnenzijde van den vleugel) past in het gedeelte *a'* terwijl het uitsteeksel *b* in het gedeelte *b'* past. Als men de vlag wegneemt constateert men dat de verhevenheid *a* uit de holte *a'* en de verhevenheid *o'* uit de holte *o'' loskomen: hieruit blijkt dat de vlag met hare indeukingen *o* veel bijdraagt om de vleugels tegen de kiel aan te drukken. De verbinding van *b*
Fig. 122. - Lathyrus pratensis (naar de natuur).

1. Bloem. — a, indeuking van den vleugel. — o, verhevenheid der vlag.
2. Vleugel, binnenzijde. — a, verhevenheid (binnenzijde der indeuking die in 1 door a aangewezen wordt). — o', verhevenheid (binnenzijde der indeuking waarin de verhevenheid o past. — b, uitsteeksel. — c, aanhangsel. — n, nagel.
3. Bovenzijde der kiel. — r, r', randen der kielhelften. — sb, beurs waarin de uiteinden van de meeldraden en van den stijl verborgen zijn. — sa, samengedrukt gedeelte der kiel. — a', b', gleuf: a' correspondeert met a (zie 2); b' correspondeert met b (zie 2). — o'', indeuking waarin de bultvormige verhevenheid o' (zie 2) past. — h, opening die naar den honig leidt. — De vrije meeldraad is breed, en zijn middelnerf is duidelijk zichtbaar. Het voorste gedeelte der helmdragers werd niet geteekend.
5. Stijl.
met b' komt echter niet los, daar de opperhuidscellen van b en b' in elkander grijpen. — De aanhangselen c vormen boven de voortplantingsorganen een brug (zoals in fig. 120, 2).

Het terminaal gedeelte der kiel is bijna loodrecht omhoog gebo
gen. Dit terminaal gedeelte is aan zijn voorzijde bij sa en aan zijn achterzijde bij s'a' van ter zijde samengedrukt. Tusschen de twee samengedrukte deelen (die als het ware een voorsten en een achtersten vleugel vormen) vormen de wanden der kiel een van voren naar achteren samengedrukte, snaavelvormige beurs sb. Als de bloem nog niet ontloken is zitten de helmknoppen in deze beurs; zij onlasten hun stuifmeel onmiddellijk vóór of gedurende het ontluiken der bloem. De beurs wordt geheel met stuifmeel gevuld, en de helmknoppen worden eruit teruggetrokken. — De stijl is evenals de kiel loodrecht omhoog en een weinig naar achteren gebogen; zijn achterzijde is bezet met schuin naar boven gerichte haren. Hij ligt in de snaavelvormige beurs der kiel.

De haren aan de achterzijde van den stijl en de stempel zijn met stuifmeel beladen als de bloem ontluikt: telkens de kiel naar beneden wordt gedrukt treedt het behaard gedeelte van den stijl aan den top der kiel naarmate buiten, en telkens wordt eene kleine hoeveelheid stuifmeel op het lichaam van het insect geborsteld. Na een zeker aantal bezoeken is al het stuifmeel verwijderd. Door de wrijving tegen het lichaam van het insect worden de stempeltepels afgebroken, de stempel wordt daardoor kleverig en kan nu met vreemd stuifmeel bevrucht worden.

De vleugels zijn langer dan de kiel en vormen een landingsplaats voor de insecten; als zij door het insect neergedrukt worden slepen zij de kiel mede. Er is een aanzienlijke kracht noodig om de vlag en de vleugels uiteen te drukken en om tot den honig door te dringen. De honig wordt op de gewone wijze afgescheiden, en kan door twee wijde openingen h aan de basis van den breeden, vrijen meeldraad bereikt worden.

Bezoekers: Langtongige bijen: Bombus silvarum L., ♀, 5.7.91, Nevel; ♀, 20.7.92, Gentbrugge.

666. Lathyrus palustris L. — Bijenbloem, paars, later blauw. (Fl. méliitophile violette, devenant bleue.) — Heinsiüs, Bot. Jaarb., IV, blz. 91.

Wij hebben deze zeldzame plant zelf niet onderzocht.
Lathyrus silvestris L. — Rose bijenbloem. (Fl. mé-littophile rose.) — Misschien niet inheemsch.

667. Lathyrus Nissolia L. — Rose of paarse bijenbloem. (Fl. mélittophile rose ou violette.)

Lathyrus tuberosus L. — Roode bijenbloem. (Fl. mélittophile rouge.) — Misschien niet inheemsch.

Wij hebben de drie laatstgenoemde soorten zelf nooit onderzocht; zie Kirchner, Flora. — De bloemen van L. Nissolia blijven vaak gesloten.

AANVULLINGEN EN VERBETERINGEN.

Addenda et corrigenda.

Fam. XI. — Gramineëëen.

Als men wil onderzoeken op welke wijze het stuifmeel uit de helmknoppen ontlast wordt moet men die organen onmiddellijk na het opengaan der kafjes gadeslaan. De verschijnselen die wij hooger bij Arrhenatherum beschreven hebben kunnen o. a. bij de Rogge (Secale cereale) zeer fraai waargenomen worden.

99. Alopecurus geniculatus L.

Bezoekers: Coleopteren: Malachius sp., stuifmeel vretend, 29. 6. 94, Melle.

Fam. XII. — Juncaceëen.

In 1892 heeft Buchenau over de bestuiving der Juncaceëën een zeer belangrijke verhandeling (1) uitgegeven, waarin de algemene biologische kenmerken der familie, en de bestuiving van talrijke inheemsche en uitheemsche soorten beschreven worden. Aan die verhandeling ontleenen wij het volgende:

De meeste Juncaceëën (o. a. al de inheemsche soorten) zijn protandrogynisch. In vele gevallen is de *bloei tusschenpoozend* (*Blühen in Pulsen*), d. w. z. dat de bloemen eener soort, op een bepaalde groeiplaats, op sommige dagen ontluiken, en dat er tussen de bloeidagen meerdere rustdagen verlopen. Dit verschijnsel is vooral duidelijk bij de Juncus-soorten met alleenstaande bloemen, en bij enige soorten met arbloemige bloemkluwens; het wordt niet waargenomen bij de Juncus-soorten met veelbloemige bloemkluwens en evenmin bij Luzula. Gewoonlijk is het *tusschenpoozen algemeen*, d. w. z. dat al de gelijksoortige exemplaren eener groeiplaats gelijktijdig bloeien en rusten; somwijlen is het *tusschenpoozen individueel*, d. w. z. dat ieder exemplaar zijn eigen bloei- en rustdagen heeft. Door het tusschenpoozen wordt kruising tussen talrijke, gelijktijdig ontloken bloemen bevorderd.

Het opengaan van het bloemdek berust op den turgor van den *bloembodem*, van *de basis der helmdragers* en van *de binnenzijde der dekbladen*. De drie genoemde organen spelen echter niet bij alle soorten een even belangrijke rol (zie Buchenau).

De stuiifmeelzakjes gaan open met overllangsche spletten, die gewoonlijk in het midden beginnen. Zij worden daarna *naar rechts* om hunne as gedraaid, en aldus van zelfs geledigd; het ontlaste stuiifmeel valt op de naburige stempels of op de dekbladen, of verstuift in een klein wolkje als de plant geschud wordt. De stuiifmeelkorrels zijn 4 aan 4 vereenigd.

(1) FRANZ BUCHENAU, Ueber die Bestäubungsverhältnisse bei den Junca-ceen. — Pringsheim's Jahrbücher, XXIV, blz. 363-424, mit Tafel XI und XII. — (Figuren talrijk; bibliographie.)
Zelbèvruchting grijpt ongetwijfeld zeer dikwijls plaats. Men onderscheidt hierbij de volgende gevallen:

a) Bloemen, althans ten deele, cleistogaam: J. bufonius (en andere, uitheemsche soorten).

b) De bloemen gaan open, maar de voortplantingsorganen staan dicht bij elkaander: b.v. J. tenuis.

c) Opengaaende bloemen waarvan de stempels bij het einde van den bloei nog fris zijn. en in aanraking komen met het stuifmeel dat op de dekbladen ligt als de bloem zich sluit: b.v. Luzula-soorten.

d) Opgaaende bloemen waarin de voortplantingsorganen niet zeer dicht bij elkaander staan, maar waarin het stuifmeel, gedurende het tweeslachtig tijdperk van den bloei, bij het opengaan der helmknoppen, of door den wind, of door het schudden der plant op den stempel derzelfde bloem terechtkomt: talrijke soorten.

Takkruising (zeldzamer plantkruising) grijpt alleen in open-gaande bloemen plaats en wordt door de proterogynie zeer bevorderderd. Noodzakelijk bij Luzula campestris. — Het overbrengen van het stuifmeel geschiedt op de volgende wijze:

a) door den wind;

b) de stempel eener bloem komt in aanraking met de helmknoppen eener naburige bloem (Luzula).

c) het stuifmeel rolt uit de bloemen en valt op de stempels van andere, lager staande bloemen (Luzula nivea enz.).

d) het stuifmeel wordt door insecten overgebracht (uitheemsche soorten).

164. Juncus glaucus Ehrh.

Tusschenpoozend. — De bloeiverschijnselen gelijken op die van J. effusus, maar de bloemen blijven later in den namiddag open. — Waarschijnlijk bij koud, vochtig weder soms cleistogaam. (Buchenau.)

165. Juncus filiformis L.

Het bloemdek gaat om 5 uur 's morgens open: de stempels, die reeds den vorigen dag aan den top van den bloemknop zichtbaar en tot nog toe horizontaal waren, richten zich nu op en strekken zich uit, en tevens worden de papillen langer. Na 1 of 1½ uur (zeldzamer om 9 uur) gaan de helmknoppen successievelijk open. Tusschen 9 en 10 uur heeft de bloei zijn toppunt bereikt… Tusschen 10 en 11 uur
begint het bloemdek zich te sluiten en om 12 uur is het volkomen gesloten; intusschen vermindert de turgor der stempeltepels aanzienlijk. Bij koel, vochtig weder is de energie van den bloei geringer: de bloemen gaan langzamer en minder wijd open, en het sluiten van het bloemdek grijpt eerst 's namiddags plaats. Tusschenpoozen minder duidelijk dan bij Nr 166. (Buchenau.)

166. Juncus effusus L.

Tusschenpoozen sterk uitgesproken. Gewoonlijk begint het bloemdek reeds 's avonds aan zijn top open te gaan. In den vroegen morgen (5 uur of nog vroeger) worden de stempels ontrold, en het bloemdek gaat zoo wijd open als de beschikbare ruimte toelaat. Omstreeks 7 uur gaan de helmknoppen open; om 10 uur zijn zij alle gedraaid en geledigd. Om 12 uur is het toppunt van den bloei reeds voorbij. Om 2 uur zijn reeds enkele bloemen, om 3 uur zijn de meeste bloemen gesloten. — Bij retarderende bloemen of bij zeer koel, vochtig weder is de energie van den bloei zeer verminderd (helmknoppen vaak 's namiddags opengaande; bloemen tot den nacht of zelfs tot den volgenden dag open blijvend). Soms worden de bloemen, bij zeer vochtig weder, geheel met water gevuld: de helmknoppen kunnen alsdan niet opengaan (Buchenau). — Volgens Schulz (Beiträge, II, blz. 171) blijven de stempels zeer kort, en komen zij derhalve vóór het opengaan der bloem niet te voorschijn. De helmknoppen gaan onmiddellijk na het ontluiken der bloem open: deze moet dus homogaam genoemd worden. Spontane zelfbestuiving is onvermijdelijk, kruising door den wind is mogelijk.

168. Juncus squarrosus L.

Tusschenpoozend. Soms bloeien de bloemen van zwakke stengels schier alle gelijktijdig. — De bloem gaat in den vroegen morgen stervormig open: zij blijft eenigen tijd φ. Om 8 uur begint het opengaan der helmknoppen. Korten tijd na 12 uur sluit zich de bloem. De 6 korte helmdragers zijn van onderen ieder tot een dikke schub verbreed; de 6 schubben vormen samen een ring, maar zijn niet aaneengegroeid. — (Buchenau.)

Tusschenpoozen sterk uitgesproken. — In de vroegen morgen ziet men reeds de roodachtige stempels tusschen de toppen der dekbla- den doorschemeren. Stijl kort, stempels vrij lang. Tusschen 7 en
8 uur gaat het bloemdek open; ongeveer een uur later beginnen de helmknoppen open te gaan; tusschen 9 en 10 uur zijn zij alle open. Om 12 uur zijn de bloemen reeds volkomen gesloten: de stempels worden daarbij ineengedrukt en de stempeltepels zijn reeds verwelkt. (BuchenaU.)

170. **Juncus bufonius** L.
Soms duidelijk tusschenpoozend, in andere gevallen niet. — Overgangsvormen tusschen bloemen die wijd opengaan en andere die gesloten blijven. — Bij warm weder grijpen de bloeiverschijnselen gewoonlijk als volgt plaats: de bloem ontluikt in den vroegen morgen, tusschen 5 en 6 uur; twee uren later gaan de helmknoppen open; omstreeks 10 uur beginnen de bloemen zich wederom te sluiten, om 12 uur of korten tijd daarna zijn zij volkomen gesloten. — De eindbloemen zijn ofwel driehelmig en cleistogaam, ofwel zeshelmig en opengaande. In dezelfde bloeiwijze kunnen opengaande en niet opengaande bloemen dooreengemengd voorkomen. In de niet opengaande bloemen worden de stuifmeelbuizen gewoonlijk rechtstreeks uit de helmknoppen in de stempels gedreven; dit grijpt ook dikwijls plaats in bloemen die onvolkomen opengaan. Somwijlen ontlasten de helmknoppen van niet-opengaande bloemen hunne stuifmeelkorrels van binnen in de holte der bloem. — Spontane zelfbestuiving kan, bij het einde van den bloei, zelfs in volkomen opengaande bloemen plaats grijpen (zie BuchenaU).

171. **Juncus Tenageia** Ehrh.

172. **Juncus compressus** Jacq. (Zie BuchenaU.)
Tusschenpoozen niet sterk uitgesproken. 's Avonds komen de toppen der dekbladen een weinig los; den volgenden morgen opent het bloemdek zich volkomen, en het Q stadium begint; tusschen 7 en 9 uur gaan de helmknoppen open, en na 12 uur sluiten de bloemen zich wederom. Bij koel, vochtig weder duurt de bloei langer; in enkele gevallen blijven de helmknoppen ten deele gesloten.
173. **Juncus supinus** Mchn.
Duidelijk tusschenpoozend. — Opengaan der bloem tusschen 6 en 7 uur 's morgens; opengaan der helmknoppen tusschen 8 en 9 uur; 's namiddags of den volgenden morgen worden de bloemen gesloten.
— (Buchenau.)

175. **Juncus obtusiflorus** Ehrh.
Telkens 3 à 4 dagen rust tusschen de bloeidagen. Bloemen om 6 uur, helmknoppen om 10 uur opengaande. Tusschen 11 en 1 uur bereikt de bloei zijn toppunt. Na 5 uur sluiten de bloemen zich wederom, en daarbij blijven de stempels buiten het bloemdek. Zij blijven gedurende den nacht frisch. — (Buchenau.)

176. **Juncus lamprocarpus** Ehrh.
Bloeit met tusschenpoozen of voortdurend. Stempels gewoonlijk in den 'vroeegen morgen uitgestrekt; korten tijd daarna gaat het bloemdek open. Helmknoppen vóór of na 12 uur opengaande. 's Avonds worden de bloemen gesloten; de stempels blijven buiten het bloemdek. Somwijlen duurt de bloei veel langer (twee dagen).
— Zelfbevruchting grijpt zelden plaats. — (Buchenau.)

177. **Luzula campestris** D. C.
Zie Buchenau, loc. cit., blz. 400-401.

179. **Luzula pilosa** Willd.
Zie Buchenau, loc. cit., blz. 407-408.

+ 205. **Convolvulus sepium** L.

Deze plant brengt tweeërlei stengels voort, n.l.: 1° de gewone windende stengels; 2° kruipende, wortelende stengels, die soms zeer lang worden, en waardoor de plant nieuwe individuen kan vormen. Dientengevolge hebben al de exemplaren die in elkanders nabijheid groeien, schier altijd een gemeenschappelijken oorsprong, en zijn zij met elkander onvruchtbaar. Tot het vormen van zaad wordt kruising tusschen niet verwante exemplaren gevorderd: het stuifmeel moet dus over vrij groote afstanden overgebracht worden. De bloemen worden voornamelijk door Hommels bestoven, maar het bezoek dezer insecten is voor de haagwinde van geen nut. Het
is waarschijnlijk dat alleen *Sphinx Convolvuli* in staat is kruisbevruchting te bewerken.... alleen omdat dit insect door zijn snelle vlucht in staat is zich spoedig over groote afstanden te verplaatsen. Dit insect komt in Nederland niet overvloedig voor, en derhalve worden er weinig zaden van *C. Sepium* gevonden.

Bezoekers: Hemitrope Dipteren: een *Syrphide*, stuifmeel vretend, 20. 8. 94, Melle.

212. **Lithospermum arvense** L.
Bezoekers: Lepidopteren: *Pieris* (*Brassicae*?), zgd., 25. 5. 94, Melle.

215. **Myosotis intermedia** Link.
Bezoekers: Langtongige bijen: *Apis*, zgd., 2. 9. 94, op een aardappelveld, Melle.

218. **Myosotis versicolor** Sw.

220. **Solanum nigrum** L.

227. **Linaria vulgaris** Mill.
Bezoekers: Coleopteren: *Cetonia stictica*, geheel in de bloem kruipend, 16. 8. 93, Melle.

233a. **Veronica officinalis** L.
Bezoekers: Allotrope Dipteren: *kleine Vliegen*, talrijk, 14. 6. 94, Melle.

252. **Plantago lanceolata** L.
Bezoekers: Hemitrope Dipteren: *Melanostoma mel-lina* L., stuifmeel vretend, 20. 7. 92, Gentbrugge.

256. **Mentha aquatica** L.
Bezoekers: Lepidopteren: *Vanessa Atalanta*, 10. 9. 93, Melle.
259. **Lycopus europaeus** L.

260. **Thymus Serpyllum** L.

263. **Lamium album** L.

267. **Galeopsis Tetrahit** L.

272. **Stachys palustris** L.

276. **Scutellaria galericulata** L.
Bezoekers: Hemitrope Dipteren: Een *Syrphide*, stuifmeel vretend, 30.8.93, Melle.

282. **Ligustrum vulgare** L.

301. **Viburnum opulus** L.
De groote geslachteloze randbloemen ontluiken eenigen tijd vóór de meer naar binnen gelegen, kleinere, vruchtbare bloemen; zij worden dus *te vroeg* en zonder eenig voordeel voor de plant aan regen en wind blootgesteld. Er wordt immers aangenomen dat de groote randbloemen bijdragen om stuifmeeloverbrengende insecten aan te lokken, maar zoolang de vruchtbare bloemen gesloten zijn kunnen de bezoekers aan de plant geen diensten bewijzen.—Sommige
inflorescentiën zijn volkomen of bijna volkomen van randbloemen verstoken, en worden niettemin door insecten bezocht. — (Deze feiten strooken niet met Sprengel's theorie.)

De honig der vruchtbare bloemen wordt gedeeltelijk verborgen door den stempel en de helmdragers: Viburnum opulus behoort dus tot de klasse AB (bloemen met half verborgen honig), en niet tot de klasse A (bloemen met blootliggenden honig), zooals hooger (Bot. Jaarb., V, blz. 389) bij vergissing aangegeven werd.

302. Lonicera periclymenum L.

Bezoekers: Langtongige bijen: Bombus hortorum, 7.9.86, Melle.

308. Dipsacus sylvestris Mill.

319. Cirsium palustre Scop.

322. Eupatorium cannabinum L.

323. Tussilago Farfara L.

345. *Tanacetum vulgare* L.

348. *Senecio vulgaris* L.

353. *Lampsana communis* L.

354. *Arnoseris minima* Lk. ○

376. *Jasione montana* L.

377. *Campanula rotundifolia* L.

391. *Calluna vulgaris* Salisb.

407. *Humulus Lupulus* L.
De ♂ bloemen zijn meer of minder overhangend. De 5 gewelfde bladen van haar bloemdek spreiden zich bijna vlak uit en vormen samen een windvang. De helmknoppen worden gedragen door dunne, buigzame, vrij korte filamenten. De uitstrooiing van het
stuifmeel geschiedt in hoofdzaak op dezelfde wijze als bij *Arrhenatherum elatius* en andere Gramineeeën (zie hooger: Bot. Jaarboek, V, blz. 300). Ieder helmknop bestaat uit twee helften (stuiﬁmeezakjes), waartusschen aan de rugzijde en aan de buikzijde een duidelijke groef voorkomt (aan de rugzijde vertoont de groef enkele gele balsemkliertjes). Daarenboven is iedere helft in tweeën gedeeld door een overlangsche groef, die de plaats aanwijst waar het stuifmeelzakje met een spleet opengaat. Korten tijd nadat de bloemdekbladen zich uitgespreid hebben gaan de helmknoppen, die met den top naar onderen overhangen, open. In iedere helft ontstaat dicht bij den top (niet aan den top) een spleet, die zich echter in den beginne slechts over een derde of een vierde van de totale lengte van den helmknop uitstrekt. Zoolang de helmknop onbeweeglijk blijft wordt geen stuifmeel ontlast, want de opening bevindt zich niet aan den top, maar is zijdelings geplaatst, en de helmknop is in de lengte gebogen (met convexe rugzijde en concave buikzijde): daardoor wordt het uitvallen van het stuifmeel bij windstil weder verhinderd.

Het stuifmeel is droog en poederig. Als de helmknop door den wind tot schommelen wordt gebracht wordt de kleine hoeveelheid stuifmeel, die zich in het terminaal (onderste) geopend gedeelte van ieder stuifmeelzakje bevindt, uitgestrooid en door den wind medegevoerd. Dit klein snuifje wordt nu vervangen door een nieuwe hoeveelheid stuifmeel, die uit het niet geopend gedeelte der stuifmeelzakjes naar beneden zinkt, en die op zijne beurt door den wind uitgestrooid wordt, enz. Het stuifmeel wordt dus bij kleine gedeelten in vrijheid gesteld. Bij *Arrhenatherum* (Nr. 116) en andere Gramineeeën is de spleet waardoor het stuifmeel ontsnapt eveneens tot het terminaal gedeelte der stuifmeelzakjes beperkt, en deze zijn eveneens gekromd. Bij *Arrhenatherum* zijn de beide helften van iedere helmknop echter naar twee tegenovergestelde zijden gekromd (m. a. w. zij zijn in een transversaal vlak gekromd); bij de Hop zijn de beide helften van den helmknop over haar geheele lengte aan elkander evenwijdig (m. a. w.: zij zijn in een mediaan vlak gekromd). Bij de beide soorten is het resultaat der kromming, uit een physiologisch oogpunt, hetzelfde.

Als de helmknoppen op de hooger beschreven wijze door den wind geleidig zijn strekt de spleet zich *somwijlen* over de geheele lengte der stuifmeelzakjes uit. Dit is bij de Gramineeeën het gewone geval,
maar bij *Humulus* doet zich daarenboven een zeer zonderling verschijnsel voor: de wanden der stuifmeelzakjes verdrogen en verschrompelen nadat zij geledigd zijn, en daarbij ontstaan in die wanden een aantal kleine, onregelmatige scheuren. Het maakt den indruk alsof deze scheuren door kleine diertjes voortgebracht waren; wij meenen nochtans dat dit niet het geval is.

De uitbreiding der spleet over de geheele lengte der stuifmeelzakjes en het ontstaan der scheuren in hun wand zijn verschijnselen die geen physiologische beteekenis schijnen te hebben.

420. **Polygonum amphibium** L.

422. **Polygonum Persicaria** L. enz.

424. **Polygonum Bistorta** L.

429. **Chenopodium album** L.

De hooger gegeven† beschrijving van *Chenopodium album* (Bot. Jaarb., VI, blz. 148) hebben wij aan Kirchner (Neue Beob., 1886) ontleend. — In ons gebied is de proterogynie niet altijd zo volkomen als door Kirchner in 1886 beschreven werd: in vele bloemen blijven de stempels frisch totdat de helmknoppen opengaan. In dit geval grijpt spontane zelfbestuiving door rechtstreeksche aanraking der helmknoppen met de stempels plaats. In andere bloemen zijn de stempels verdroogd als het stuifmeel onttast wordt, en zelfbestuiving is onmogelijk. — Het vastklemmen der meeldraden tusschen de randen der dekslippen, bij het einde van den bloei, is
niet altijd zeer regelmatig. — Misschien hangen de waargenomen verschillen in den levensduur der stempels van de weersgesteldheid af. Onze waarnemingen werden bij regenachtig en bij droog weder (Juni en Augustus 1894, op akkerland) gedaan.

In 1893 heeft Kirchner een nieuwe, zeer belangrijke verhandeling (1) uitgegeven, waarin onder anderen over de bestuiving van verscheidene Chenopodiaceëen gehandeld wordt. — Bij Ch. album heeft Kirchner (1893, loc. cit.), doch zelden, homogame bloemen aangetroffen. Bij Ch. ambrosioides schijnen de bloemen eveneens nu eens proterogynisch, dan weder homogaam te zijn. — Bij Salsola Kali is de proterogynie meer of minder volkomen: in sommige bloemen gaan de helmknoppen open nadat de stempels verdroogd zijn; in andere bloemen is spontane zelfbestuiving mogelijk, daar de stempels frisch blijven totdat het stuifmeel onlast wordt. Bij deze soort worden dus verschillen van gelijken aard als bij Chenopodium album waargenomen. — Kirchner heeft daarenboven, bij een enkel exemplaar van Chenopodium album, honigaafscheiding geconstateerd: in 3 bloemen werd honig waargenomen tusschen de basis van het vruchtbeginsel en de schijf die zich aan de basis der meeldraden bevindt. Ook bij Ch. Vulvaria L. worden soms honigruppeltjes op den bodem der bloem aangetroffen.

Van den anderen kant heeft Volckens (2) doen opmerken, dat verscheidene biologische eigenaardigheden, die voor de windbloemigen in 't algemeen kenschetsend zijn, bij de Chenopodiaceëen ontbreken, n.l.: 1º het stuifmeel verstuift niet zeer gemakkelijk; 2º bij de Chenopodiaceëen worden buigzame, schommelende meeldraden, bloemstelen of bloemmassen, die voor de meeste windbloemigen kenschetsend zijn, niet aangetroffen; 3º bij de windbloemigen gaan niet alleen de bloemen meer of minder gelijktijdig open, maar de helmknoppen openen zich bijna alle te gelijk. Dit is met de door Volckens onderzochte Chenopodiaceëen niet het geval.

(2) Chenopodiaceae, in Engler und Prantl, natürl. Pflanzenfamilien, III, 1a, blz. 47.
Deze feiten (1) stroken niet met de tot nog toe algemeen aange-
omen meening, volgens dewelke de Chenopodiaceaeën windbloemig
zijn. Daarenboven lokken de inheemsche Chenopodiaceaeën (volgens
Volckens) een aantal kleine Wantsen, Bladluizen, Dipteren en andere
doorgaans kruipende insecten aan. Of deze diertjes aangelokt wor-
den door de schuilhoeken, die zich tusschen de bloempjes bevinden,
ofwel door honig (b v. Beta en Chenopodium) is volgens Volckens
nog niet uitgemaakt. Op de bloemen van Beta maritima hebben wij,
op het eiland Jersey (September 1885) talrijke bloemenbezoekende
insecten gevonden, en op die van Chenopodium album hebben wij
de volgende bezoekers waargenomen:

Bezoekers: Hemitrope Dipteren: Syrphus Ribesii L,
en Platycheirus peltatus Meig., beide stuifmeel vretend,
8.9.91, Nevel.

463. Cerastium (Malachium) aquaticum L.
Bezoekers: Korttongige bijen: Prospis?, zuigend,
24.5.94, Melle.

513. Sinapis arvensis L.
Bezoekers: Lepidopteren: Polyomnatus Phlaeas,
28.8.93, Melle.

519. Capsella Bursa-pastoris Moench.
Bezoekers: Hemitrope Dipteren: Eristalis tenax,
4.9.93, Melle.

535. Hypericum pulchrum L.
Bezoekers: Allotrope Dipteren: kleine Vliegen,
4.7.94, Melle.

539. Malva silvestris L.
Bezoekers: Langtongige bijen: Apis, talrijk, 4.7.94.
Allotrope Dipteren: een kleine Vlieg, 13.6.94. — (Melle.)

546. Erodium cicutarium L'Hérit.
Bezoekers: Langtongige bijen: Apis, 14.8.93, Melle.
Lepidopteren: Pieris Brassicae, 21.8.93, Id.

(1) Voor nadere bijzonderheden, zie Volckens en Kirchner, loc. cit.
550. **Radiola linoides** Gmel.
De bloemen zijn zeer klein en gaan niet wijd open. Kelkbladen diep in tweeën gespleten.
Kroonbladen wit, niet langer dan de kelkbladen. De 4 helmknoppen komen met de 4 stempels in aanraking: spontane zelfbestuiving is dus onvermijdelijk. Ieder stijl draagt aan zijn top een duidelijken stempel met vrij groote stempeltepels. De bloemen zijn zoo klein en zoo teeder dat wij niet met zekerheid hebben kunnen constateeren of er honigklieren zijn. Geen bezoekers gezien. (Melle, 4. 7. 94.)

558. **Euphorbia helioscopia** L.
Bezoekers: Hemitrope Dipteren: *Syrrhiden*, twee soorten, 4.8.94, Melle.

559. **Euphorbia Peplus** L.

575. **Pimpinella Saxifraga** L.

581. **Aethusa Cynapium** L.
De hooger (Bot. Jaarboek, VI, blz. 271) gegeven beschrijving hebben wij aan Schulz ontleend.
In ons gebied (Melle, Nevel, Lovendeghem) wordt *Aethusa Cynapium* in moestuinen, en vooral tusschen het gras langs hagen en wegen (schier altijd in de nabijheid van tuinen) aangetroffen; wij hebben ze in ons gebied nooit op akkerland gezien. (Den lagen akkervorm waarvan Schulz gewag maakt kennen wij niet.) — De planten zijn doorgaans krachtig, soms 1 meter hoog. De schermen zijn doorgaans veelstralig (in vele gevallen 20- à 25-stralig; schermen met slechts 5-7 stralen hebben wij nooit gezien); de schermmpjes zijn veelbloemig (gewoonlijk 20- à 30-bloemig). — Honigafscheiding gering. Bloemen zwak proterandrisch; spontane zelfbestuiving mogelijk.

Deze soort gedraagt zich dus in ons gebied anders dan in de streek (Middel-Duitschland) waar Schulz zijn waarnemingen heeft gedaan. In ons gebied heeft *Aethusa* haren levensduur niet genoeg kunnen verkorten om op akkerland te leven. In Duitschland schijnt daarentegen een *proletarische* akkervorm te bestaan.
Indien iemand in ons gebied of elders in België exemplaren mocht aantreffen die met de door Schulz gegeven beschrijving overeenstemmen, zouden wij zeer dankbaar zijn indien hij ons daarvan kennis wilde geven.

584. *Angelica silvestris* L.

587. *Heracleum Sphondylium* L.
Bezoekers: Allotrope Hymenopteren: *Allantus* sp., 29.8.93, Melle.

599. *Epilobium hirsutum* L.

616. *Rosa canina* L.
Bezoekers: Langtongige bijen: *Bombus (terrestris?)*, 13.6 86, Melle.

620. *Fragaria vesca* L.
Bezoekers: Coleopteren: *Trixagus (tomentosus?)*, 16.5.94, Melle.

633. *Spiraea ulmaria* L.

Ornithopus sativus Brot. (Seradelle) Gekweekt.
ALGEMEENE BESCHOUWINGEN.

I

Proeve eener botanische beschrijving van het Kempisch gedeelte van Vlaanderen.

Het Kempisch Gebied is een der zeven plantengebieden van België (zie de kaart). In het Oostelijk gedeelte van dit gebied, n. l. in de Antwerpsche en Limburgsche Kempen, heeft de plantengroei zijn kenschetsende eigenaardigheden grootendeels behouden; uitgestrekte heiden en bosschen, talrijke poelen (vennen) en moerassen liggen er thans nog in den natuurstaat, en vertoonen de oorspronkelijke flora in al hare zuiverheid.

In Vlaanderen heeft het Kempisch Gebied daarentegen sedert eeuwen den invloed van den mensch ondergaan; de cultuur heeft den bodem en den plantengroei zoo diep gewijzigd, dat men zich van den voorhistorischen toestand van het land slechts moeilijk een voorstelling kan maken. Voor een der-tigtal jaren waren er nog eenige plekken te vinden die haar antieke Kempische physionomie grootendeels behouden hadden, maar thans zijn die woeste terreinen bijna alle ontgind. Behalve enkele poelen, die te zamen misschien niet meer dan een honderdtal hectaren beslaan, is er in ons gebied wellicht geen enkele meter gronds meer te vinden, die niet meermalen met ploeg of spade werd omgewerkt, of waar de plantengroei niet ieder jaar dicht tegen den grond wordt afgemaaid. De waterplanten worden met de hark uit slooten en rivieren opgevischt, en op hoopen gelegd, om later als landmest over akker en weide uitgestrooid te worden. Groote poelen worden
schoongemaakt door een man, die met een zeis gewapend in een bootje rondvaart, en de stengels der waterplanten —

zelfs de teedere stengels der Lobelia Dortmanna — boven den waterspiegel afmaait. Het gras en het onkruid (b. v.
Chenopodium album, Sonchus, Taraxacum) dat aan de wegen groeit blijft evenmin gespaard: het wordt door den Vlaam- schen landman zorgvuldig ingezameld en tot het voederen van geiten en konijnen gebruikt. Enkele bosschen maken soms den indruk, alsof zij zich in den natuurstaat bevonden, maar weldra ontdekken wij dat ook hier alles door den mensch ge- regeld wordt: het terrein is door rechte voren in perceelen gedeeld, de hoogstammige boomen staan op rijen geplant, het kreupelhout ontspringt uit stronken, welke door hunne tal- rijke litteekens van de steeds herhaalde tusschenkomst der bijl getuigen, en de laag teelaarde, die zich in het bosch vormt, wordt bijeengegaard en onder de namen bladgrond of boschgrond aan de bloemisten verkocht.

Als wij nu den plantengroei van een dergelijke streek willen bestudeeren, mogen wij niet op het gewoon plantengeogra- phisch standpunt blijven staan. Het is niet voldoende de schaarsche overblijfsels van den oorspronkelijken planten- groei op te sporen, om ons aldus een denkbeeld te vormen van den vroegeren natuurstaat; het is evenmin voldoende den invloed der natuurlijke levensvoorwaarden, zooals bodem en klimaat, te leeren kennen. Hier dient rekenschap gehouden te worden met een nieuwen factor, n. l. de tusschenkomst van den mensch. En hierbij mogen wij ons niet te vreden houden met het algemeen begrip, dat de mensch de oorspron- kelijke flora grootendeels uitgeroeid, en met een bepaald doel door een zeker aantal cultuurplanten vervangen heeft; wij moeten ook onze aandacht vestigen op den onbewusten invloed van den mensch.

De onbewuste invloed van den mensch heeft zich gecombi- neerd met den natuurlijken invloed van bodem en klimaat, en door de gezamenlijke werking dezer drie factoren zijn nieuwe levensvoorwaarden ontstaan. De geheele flora heeft op deze nieuwe voorwaarden gereageerd: voor sommige soorten zijn
de nieuwe omstandigheden gunstig, voor andere ongunstig; vele soorten hebben zich tot de nieuwe voorwaarden aangepast; nieuwe plantengroeppeeringen zijn tot stand gekomen. Het dierenrijk heeft eveneens veranderingen ondergaan, die wederkeerig een terugwerking bij de planten hebben veroorzaakt. De geheele huishouding van het plantenrijk is iets nieuws geworden, waarvan de studie even belangwekkend is als de studie der planten in den natuurstaat.

In de volgende bladzijden zullen wij trachten den plantengroei van ons gebied te beschrijven zooals hij zich heden ten dage voordoet; wij zullen onderzoeken op welke wijze de oorspronkelijke flora en de door den mensch ingevoerde planten zich gedragen, onder den gezamenlijken invloed van den mensch, van den bodem en van het klimaat. Wij hopen aldus een getrouwe voorstelling te geven van de voorwaarden, waarin onze onderzoekingen over de bevruchting der bloemen werden gedaan.

Wij zullen terloops de aandacht vestigen op sommige verschijnselen, waarvan een grondiger studie ons gewenscht voorkomt.

Het Kempisch Gedeelte van Vlaanderen is een vlak laagland; de bodem bestaat er uit fijn vermalen puingesteenten, n. l. zand en klei. Eenige stille rivieren en vele beken doorloopen het gebied in tallooze kronkelingen, en vormen een buitengewoon rijk netwerk van stroomend water. Deze stroomende wateren vloeien schier overal in breede, ondiepe dalen, die des winters gedurende enige weken of maanden verdronken worden, en waarvan de grond uit zware, vruchtbare KLEI bestaat. Deze dalen zijn bedekt met groene WEIDEN; op sommige plaatsen (b.v. te Oydonck) treft men er bosschen aan; nog zeldzamer (b.v. aan den linkeroever der Schelde tusschen Heusden en Melle) heeft men het weiland in akker-
land herschappen. Het Leidal tusschen Gent en Deinze, en het Scheldedal tusschen Gent en Schelderode, bereiken op sommige plaatsen een breedte van vier à vijf kilometers, en kunnen als kenschetsende voorbeelden van het Vlaamsche weiland gelden. Van onze kleinere dalen zal men zich een goede voorstelling maken door de Poucquesbeek, tusschen Nevel en Poucques, te volgen: het dal is hier slechts eenige honderde meters breed, en vertoont een schilderachtige afwisseling van weiland, bosch en akkerland. Langs onze kleinste beekjes (b.v. het beekje dat den steenweg van Gent naar Melle omstreeks den zevenden mijlpaal kruist) is de grond gewoonlijk slechts over een breedte van enkele meters met gras begroeid,—als een miniatuur van de grootere rivierweiden—en de bodem is er vaak minder kleiachtig en daaren tegen rijker aan zand dan in de grootere dalen (zie verder).

De kleiachtige dalen worden van elkander gescheiden door lage heuvels en heuvelgroepen, die met zacht glooiende hellingen naar de valleien afdalen, en waarvan de vlakke rug gewoonlijk slechts enkele meters boven het naburige weiland verheven is. Deze heuvels bestaan gewoonlijk uit fijnkorrelig zand, dat vaak kleiachtige bestanddeelen en kleine kiezelachtige rolsteenen bevat. Verreweg het grootste gedeelte dezer zandgronden wordt door Akkerland ingenomen, en bevat een vrij aanzienlijke hoeveelheid humus; de minder vruchtbare deelen zijn met bosch beplant. Op vele plaatsen komen er tusschen de zandheuvels, en zelfs op den rug dier heuvels laagten voor, met stilstaande poelen (b.v. de Krompoel te Bellem, de Galgeput te Deurel) en meer of minder veenachtige moerassen (b.v. tusschen den Krompoel en het dorp Aalter; tusschen het station Maria Aalter en het station Bloemendaal, aan de zuidzijde van den spoorweg van Gent naar Brugge, enz.) waarvan het water afgevoerd wordt door kleine beken, die eerst tusschen de
zandgronden heenvloeien, en verder in de hooger beschreven kleiachtige dalen haren weg voortzetten. De meeste vochtige, lage zandgronden werden echter door middel van draineerbuizen, door het graven van slooten, door het verbreeden der afvoerbeken enz. droger gemaakt, en in akker- of weiland herschapen of met bosch beplant. Enkele poelen (Krompoel te Bellem, Sasput te Thourout) worden er nog gevonden, waar de oude *Kempische* plantengroei behouden is gebleven.

Eigenlijke *duinen* komen in ons gebied niet veelvuldig voor (b.v. te Deurel); nergens bereiken zij een aanzienlijke hoogte. Waarschijnlijk werden veel duinen vroeger afgezand.

In België bedraagt de jaarlijksche regenhoeveelheid omstreeks 65 cm. (+ 5,5 cm. sneeuw), het aantal regendagen omstreeks 188. Het regent in alle seizoenen. De zomers zijn koel en de winters zacht (kustklimaat).

Het water der Schelde wast en valt bij ieder tij: dit wordt *zeer duidelijk* waargenomen tot aan Gent, waar zich de eerste sluizen bevinden. De hoogste heuvels van ons gebied zijn de *Blandinusberg* of *St-Pietersberg* (40 m. boven de oppervlakte der zee) te Gent, en de heuvel waarop de Stad Thielt is gebouwd (45 m.).

In ons gebied onderscheiden wij de volgende plantengroepeerlingen (plantenformaties):

1° het akkerland (met de *kanten*);
2° de bosschen (met de boschwegen);
3° de weiden;
4° de poelen en moerassen.

Akkerland. Het Kempisch Gedeelte van Vlaanderen is zeer dicht bevolkt. Groote boerderijen met meerdere paarden en een aanzienlijken veestapel zijn er weinig talrijk; dergelijke landbouwondernemingen gaan vaak gepaard met een brouwerij of een stokerij (branderij), waarvan de secundaire voortbrengselen (draf, spoeling) bij de veefokkerij een
gewichtige rol spelen. De meeste boerderijen zijn kleiner, met een of twee paarden en met een klein aantal runders, ofwel met enkele runders, maar zonder paarden (koeplaatsen). Talrijk zijn ook de hoeven die te klein zijn om er rundvee te houden, en waarvan de pachters zich op het fokken van klein vee (varkens, konijnen enz.) toeleggen, en geen arbeid ontzien om de opbrengst van hun kleine perceeltjes land tot het maximum te doen klimmen. Gedurende een gedeelte van het jaar gaan deze kleine landbouwers op de grootere boerderijen in daggeld werken. In Vlaanderen beschikt de landbouw aldus over een enorm personeel, en in geen ander land misschien wordt aan het bewerken van den grond zoo veel menschenarbeid besteed, terwijl het gebruik van landbouwmachines tot nog toe zeer beperkt is. Aan het uitroeien van het onkruid laat men zich veel gelegen: het is geen zeldzaam verschijnsel een ploeg van tien of vijftien wiedsters naast elkander op de knieën over den akker te zien voortkruipen: hectaren gronds worden aldus in korten tijd schoongemaakt. Een akker, die niet behoorlijk gewied is, strekt den Vlaamse landbouwer tot schande.

Op den rug van de meeste onzer zandachtige heuvels en ook in sommige lage gedeelten liggen de perceelen akkerland de eene naast de andere, zonder boomen noch kreupelhout ertusschen; dergelijke gronden doen soms aan de kale velden der Beauce denken, en worden vaak Kouter of Kouterland genoemd. De grenzen tusschen de eigendommen worden er aangeduid door steenen palen die langs de wegen zijn geplaatst, en de eentonigheid wordt er soms gebroken door een windmolen, of door een eenzamen boom, gewoonlijk een linde of een getopten eik, die aan een kruisweg staat.

Verreweg de meeste lage gronden, en ook de ruggen van sommige heuvels zijn op een gansch andere wijze ingericht: de akkers worden er van elkander gescheiden door smalle
slooten (grachten) die 's zomers vaak droog liggen. Aan ééne zijde of aan de beide zijden van iedere sloot staat een rij knoestige stronken (els, eik, enz.), die slechts een paar decimeters boven den grond uitsteken, en waaruit een kroon van krachtige takken ontspringt. Deze stronken met hunne takken vormen een soort van dikke, onregelmatige haag (kant), die soms een hoogte van drie of vier meters bereikt, en waartusschen de smalle sloot bijna geheel verborgen is. Aan weerszijden wordt de kant van den akker gescheiden door een strook gras (grashant). In vele deelen van ons gebied (b.v. in Waasland; tusschen Landeghem en Hansbeke, tusschen Baerel en Nevel, enz.), komen dergelijke kanten bij duizenden voor. De landwegen zijn er doorgaans met boomen beplant, en loopen vaak tusschen twee slooten met kanten, waarachter de naburige akkers verborgen zijn. De boerenwoningen staan er gewoonlijk afgezonderd tusschen de akkers. Vóór het woonhuis, aan de landstraat, ligt de boomgaard d. i. een vierkant grasplein met vruchtboomen beplant, en met een haag of een sloot omgeven; achter het woonhuis de moestuin, waar het kleine bloemperk met pioenen, Engelsch gras, thijm, rozen en buksboompjes schier nooit ontbreekt.

De voornaamste culuurplanten van ons gebied zijn: rogge, tarwe (minder dan rogge), haver, gerst, aardappelen, knollen (rapen of loof), klaver, seradelle, vlas; beetwortels, suikerij, (bitterpeen), boekweit; hennep, koolzaad, enz. Het bouwland wordt schier ieder jaar omgespit of omgeploegd; dientengevolge bestaat de onkruidflora der akkers schier uitsluitend uit soorten, waarvan de levensduur kort is, en die bijgevolg tusschen twee successieve omwerkingen van den grond haren levensloop kunnen volbrengen: dit onkruid vormt een soort van plantenproletariaat (zie verder, § III). Daarenboven treft men er enkele veeljarige soorten aan, n. l. Mentha arvensis, Cirsium arvense, Muscari botryoides, Triticum repens, Equi-
setum arvense, Tussilago Farfara enz., die een zeer taai leven hebben, en telkens opnieuw wortel schieten nadat zij door den ploeg ontworteld en stukgesneden zijn. De samenstelling der onkruidflora van een bepaald percel akkerland hangt niet alleen af van de samenstelling en van het watergehalte van den grond, maar ook van de planten die er verbouwd worden en van de volgorde waarin de successieve culturen afwisselen. De volgende voorbeelden mogen tot staving van dit gezegde dienen: beschouwen wij een veld dat in October omgeploegd en met Rogge bezaaid wordt. De rogge en vele onkruidzaden kiemen in den herfst, en brengen den winter in den vorm van kleine plantjes door; in Februari en Maart grijpt een tweede kieming van onkruidzaden plaats. In de maand April wordt het veld gewied, en daardoor wordt een gedeelte van het onkruid verwijderd. Daarna wordt het veld met rust gelaten tot de maand Juli: alsdan wordt de rogge afgemaaid, en schier onmiddellijk daarna wordt de grond omgeploegd en met Knollen (rapen) bezaaid. In 't begin van September hebben de knollen een voldoende grootte bereikt om gewied (en desnoods uitgedund) te worden. Gedurende den winter worden zij, naar gelang van de behoeften, successievelijk gerooid en als voeder gebruikt; in April komen de laatste aan de beurt; daarna wordt het veld omgeploegd en beplant met AARDAPPELEN, die op rijen gepoot worden. Als de aardappelplanten een zeker hoogte boven den grond hebben bereikt, gewoonlijk op 't einde van Mei, worden zij aangeaard: de grond wordt tusschen de rijen aardappelplanten door middel van een houw uitgegraven en aan weerszijden tegen de planten opgehoogd. Het aardappelveld ligt nu in brauwen; het blijft onaangeroerd tot de maand September. Alsdan worden de aardappelen gerooid; de verdroogde stengels worden op hoop gelegd en met een gedeelte van het onkruid op den akker verbrand. Daarna wordt de
grond omgeploegd en bemest, en opnieuw met rogge bezaaid. Twee jaar zijn verloopen, drie culturen hebben elkander opgevolgd (1). Ieder van deze culturen gaat met een bijzondere onkruidflora hand in hand.

(1) De hier beschreven wisselbouw is in Vlaanderen zeer in gebruik.
(2) Wij hebben niet getracht hier een volledige lijst te geven, want de onkruidflora waarvan hier sprake is verschilt in zekere mate van den eenen akker tot den anderen, naar gelang van de samenstelling en van het watergehalte van den grond, en ook van de meerdere of mindere zorg waarmede de wiedsters hare taak hebben volbracht.
Al deze planten zijn monocarpisch, d. w. z. dat zij na het voortbrengen van zaad afsterven: zonder zaad kunnen zij niet in stand blijven. Als de rogge rijp is, in Juli, wordt alles afgemaaid en de grond omgeploegd: al het onkruid dat alsdan geen rijpe (of bijna rijpe) zaden draagt wordt uitgeroeid. De mensch pleegt aldus een onbewuste teeltkeus: de planten die vroeg bloeien worden begunstigd, terwijl de laatbloeiende over 't algemeen geen nakomelingen zullen achterlaten. Deze teeltkeus moet, na een zekeren tijd, een verkorting van den gemiddelden levensduur van het onkruid ten gevolge hebben. — Op een analoge wijze wordt door het wieden van het roggeveld (einde Maart-April) een onbewuste teeltkeus gepleegd: een aantal soorten, die in den herfst of in het vroege voorjaar zijn gekiimd, bloeien in den «wiedtijd»; dit is o. a. het geval met Draba verna, Veronica hederæfolia, Stellaria media, Lamium amplexicaule, enz. De exemplaren die alsdan reeds rijp zaad (1) dragen zullen zich voortplanten, die welke te laat bloeien zullen zonder nakomelingen verdwijnen; de planten echter, die in den wiedtijd (April) nog niet gekiimd of nog zeer klein zijn zullen aan het wiedvolk ontsnappen en na den wiedtijd voortgroeien. Door het wieden wordt aldus, in 't algemeen, van den eenen kant het vroeg bloeien, van den anderen kant het laat kiemen bevorderd. Een en dezelfde soort zal hierdoor wellicht in twee rassen kunnen gesplitst worden, n. l. een voorjaarsras en een zomerras. Zaden, die in den wiedtijd rijp zijn en uitgestrooid worden, zullen in sommige gevallen onmiddellijk kiemen: op die wijze zal één soort (dit is waarschijnlijk met Stellaria media het geval) zich in twee successieve generatiën (een voorsjaars- en een zomergeneratie) kunnen voordoen.

(1) Of zaad dat reeds ver genoeg ontwikkeld is om te kunnen rijp worden nadat de moederplant uitgetrokken is, terwijl het wiedsel op den akker of op den mesthoop blijft liggen.
Het ware wenschelijk dat een zeker aantal soorten in dit opzicht nauwkeurig bestudeerd werden; in ieder geval mogen wij uit de medegedeelde feiten besluiten, dat alles samenwerkt om den levensduur van het onkruid op een roggeveld zooveel mogelijk te beperken.

Onderzoeken wij nu hetzelfde veld in Augustus en September: de rogge is weg, en het terrein is met rapen (knollen) bezaaid. Wij vinden hier bijna al de soorten die wij te voren tusschen de rogge hadden aangetroffen, in den vorm van kiemplantjes terug: een gedeelte van de ontzaglijke massa onkruidzaad, die gedurende de voorafgaande maanden door de hand der natuur werd uitgestrooid, kiemt te gelijker tijd als de knollen (1). Maar weldra (einde Augustus-September) wordt de akker gewied; daardoor heeft een nieuwe slachting plaats, en de planten die aan de wiedsters zijn ontspant of die na het wieden kiemen worden door den naderenden winter in hare ontwikkeling gehemd. Gedurende den winter worden zij door het successieve rooien der knollen gedeeltelijk vernield. In Maart of April wordt de grond met de heg schoongemaakt, beploegd (of omgespit), bemest en met aardappelen beplant: alleen de soorten, die zeer vroeg bloeien (Veronica hederaefolia, Draba verna, enz.) hebben op het knollenveld zaad kunnen dragen.

De aardappelen staan nu op rijen gepoot; het seizoen is nu voor de kieming buitengewoon gunstig, en myriaden onkruidplanten schieten tusschen de aardappelplanten uit den verschomgewerkten grond op. Door het aanaarden der aardappelplanten wordt een gedeelte van het onkruid, vooral in de brauwen (voren) die tusschen de rijen aardappelplanten

(1) Het mest, dat onmiddellijk vóór het uitzaaien der knollen op den akker wordt gebracht, bevat soms veel onkruidzaad, en het knollenzaad is niet altijd met de noodige zorg schoongemaakt. Talloze nieuwe kiemen worden aldus door den landbouwer zelf op den akker gebracht.
gegraven worden, ontworteld, maar daarna, van Juni tot September, gedurende de gunstigste maanden van 't jaar dus, wordt aan het onkruid den vrijen teugel gegeven. Hier vinden wij in hoofdzaak dezelfde soorten als op de roggevelden terug: b. v. de korenbloem (Centaurea cyanus) die hier meestal in Augustus en September bloeit, en minder hoog, meer uitgestoord is dan tusschen de rogge; Polygonum Persicaria en {lathifolium, Vicia hirsuta, tetrasperma en sativa; Ephorbia helioscopia en Peplus, Myosotis intermedia, Matricaria chamomilla, Mercurialis annua, Sonchus- soorten, Scoleranthus annuus, Stellaria media} enz. komen hier in krachtige planten voor, te meer daar de aardappelplanten boven den grond allengs verdrogen en hare bladen verliezen, en aldus voor het onkruid plaats maken.

Sommige soorten vertoonen zich hier in tweeërlei exemplaren: de eene, die tusschen de voren staan, zijn in hunne ontwikkeling verder gevorderd dan de andere, die in de voren staan. In September treft men b. v. in de voren kleine, bloeiende exemplaren van Chenopodium album aan, terwijl de exemplaren die tusschen de voren staan, en die bij het aanaarden niet geleden hebben, veel groter zijn en reeds rijpe vruchten dragen. Geheel de aardappelflora bloeit later dan de flora der roggevelden. — In September worden de aardappelen gerooid: de rijpe knollen worden met de vork uit den grond gehaald, en het onkruid wordt tevens ontworteld en bijeengegaard. De zaden der meeste soorten (Papaver, Chenopodium, Polygonum, enz., enz.) zijn echter rijp of bijna rijp; zij komen bij duizenden van de planten los, en worden aldus op het veld uitgestrooid. Door vele landbouwers wordt het onkruid verbrand, en daardoor wordt het zaad, dat bij het heen en weer sleuren niet losgekomen is, grootendeels vernield. Door anderen wordt het uitgewied en op groote hoopen gelegd: deze hoopen blijven eenige maanden
liggen, en daarna, als zij nog millioenen kiembare ontkruidzaden bevatten, worden zij tot de bemesting van het land gebruikt!

Na het rooien der aardappelen wordt de akker omgewerkt en opnieuw met rogge bezaaid.

Het is vooral bij het rooien der aardappelen dat de akkers besmet worden. Het onkruid, dat de wiedsters in Maart-April, plantje voor plantje op het roggeveld moeten uittrekken, werd er in September uitgezaaid. Misschien zou de arbeid der wiedsters nuttiger besteed worden door de aardappelvelden twee of drie weken vóór het rooien der aardappelen te wieden, als het onkruidzaad nog grootendeels onrijp is, en niet zo gemakkelijk loskomt als het wiedsel over den akker gesleurd wordt; daarenboven zou het wiedsel dienen verbrand te worden. Misschien zou de arbeid der wiedsters nuttiger besteed worden door de aardappelvelden twee of drie weken vóór het rooien der aardappelen te wieden, als het onkruidzaad nog grootendeels onrijp is, en niet zoo gemakkelijk loskomt als het wiedsel over den akker gesleurd wordt; daarenboven zou het wiedsel dienen verbrand te worden. Indien deze bewerking eenige achtereenvolgende malen herhaald werd zou de hoeveelheid onkruid op den duur waarschijnlijk zeer verminderen.

Laten wij thans een ander cultuur in oogenschouw nemen: een akker wordt in April met Vlas en te gelijker tijd of een paar dagen later met Klaver bezaaid. De beide planten groeien gelijktijdig op, maar weldra heeft het vlas de overhand. In gunstige jaren kan het een hoogte van 1 meter of nog meer bereiken, terwijl de klaver klein blijft. Daar de vlasplanten zeer dicht bijeen staan en zeer ras groeien wordt het onkruid grootendeels versmacht, en daarenboven worden de vlasakkers met veel zorg gewied: dientengevolge is het onkruid op deze akkers doorgaans weinig in 't oog vallend (1). In Juli wordt het vlas gerooid: daar de wortels zeer teeder zijn kunnen de vlasplanten uitgetrokken worden zonder den grond om te woelen. De kleine klaverplantjes blijven behouden, en kunnen zich nu vrij ontwikkelen. De klaver blijft gedurende een of twee jaar (soms nog langer) staan: *Trifolium pratense* is immers een veeljarige plant. De levensvoor-

(1) Wij hebben de onkruidflora der vlasakkers ("vlasgaard") niet nauwkeurig onderzocht.
waarden van het onkruid zijn op een klaverveld geheel anders dan op de akkers waar eenjarige planten verbouwd worden. De klaver ontwikkelt zich in Vlaanderen buitengewoon weelderig, en vormt een dichte massa die gewoonlijk 50-60 cm. hoog wordt: dientengevolge wordt het grootste gedeelte van het onkruid versmacht. De klaver wordt verscheidene malen in t'jaar afgemaaid, en schiet telkens opnieuw uit, zonder aan het onkruid den noodigen tijd te laten om zich te ontwikkelen. De gewone onkruidsoorten met korten levensduur, die wij akkerproletariërs noemen, komen op de klavervelden weinig voor, maar worden er vervangen door andere planten, die wij tot twee groepen kunnen brengen: 1° eenige tweejarige of veeljarige planten, die krachtig genoeg zijn om den strijd voor haar bestaan tegen de klaver vol te houden: b. v. Melandryum album, Papaver dubium (in zeer krachtige exemplaren), Plantago major en lanceolata. Deze soorten worden op andere akkers zeer zelden, (of in den vorm van zwakke, proletarische exemplaren; b. v. Papaver dubium) aangetroffen. Agrostis Spica-venti, een eenjarige soort die in korten tijd hoog genoeg groeit om hare pluimen boven de klaver te verheffen, komt soms op klavervelden voor —; 2° een zeker aantal kleine plantjes die tusschen en onder de klaverplanten in den schaduw groeien, o. a. Poa annua (de schaduwvorm met ijle, armbloemige pluimen), Mossen, Levermossen (b. v. Marchantia), enz.

De kale plekken die soms in de klavervelden (ten gevolge van de klaverkanker, Peziza sclerotiorum, of van andere oorzaken) ontstaan, worden vaak door gewone akkerproletariërs bemachtigd, maar deze worden weldra overrompeld en grootendeels uitgeroeid door veeljarige soorten, b. v. door Rumex acetosella. Deze soort gedraagt zicht op de gewone akkers (aardappel- roggevelden, enz.) als een proletariër: zij blijft er klein, met enkele korte stengels, want de ploeg of de
hauw laten haar niet den noodigen tijd om hare volle ontwikkeling te bereiken. Op de kale plekken tusschen de klaver blijft zij daarentegen een paar jaren staan: zij wordt er veel groter, en meer uitgestoeld, zij roeit het ander onkruid uit, en als zij eenmaal stevig post gevat heeft kan zij zelfs schade berokkenen aan de klaver die haar omringt.

Onze waarnemingen over het onkruid van andere culturen zijn nog niet talrijk genoeg om hier te kunnen beschreven worden, maar uit de reeds bekende voorbeelden blijkt dat de onkruidflora van een akker, evenals eenige andere plantenformatie, aangepast is tot de omstandigheden waaronder zij leeft, en die omstandigheden hangen hier niet alleen af van de natuurlijke levensvoorwaarden, zoals het klimaat, de samenstelling en het watergehalte van den grond, enz., maar ook en vooral van de kunstmatige voorwaarden, welke door de verrichtingen van den landbouwer ontstaan.

Op het akkerland is het leven van verreweg de meeste bloemenbezoekende insecten onmogelijk. Voor de talrijke Hymenopteren (b. v. vele bijen; — graafwespen, enz.) die onder den grond nestelen is de bodem der akkers, die gewoonlijk verscheidene malen in 't jaar omgewerkt wordt, een weinig gunstig terrein. De soorten die hare woningen in de stengels van heesters of boomen vestigen (b. v. Halictus-soorten) vinden op het akkerland de houtachtige planten niet die zij noodig hebben. De meeste Kevers, Tentherediniden, Dipteren, Lepidopteren enz., waarvan de larven zich met bepaalde plantensoorten voeden, zijn door het ontbreken harer voederplanten eveneens uitgesloten; alleen de weinige soorten, die op cultuurplanten of op onkruid leven kunnen op de akkers stand houden. De insecten eindelijk, die het eerste gedeelte van hun leven in het water doorbrengen (een aantal Dipteren, enz.) kunnen op de akkers evenmin voortbestaan.

Dit is een van de oorzaken waarom wij op het akkerland over 't algemeen weinig bloemenbezoekende insecten zien rondvliegen, maar er is nog een tweede, even belangrijke
oorzaak: *de bloemen* der *planten* die *op de akkers groeien* lokken over 't algemeen *weinig insecten aan*. Dit is het geval met de meeste onzer cultuurplanten (1) en met bijna al onze onkruidsoorten. Maar telkens er op de velden honigrijke, *geurende* bloemen te vinden zijn komen de insecten aangevlogen. Zij verlaten de kanten, bosschen, weiden en boomgaarden waar zij gewoonlijk verblijven, en trekken bij talrijke drommen naar de akkers, waar zij, naar gelang van het jaargetijde, op de bloeiende *raapzaad-, koolzaad-, boekweit-, klaver- en luzerne*velden buit inzamelen.

Kanten. Zooals hooger reeds werd vermeld worden de perceelen akkerland, op vele plaatsen, door *kanten* van elkander gescheiden. Een kant bestaat uit een smalle sloot, aan wier oevres een of twee rijen stronken staan. De takken, die dicht boven den grond uit deze stronken ontspringen, vormen samen een soort van dikke onregelmatige haag, waaronder de sloot soms geheel verborgen is, en die aan weerszijden door eene strook gras van het naburige akkerland gescheiden wordt. Het houtgewas der kanten bestaat gewoonlijk uit elszen (elskanten), somwijlen uit esschen, wilgen of eiken, met enkele hazelaarstronken, berken, knotwilgen enz. er tusschen. De takken laat men gewoonlijk zeven (soms acht of negen) jaar oud worden; alsdan worden zij afgehakt, en tot verschillende doeleinden, o. a. als brandhout, gebruikt. De stronken, die slechts een paar decimeters boven den grond uitsteken, geven daarna het aanzijn aan een nieuwe generatie

hakhout, dat na een zevental jaren op zijne beurt onder de bijl valt, enz.

Terwijl de akkers ieder jaar omgewerkt worden blijven de kanten telkens gedurende zeven à negen jaar onaangeroerd: dientengevolge kunnen veeljarige planten en zelfs eenige heesters in de kanten stand houden. *Een aantal soorten, die tot de oorspronkelijke flora van ons land behooren en die op het bouwland volkomen uitgeroeid zijn, hebben in de kanten een toevluchtsoord gevonden.* Braambessen, kamperfoelie, sporkenhout, lijsterbessen, klimop, sneeuwbakal en andere heesters groeien er tusschen de stronken; al de plaatsen, die tusschen de houtachtige planten beschikbaar blijven worden ingenomen door *Anemone nemorosa, Ranunculus*-soorten. *Primula elatior, Stellaria holostea en graminea, Glechoma, Lamium album, Galeobdolon, Stachys silvatica en palustris, Valeriana officinalis, Spiraea Ulmaria; Angelica, Heracleum en andere Umbelliferae, Campanula rotundifolia en (zeer zelden) patula, Convolvulus sepium, Teucrium Scorodonia, Cardamine pratensis, Vicia sepium en Cracca, Hieracium vulgatum, een aantal Gramineëen, enkele Varens, enz., enz.*

Deze eigenaardige plantengroepening gelijkt vrij goed op de flora van een bosch (zie verder), maar de planten ontvangen meer licht dan in een bosch: dientengevolge is de flora rijker, en heeft zij niet zoozeer het voorkomen eenen schaduwflora.

Met het afhakken van het hout gaat het schoonmaken («kuischen», «ruifelen») van den kant gewoonlijk hand in hand: niet alleen worden de heesters (*Sorbus, Rhamnus, Rubus, Lonicera, enz.*) te gelijker tijd als het eigenlijke hakhout dicht boven den grond afgekapt of ontworteld, maar in vele gevallen worden zelfs kleinere planten door den landman uitgerooid. De oewers der sloot worden afgespit (afgesteken), de sloot zelf wordt uitgediept, en de vruchtbare slib, waarin
afgevallen bladen, vruchten, zaden enz. zich jaren achtereen verzameld hebben, wordt gewoonlijk op den naburigen akker uitgestrooid en ingeploegd. Van de talloze zaden van heesters en veeljarige planten, die aldus op het bouwland gebracht worden, zijn er natuurlijk vele, die hunne kiemkracht nog niet hebben verloren; zij kiemen dan ook, en de plantjes die eruit voortspruiten groeien welig op het akkerland, tusschen het gewone onkruid. Maar hier zijn zij blootgesteld aan oorzaken van vernieling, waartegen zij niet bestand zijn: door het wiedvolk worden zij reeds gedeeltelijk uitgetrokken; na enige maanden wordt de grond opnieuw omgewerkt, en alsdan worden de overige ten gronde gebracht alvorens zij zaad hebben kunnen dragen, terwijl de gewone onkruidsoorten, die in weinige maanden haren levensloop volbrengen, den tijd hebben gehad om hare kiemen uit te strooien.

Terwijl de kapitalisten (veeljarige planten en heesters) (1), die uit de kanten op het bouwland gezaaid worden, in den strijd voor het bestaan bezwijken en het terrein voor de akkerproletariërs beschikbaar laten, grijpt het omgekeerde in den schoongemaakten kant plaats. Hier werd de bodem, inzonderheid de oevers der sloot, van een gedeelte van zijn plantengroei beroofd, en op de beschikbare plaats worden onkruidzaden van de naburige akkers door den wind enz. uitgestrooid. Deze zaden kiemen te gelijktijd als de kiemen van kapitalisten, die reeds in den grond voorhanden waren. Gedurende het eerste jaar hebben de proletariërs de overhand: zij worden immers in korten tijd volwassen en dragen na weinige maanden zaad, terwijl de kapitalisten zich veel langzamer ontwikkelen. Maar weldra heeft het hakhout opnieuw een zekere hoogte bereikt, en daardoor worden de

(1) Zie verder, § III, "Kapitalisten en proletariërs"]]
afgespitte oevers der sloot overlommerd; tevens worden de kapitalisten die tusschen het hakhout groeien groter; het onkruid wordt aldus versmacht, en na een paar jaren blijft er van de akkerproletariërs in den kant gewoonlijk niets meer over. De oorspronkelijke flora heeft zich opnieuw van het terrein meester gemaakt, en zal zich nu, gedurende een reeks achtereenvolgende jaren rustig ontwikkelen, totdat de kant opnieuw afgekapt en schoongemaakt wordt.

Talrijke insecten, en onder anderen vele bloemenbezoe-kende soorten, vinden in de kanten een schuilplaats. Tusschen de stronken graven Hommels en andere bijen hunne nesten; *Psithyrus* en *Volucella* zoeken deze nesten op om daarin hunne eieren te leggen. In de stengels der braamstruiken zijn de larven van verscheidene *Halictus*-soorten gehuisvest. De rupsen van een aantal *Lepidopteren* vinden in de flora der kanten de planten die zij tot hare voeding noodig hebben, en in het water der slooten, waarin veelal dierlijke of plantaardige stoffen rotten, leven de larven van *Eristalis, Helophilus*, etc. In de flora der kanten vinden de bloemen-bezoekende insecten een aantal honigrijke bloemen (zie hooger, blz. 398), en uit de kanten trekken zij daarenboven naar het akkerland, zooals hooger reeds werd medegedeeld.

Aan zijne beide zijden wordt iedere kant van het naburige akkerland gescheiden door een strook grasgrond («graskant») die meestal 2 à 3 meters breed is. Onze landbouwers hebben de gewoonte het rundvee gedurende bijna den geheelen zomer, onder de waakzaamheid van een koehoeder («koewachter») op deze gronden te laten grazen. Dientengevolge kan het gras zelden zijn volkomen ontwikkeling bereiken; kruidachtige planten, die tusschen het gras groeien, en die niet door bijzondere inrichtingen tegen de aanvallen van het vee verdedigd zijn, worden, evenals het gras zelf afgevretien; soorten met rechtopstaande, stijve stengels worden
door het vee, en door de landbouwers zelven, die deze graskanten vaak als wegen gebruiken, platgetreden. De flora der graskanten is dan ook armer dan de plantengroei der weiden, die wij verder zullen bespreken. *Bellis perennis* en *Taraxacum officinale*, *Ranunculus*-soorten, *Hypochaeris radicata*, *Thrincia hirta* en *Crepis virens* worden in bijna alle graskanten aangetroffen; somwijlen wordt de graskant langzaam overrompeld door Braametakken, Brandnetels en Distels, die zich van tusschen het hakhout over den grasgrond uitspreiden. Het spreekt van zelf dat tallooze zaden van akkerproletariërs in den graskant uitgestrooid worden; zij kiemen soms tusschen het gras, maar zij kunnen hier doorgaans geen stand houden, daar het terrein tot den laatsten duim met overblijvende kapitalisten (Gramineëën, enz.) bedekt is.

Langs de landwegen die met boomen beplant zijn, langs de hagen die de *boomgaarden* omgeven en in de boomgaarden zelf is de grond met gras bedekt. Deze grasgronden verkeeren nagenoeg in dezelfde voorwaarden als de zoo even beschreven graskanten, en hebben in hoofdzaak denzelfden plantengroei als deze.

Bosschen: Zooals hooger reeds werd gezegd komen *oor-spronkelijke wouden* in Vlaanderen niet meer voor. Bosschen worden er *geplant* en geëxploiteerd volgens bepaalde methoden, en ook hier drukt de steeds herhaalde tusschenkomst van den mensch een onmiskenbaren stempel op den plantengroei. De boomsoorten waaruit een bosch bestaat, en de wijze waarop het geëxploiteerd wordt verschillen in zekere mate van den eenen eigenaar tot den anderen; de volgende beschrijving heeft derhalve geen aanspraak op volledigheid, te meer daar onze waarnemingen in dit opzicht nog niet talrijk genoeg zijn.

In ons gebied kunnen wij de volgende *boschformaties*
onderscheiden: 1° het kreupelbosch (hakhout); — 2° het hoogstammig bosch met kreupelhout tusschen de boomen; — 3° het hoogstammig bosch zonder kreupelhout; — 4° het denenenbosch.—Hierbij dient nog een vijfde formatie gevoegd te worden, n. l. : 5° de boschwegen, die in ons gebied de schier volkomen verdwenen boschweiden en heiden vertegenwoordigen.

Het kreupelbosch (hakhout, hakbosch, «slaghout») is in veel opzichten met de kanten verwant. Evenals deze bestaan onze kreupelbosschen uit knoestige stronken, die slechts een paar decimeters boven den grond uitsteken, en op regelmatige rijen staan. Het terrein wordt schier altijd door rechte, ondiepe slooten, met afstanden van vijf à tien meters er tusschen, in evenwijdige stroeken gedeeld. Op vele plaatsen treft men kanten aan, die uit 3,4 of meer rijen stronken bestaan, en die aldus een overgang vormen tusschen den eigenlijken kant en het kreupelbosch. Evenals de kanten worden de kreupelbosschen gewoonlijk om de zeven (acht of negen) jaar afgehakt. Dikwijls wordt het bosch tevens schoongemaakt, op dezelfde wijze al hooger voor de kanten beschreven werd; de bladgrond, die zich in de slooten en tusschen de stronken verzameld heeft, wordt niet zelden weggehaald en verkocht; aldus wordt aan de planten, die tusschen de stronken groeien, veel schade toegebracht, en de instandhouding van sommige soorten (o. a. vele zwammen), die een dikke humuslaag behoeven, wordt onmogelijk. Daarna wordt het bosch gedurende eenige jaren met rust gelaten, en de geleden schade wordt van zelf hersteld.—Onze kreupelbosschen zijn uit dezelfde houtsoorten als de kanten samengesteld: op de lage gronden bestaan zij uit esschen en vooral uit elzen, op de hooger gelegen, drogere gronden vooral uit eikestronken (b. v. een gedeelte der Deurelwarande), en tusschen deze overheerschende soorten...
komen hazelaars, berken, kastanjen enz. veelvuldig voor. Op moerassige terreinen heeft men, vooral in de laatste jaren, (te Deurel, Bellem, enz.) kreupelbosschen van wilgenhout aangelegd, waarvan de buigzame takken tot de mandenmakerij worden gebruikt.

De plantengroei der kreupelbosschen gelijkt vrij goed op dien der kanten; aan de randen van een dergelijk bosch bereikt hij zijn grootsten rijkdom; van binnen in het bosch is hij armer wegens gebrek aan licht. De rijkdom der flora hangt grootendeels af van de meerdere of mindere zorg waarmede het bosch schoongemaakt wordt, en in dit opzicht wordt veel verscheidenheid waargenomen.

De hoogstamige bosschen met kreupelhout tusschen de bomen worden op dezelfde wijze als de zooeven beschreven kreupelbosschen aangelegd en geëxploiteerd, maar hier treft men, behalve de stronken die hakhout voortbrengen, echte bomen aan. Deze bomen worden gewoonlijk op vrij groote afstanden van elkander geplaatst, ten einde het noodige licht tot het kreupelhout te laten doordringen. — De samenstelling dezer bosschen vertoont veel verscheidenheid; op de lage gronden bestaat het kreupelhout gewoonlijk uit elzen of esschen, terwijl de hoogstammige bomen populieren (P. canadensis), esschen, olmen of eiken zijn (b. v. eenige perceelen bosch te Melle, aan den Lindenhoek); — tusschen Nevel en Poucques, aan de oevers der Poucques-beek; — te Ooydonck; — enz.); op drogere gronden bestaan dergelijke bosschen veelal uit eikestronken, met hoogstammige eiken (die hier gewoonlijk niet zeer krachtig worden), beuken, lorken (Larix decidua), olmen, enz.

Deze bosschen ondergaan dezelfde bewerkingen als de eigenlijke kreupelbosschen; daarenboven worden de hoogstammige bomen na een zeker aantal jaren geveld, en vervangen door nieuwe plantsoenen, die tusschen de stronken geplaatst worden.
Men kan onmogelijk van de flora van een dergelijk bosch een voorstelling geven door een eenvoudige lijst van de planten die er groeien mede te deelen. Niet alleen vertoont die flora veel verscheidenheid naar gelang van de samenstelling en van het watergehalte van den grond, maar in een en hetzelfde bosch veranderen de levensvoorwaarden schier van jaar tot jaar, en met deze veranderingen gaan wijzigingen van den plantengroei hand in hand.

Wij hebben hooger de verschijnselen beschreven die op elkander volgen in een periode van twee jaar, op een perceel akkerland dat successievelijk met rogge, met knollen en met aardappelen beplant wordt; — wij hebben ook de geschiedenis van den plantengroei in een kant beschreven, en wij hebben gezien dat hier de periode, evenals in een kreupelbosch, zeven à negen jaar duurt. — In een bosch nu, waar kreupelhout en tevens hoogstammige boomen groeien, verandert de plantengroei zich eveneens voortdurend, maar hier duren de perioden langer.

Laten wij een bosch beschouwen bij den aanvang eener nieuwe periode: het hakhout is afgekappt, de hoogstammige boomen zijn geveld, en de putten die men daartoe heeft gegraven zijn wederom gedempt; de slooten zijn uitgediept, de braamstruiken en andere heesters zijn met meerdere of mindere zorg ontworteld, een aantal kleine planten werden platgetreden of vernield, en de bladgrond werd gedeeltelijk weggehaald. Van het bosch blijft schijnbaar niets anders over dan de knoestige, lage stronken met hunne versche bijlwonden, en de tengere plantsoenen die de gevelde boomen hebben vervangen. De grond zit echter vol wortelstokken, knollen, bollen, en andere onderaardsche plantendeelen, en is als het ware gekneed met tallooze zaden. De gordijn, die gedurende vele jaren het binnendringen van het licht verhinderd heeft, is verdwenen; bij de eerste stralende lentezon
doet het leven met volle krachten zijn rechten gelden, en tevens begint de strijd voor het bestaan.

Gedurende het eerste jaar geven de stronken het aanzijn aan nieuwe takken, en tevens schieten talloze planten uit den grond op; de meeste dier planten behooren tot overblijvende, kruidachtige soorten; enkele zijn bestemd om heesters of boomen te worden (Sorbus, Lonicera, Ligustrum, enz.). Op de plaatsen waar te voren hoogstammige boomen stonden, alsook op den afgespitten grond aan de oevers der slooten, werden de overblijvende planten door de hooger beschreven bewerkingen bijna geheel uitgeroeid: hier zien wij een aantal proletariërs opslaan, meestal soorten, die ook op de akkers groeien. Eenigen schijnen zich hier volkomen thuis te gevoelen, b. v. Juncus bufonius, Gnaphalium uliginosum, Moehringia trinervia, Stellaria uliginosa, Sagina procumbens, enz. Reeds in den loop van den eersten zomer bloeien deze proletariërs, en een aantal kapitalisten met eenjarige luchtstengels bloeien eveneens, maar het is vooral gedurende het tweede jaar dat de flora van het bosch zich in haren vollen rijkdom vertoont. Het hakhout en de plantsoenen zijn nog niet groot genoeg om de kleinere planten te overlommen; de soorten die reeds het eerste jaar bloemen hebben voortgebracht bloeien opnieuw, en daarbij komen zich een aantal andere planten voegen, die twee jaar hebben noodig gehad om de geleden schade te herstellen of om bloemstengels te vormen. Alleen de proletariërs beginnen reeds door de krachtiger boschplanten versmacht te worden.

Gedurende de volgende jaren worden de plantsoenen en het hakhout steeds groter, en dientengevolge wordt de schaduw steeds dichter. De soorten die helder licht behoeven worden in haar bestaan bedreigd; andere nemen den schaduwvorm aan: hare stengeldeken worden langer, hare bladen teederder en dunner, hare bloemen minder talrijk en bleeker.
De echte schaduwplanten worden door de nieuwe levensvoorwaarden begunstigd, terwijl de meeste proletariërs van lieverlede uitgeroeid worden. De schaduw drukt aldus meer en meer haren stempel op den geheelen plantengroei van het bosch. Twee groepen planten blijven echter aan den invloed der schaduw grootendeels onttrokken, n. l. de heesters (Sorbus, Viburnum, enz.) die met het hakhout medegroeien, en de planten die in het vroege voorjaar bloeien, als de houtgewassen nog geen bladen hebben. De laatstgenoemde soorten vormen, vooral in bosschen waar de grond vochtig en iets kleiachtig is, een kenschetsend gezelschap: Primula elatior, Adoxa Moschatellina, Viola canina, Potentilla sterilis, Caltha palustris, Ranunculus auricomus, Ficaria ranunculoides, Anemone nemorosa, Oxalis acetosella (vrij zeldzaam) schieten in Maart en April tusschen de verdroogde bladen op, en versieren het bosch met hunne tallooze bloemen, terwijl de geurende katjes der vroeg-bloeiende wilgen (Salices praecoces) ontluiken. Deze voorjaarsbloemen worden bezocht door vele insecten (Bombus-, Andrena-, Nomada-soorten, enz.) die pas uit hun winterslaap ontwaakt zijn, en die er niet alleen hun voedsel vinden, maar die daarenboven door het kreupelhout beschut worden tegen den guren oostenwind, die onze zonnige voorjaarsdagen zoo vaak onaangenaam maakt. — Later op 't jaar, als de houtgewassen hunne bladen hebben ontplooid, is de bloemenpracht verdwenen. Sommige soorten sterven weldra boven den grond af, en blijven in den vorm van onderaardsche knollen of van zaden tot de volgende lente behouden (Adoxa Moschatellina, enz.); andere, die in den beginne fraaie bloemen en kleine lichtbladen hebben voortgebracht, vormen nu groote, teedere, dunne schaduwbladen (Primula elatior); andere nog dragen niet-opengaande (cleistogame) vruchtbare bloemen nadat de fraaie voorsjaarsbloemen verdwenen zijn (Viola canina, Oxalis acetosella, enz.).
Terwijl de voorjaarsflora onder het gebladerte verborgen wordt en haar schaduwkleed aantrekt, komen een aantal echte schaduwplanten tusschen het kreupelhout voor den dag (Convallaria, Maianthemum, Sanicula, Epilobium montanum, Orchis maculata, Circaea lutetiana enz.), waarvan de bloemen minder insectenbezoek ontvangen dan de voorjaarsbloemen. Naarmate de zomer verder vordert, worden de hoogstammige boomen en het kreupelhout van meer bladen voorzien, en tevens wordt de schaduw dichter en het bosch armer aan bloemen.

Na zeven (acht of negen) jaar wordt het hakhout afgekapt; dientengevolge begint een nieuw tijdperk voor de ontwikkeling van den plantengroei, op dezelfde wijze als de eerste maal. De hoogstammige boomen blijven echter behouden; zij hebben reeds een vrij aanzienlijke kroon gevormd, waaruit volgt dat de geheele plantengroei, gedurende het tweede zevenjarig tijdperk, meer den invloed der schaduw ondergaat dan gedurende het eerste. — Hetzelfde wordt verscheidene achtereenvolgende malen herhaald: telkens het hakhout afgekapt wordt neemt de plantengroei als het ware een nieuwen aanloop, maar de kronen der hoogstammige boomen worden op den duur zoo uitgebreid, dat ook na het vallen van het hakhout het bosch in de schaduw gedompeld blijft. Het kreupelhout zelf begint door gebrek aan licht te kwijnen, en de echte schaduwplanten (b. v. vele zwammen) treden steeds meer op den voorgrond. Eindelijk worden de hoogstammige boomen geveld: dit geschiedt met de populieren na 30 à 35 jaar, andere boomsoorten blijven langer staan. Na het vellen der boomen begint een nieuwe periode.

Het is vooral in de zooeven beschreven bosschen dat de bloemenbezoekende insecten talrijk zijn en veel verscheidenheid vertonen (zie verder: boschwegen).

H o o g s t a m m i g e b o s s c h e n z o n d e r k r e u-
pelhout tusschen de bomen zijn thans in ons gebied bijna geheel verdwenen: op sommige plaatsen, vooral in omheinde kasteelperken, staan nog eenige tientallen hoogstammige beuken bijeen. In dergelijke bosschen is de plantengroei zeer schraal: mossen, zwammen, enkele Gramineën en Varens zijn schier de eenige planten die onder het dichte loofdak kunnen leven. Ook hier treffen wij eenige soorten aan, die in 't voorjaar bloeien, als de bomen nog niet met loof zijn bedekt (Viola canina, Luzula pilosa, Vaccinium Myrtillus, enz.). In deze bosschen is de grond gewoonlijk weinig vruchtbaar, hetgeen eveneens bijdraagt om de flora te verarmen. — Omtrent de successieve toestanden van deze formatie hebben wij geen waarnemingen kunnen doen; in sommige hoogstammige beukenbosschen worden overblijfsels van vermolmde stronken aangetroffen, waaruit mag besloten worden dat ook hier vroeger hakhout groeide, hetwelk door de bomen ten onderen werd gebracht.

Dennenbosschen (sparrenbosschen) komen in Vlaanderen tamelijk veel voor.

Het is vooral op zandachtige gronden, gewoonlijk op de ruggen van heuvels, waar het terrein tamelijk droog is, dat zij worden aangelegd.

Sedert een vijftiental jaren heeft de dennenplantage een aanzienlijke uitbreiding genomen, daar vele weinig vruchtbare akkers, ten gevolge van de waardevermindering der landbouwproducten, met dennen werden beplant. In Vlaanderen worden de denenbosschen gewoonlijk op de volgende wijze aangelegd en geëxploiteerd:

Het perceel gronds dat bestemd is om met dennen (schier uitsluitend Pinus silvestris) te worden beplant, wordt voor-eerst omgewerkt; daarna worden jonge denneboomjes, die ongeveer een decimeter hoog zijn, op rijen uitgeplant, op afstanden van ongeveer 50 centimeter. Gedurende het eerste
jaar zien wij, op het versch omgewerkt terrein, talrijke planten opslaan, die, naar gelang van haren oorsprong, tot twee groepen kunnen gebracht worden, n.l. planten waarvan de kiemen reeds vroeger in den grond voorhanden waren, en andere, waarvan de zaden door den wind enz. aangebracht worden. Het ligt voor de hand dat de samenstelling dier flora veel verscheidenheid vertoont: indien het land te voren een verbouwde akker was zal het gewone akkeronkruid in den beginne de overhand hebben; indien het terrein vroeger met bosch bedekt was zullen talrijke boschplanten voor den dag komen. Naar gelang van de omstandigheden zullen de naburige akkers, kanten, boschwegen enz. zaden van hunne respectieve planten naar het versch ontginde dennenveld zenden (1).

Daar de jonge boomen in den beginne slechts langzaam groeien, worden zij weldra — althans tijdelijk — door het onkruid overrompeld, en daar de grond onaangeroerd blijft kunnen wij hier, gedurende eenige jaren, den strijd voor het bestaan tusschen talrijke plantensoorten nagaan. Gedurende het eerste jaar hebben de proletariërs de overhand (2); het tweede en het derde jaar beginnen tweejarige en veeljarige planten op den voorgrond te treden, en de zwakkere proletariërs te versmachten. Zelfs kleine heesters (Sarothamnus Scoparius, Rubus, Calluna, enz.), kunnen hier oud genoeg worden om te bloeien.

Sommige plantensoorten schijnen tusschen de jonge dennen bijzonder welig te groeien: Erigeron canadense, Senecio vulgaris, enz., waarvan de lichte zaden door den wind in alle richtingen verspreid worden, slaan hier soms bij duizenden op, alsook Spergula arvensis, Ornithopus perpusillus

(1) Soms wordt Molinia coerulea tusschen de jonge dennen gezaaid, ten einde deze tegen verschroeining te beschutten.
(2) Wij beschrijven hier een dennenveld zonder Molinia.
en andere zand-proletariërs; *Jasione montana* groeit hier in krachtige exemplaren, die zich in den vorm van regelmätige rozetten over den grond uitspreiden, en in Augustus en September met honderde blauwe bloemhoofdjes prijken. Later komen *Hypericum pulchrum*, enz., *Hieracium vulgatum*, *Campanula rotundifolia*, *Gnaphalium silvaticum*, *Eupatorium cannabinum*, enz., en de hooger vermelde heesters voor den dag.

Intusschen worden de dennenboompjes groter; hooger en hooger verheffen zij hunne stijve stammen boven de andere planten; steeds verder spreiden zij hunne takken uit, en zij vormen, na vijf of zes jaar, een ondoortrijdbaar geheel, waaronder alle andere planten op den duur versmacht worden. In dien toestand is de bodem van het dennenbosch — vooral op droge gronden — zeer arm aan phanerogame planten; hij wordt bedekt met een dikke laag dennennaalden, waarin zich eenige zwammen ontwikkelen, en de onderste takken der boomen sterven af bij gebrek aan ruimte en licht.

Wat er nu van een dergelijk dennenbosch zou geworden, moest het aan zich zelf overgelaten worden, weten wij niet, want de mensch komt ook hier de natuurlijke orde der zaken verstoren. Het bosch wordt — gewoonlijk na zeven jaar — gedund: een aantal boompjes worden tusschen de andere weggehakt, de doode takken worden afgekapt, en aldus beschikken de overblijvende dennen over meer ruimte. Dezelfde bewerking wordt verscheidene achtereenvolgende malen — doorgaans om de drie jaar — herhaald; telkens worden de stammen minder talrijk, en door het verwijderen der onderste takken wordt de vrije ruimte onder de kronen hooger en hooger.

Het binnendringen van lucht en licht wordt aldus meer en meer bevorderd, en tevens ontwikkelt zich hier een kenschetsende schaduwflora. Deze flora bestaat uit mossen, talloze zwammen (o. a. *Cantharellus cibarius*, die schier nooit ont-
breekt), enkele varens (*Blechnum spicant*, *Pteris*, enz.) en Gramineën; *Orchis maculata*, *Epipactis latifolia*, *Teucrium Scorodonia* komen in sommige dennenbosschen bij duizenden voor; ook zeer schrale heideplantjes (*Calluna vulgaris*) worden er enkele malen aangetroffen. Eindelijk — na 20 à 25, soms na 30 jaar — worden de laatste boomen, die nu 10 à 15 meters hoog opgeschoten zijn, geveld; de grond wordt omgewerkt, de boschflora wordt hierdoor vernield en er wordt een nieuw bosch aangelegd, of het terrein wordt tot een ander cultuur gebruikt.

Boschwegen: de wegen die door de bosschen loopen, ondergaan veel minder den invloed van den mensch dan de bosschen zelve, en hun plantengroei geeft waarschijnlijk een vrij getrouw denkbeeld van den oorspronkelijken natuurstaat. Deze wegen worden gewoonlijk weinig getreden; de grond blijft er soms zeer langen tijd onaangeroerd; indien de weg breed genoeg is en indien de boomen die er langs staan niet te hoog zijn ontbreekt het er niet aan licht. — Op de zandachtige gronden, vooral in de sparrenbosschen (b.v. Somerghem, Bellem, Meirelbeke, enz.), stemt de flora der wegen schier volkomen overeen met de flora der Kempische heiden: somwijlen is de weg over zijn geheele breedte, uitgenomen een smal, kronkelend voetpad in 't midden, begroeid met *Calluna vulgaris*, waartusschen *Erica tetralix*, *Gentiana Pneumonanthe* (zeldzaam), *Drosera rotundifolia*, *Sarothamnus Scoparius*, *Genista*-soorten, *Juncus squarrosus*, *Molinia coerulea*, *Myrica Gale* (b.v. te Bloemendaal) enz. groeien.

Het is in dergelijke wegen, die wij heideachtige wegen wenschen te noemen, dat de flora der thans verdwenen heiden behouden is gebleven. Verder zullen wij aantoonen dat, in sommige gevallen, de flora van de heideachtige wegen van zelf de naburige gronden overrompelt. — In andere bosschen zijn de wegen, over het grootste gedeelte hunner breedte
bedekt met gras, waartusschen een aantal boschplanten
groeien (Scabiosa succisa, Hieracium vulgatum, Solidago
virga-aurea, Jasione montana, Lysimachia vulgaris, Hyperi-
cum perforatum, Potentilla tormentilla, Melampyrum pra-
tense, Pedicularis silvatica, enz. enz.). De laatstgenoemde
wegen kunnen wij graswegen noemen : door hun plantengroei
doen zij denken aan de boschweiden (« Waldwiesen »), die
men in de naburige landen op vele plaatsen aantreft, en die
waarschijnlijk ook in ons gebied vroeger hebben bestaan.
Tusschen de heideachtige wegen en de graswegen komen alle
mogelijke overgangen voor, en zeer waarschijnlijk kan de
eene formatie de andere langzaam verdringen, naar gelang
van omstandigheden, die ons tot nog toe niet bekend zijn. —
Aan de randen der bosschen treft men schier altijd een strook
grond aan die niet met boomen is beplant, en waarvan de
flora nu eens met die der heideachtige wegen, dan weder met
die der graswegen verwant is.

Het is vooral in de boschwegen dat men veel honigrijke
bloemen en bloemenbezoekende insecten aantreft.

Weiden : De kleiachtige dalen, waarin onze rivieren en
beken strommen, zijn met weiland bedekt. De plantengroei
bestaat er in hoofdzaak uit zodevormende Gramineeën, met
talrijke kruidachtige planten er tusschen. De samenstel-
ling der flora van ieder weide hangt grootendeels af van
het watergehalte van den grond, en is ook verschillend naar
gelang het water stilstaande of stroomend is (1). Ongetwij-
feld heeft de flora der weiden, door de tusschenkomst van
den mensch, diepe veranderingen ondergaan : schier overal
werden in de weiden talrijke slooten gegraven, die met

(1) Zie C. Weber, Ueber die Zusammensetzung des natürlichen Graslan-
des in Westholstein, Dithmarschen und Eiderstedt. — Schriften Nat. Ver.
für Schleswig-Holstein, IX, blz. 179-218, 1892.
elkander en met de naburige rivier gemeenschap hebben, en
die nu eens tot de bevloeiing, dan weder tot de afwatering
dienen: daardoor werden de gesteldheid en dus ook de
plantengroei van de meeste weiden gewijzigd.

De weiden worden bijna zonder uitzondering iedereen win-
ter gedurende eenige weken verdrongen. In het voorjaar
(einde Maart) ontwaakt de weide uit haren winterslaap: de
eerste bloemen, die zich tusschen het korte gras vertoonen,
 zijn het madeliefje (*Bellis*) en de paardebloem (*Taraxacum*),
die na een paar weken hun vollen bloei bereiken; enkele
dagen later komen de Pinksterbloemen (*Cardamine pratensis*)
en *Caltha palustris* (vooral op drassige weiden) voor den
dag. Op 't einde van April vormen deze vier soorten in de
weiden, die intusschen frisch groen geworden zijn, een heer-
lijk bloementapijt (1). In Mei is het gras hooger geworden, de
voorjaarsbloemen zijn uitgebloeid of tusschen het gras ver-
borgen, en nu ontluiken de Orchideeën (schier uitsluitend
O. Morio en *O. latifolia*) alsook *Chrysanthemum Leucanthe-
mum*, *Symphylum officinale*, *Valeriana dioica* (niet overal),
Lychnis flos-cuculi, *Medicago lupulina*, *Trifolium pratense*,
Myosotis palustris, talrijke *Carex*-soorten, enz. In Juni
bereikt de flora der weiden haar toppunt: het gras heeft nu
bijna zijn volle hoogte bereikt maar is nog frisch groen; de
bloemen die wij reeds in Mei zagen ontluiken bloeien bijna
alle voort, en een aantal nieuwe soorten komen voor den dag,
nl. *Centaura nigra*, *Oenanthe peucedanifolia* en *fistulosa*, *Spi-
raea Ulmaria*, *Vicia Cracca*, *Lathyrus pratensis*, enz., alsook
Rhinantus cristatus die in sommige weiden aan de Gramineeën

(1) Wij hebben in de maand April, in een weide die niet buitengewoon
rijk was aan *Bellis perennis*, het getal bloemhoofdjes dier plant trachten
te schatten. Te dien einde hebben wij geteld hoeveel bloemhoofdjes op tien
vierkante meters grond *gelijktijdig* ontloken waren: het gemiddeld getal
was 70 per vierkante meter, dus 700,000 per hectare!
veel schade berokkent. In de slooten bloeien reeds talrijke *Potamogeton’s, Utricularia vulgaris, Hydrocharis Morsus-Ranee*, en de eerste schermen van *Oenanthe Phellandrium*.

In 't begin van de maand Juli vertoont het gras de eerste teekens van verdroging; nu wordt de weide gemaaaid, en hierdoor wordt de rustige ontwikkeling der flora plotseling onderbroken. Van plantengroei blijft na het maaien niets anders over dan de onderste stengeldeelen en de onderaardsche organen. De planten, die in den maaitijd nog geen rijp zaad hebben voortgebracht, gaan door het maaïen verloren of worden althans zeer sterk benadeeld: de monocarpische (1) soorten waarvan de bloeitijd in Juli en Augustus valt, worden bijna alle uit de weiden gebannen, — de overblijvende soorten, waarvan de zaden in Juli nog niet rijp zijn, en die *niet* met buitengewoon sterke vegetatieve vermeerderingsmiddelen uitgerust zijn, worden op den duur in hooge mate benadeeld in haren strijd tegen andere soorten, die vóór of tijdens den maaitijd rijpe zaden kunnen uitstrooien.

Hier pleegt de mensch aldus, evenals in zoo veel andere gevallen, een *onbewuste teeltkeus*, die sedert jaren wordt voortgezet, en die de flora onzer weiden ongetwijfeld diep gewijzigd heeft. — In sommige weiden (b. v. te Melle, 1894) grijpt het maaïen reeds op ’t einde van Juni plaats, in andere (b. v. tus- schen Gent en Zwijnaerde, 1894) ruim veertien dagen later; de gepleegde teeltkeus is dus niet overal dezelfde, en dit is een van de oorzaken die verschillen in de flora der weiden doen ontstaan. Het ligt voor de hand, dat de *waarde* eener weide gedeeltelijk zal afhangen van den tijd waarop zij gemaaïd wordt, zooals de heer De Caluwe, de geleerde staatsland-

(1) Eenjarige en tweejarige planten, die na het voortbrengen van zaad afsterven, en waarvan de instandhouding dus slechts door zaad mogelijk is.
bouwkundige der provincie Oost-Vlaanderen, ons heeft doen opmerken. Te Melle hebben wij in 1894 geconstateerd, dat b. v. *Oenanthe fistulosa* nog geen enkel rijp vruchtje had voortgebracht toen de weide gemaaaid werd, terwijl de zaden van *Rhinanthus cristatus* reeds grootendeels uitgestrooid waren, tot groot nadeel van het gras, dat van deze woekerplant veel te lijden heeft.

Planten die, in de weiden, in de onmiddellijke nabijheid van slooten en rivieren groeien, ontsnappen gewoonlijk aan de zeis: aldus kunnen enkele exemplaren van soorten, die elders ten onder gebracht worden, behouden blijven. Dit is echter niet altijd evenzeer het geval, want somwijlen worden niet alleen de planten aan de oevers der slooten, maar zelfs de Gramineën die in de slooten groeien (b. v. *Alopecurus geniculatus*) afgemaaaid. — Sommige weiden worden langzaam overrompeld door *Urtica dioica* (brandnetel): als deze plant in een weide eenmaal post gevat heeft, rukt zij in dichte gelederen voort. Hare forshe stengels worden *door de maaiers* en later door het vee *vermeden* en blijven staan, en worden aldus in hun strijd tegen de andere weideplanten bevoordeeld. Dit hebben wij o. a. tusschen Heusden en Melle op verschillende plaatsen waargenomen.

Als de weide gemaaaid en het hooi weggehaald is schieten de planten wederom uit, maar nu staan zij tegenover een nieuwven vijand, n. l. het rundvee, dat schier iederen dag in de weide losgelaten wordt. Door het vee wordt een nieuwe teeltkeus gepleegd: de soorten die door de taaiheid en de draderigheid van hare stengels (b. v. *Centaurea nigra*), of door scherpe stekels (*Ononis spinosa*, distels), of door onaan- genaam smakende stoffen (*Ranunculus acris*), of door brandharen (*Urtica*) of op een andere wijze van de aanvallen van het vee gevrijwaard worden, blijven behouden; zij kunnen, vooral indien het weder gedurende de laatste zomermaanden
gunstig is, rijpe zaden dragen, en aldus de schade die het maaien veroorzaakt heeft, herstellen. Dit is ook het geval met de planten die op de slibbige oevers van sloot en rivieren groeien (b.v. Mentha aquatica, Achillaea Ptarmica, Spiraea Ulmaria, Lathyrus pratensis en vele andere) en die door hare groeiplaats gedeeltelijk beschut worden tegen het vee. Maar de overige planten — en onder anderen de Gramineën — trachten te vergeefs hare nieuwe stengels tot ontwikkeling te brengen: zij worden door het vee telkens opnieuw afgevreten. In Augustus en September doen onze weiden zich voor als groote, kortgeschoren graspleinen, waar de giftige en stekelige planten zich afzonderlijk of bij kleine groepen boven het gras verheffen, terwijl de lange rechte slooten uit de verte aangewezen worden door de opgeschoten stengels der planten, die in de slib of in het water een schuilplaats hebben gevonden.

Proletariërs worden in onze weiden schier nooit aangetroffen. Soms worden de slooten schoongemaakt, en als dan kunnen eenjarige planten (b.v. Myosurus minimus) op húnne afgespitte oevers opslaan; op de losgewroete aarde der molshoopen treft men soms akkeronkruid aan (b.v. Senecio vulgaris); dit is ook het geval in de nabijheid der steenbakkerijen, waar de grond, ten gevolge van het uitgraven van klei tijdelijk van zijn plantengroei beroofd is, maar in dergelijke gevallen worden de aankomelingen door de veel taaiere wei-deplanten in korten tijd versmacht en uitgerooid.

Aan de oevers der rivieren komen verschillende Salix-soorten veelvuldig voor.

Tot de flora der weiden behooren een aantal honigrijke bloemen, die veel insecten aanlokken.

Poelen en Moerassen. De flora van ons gebied heeft slechts op enkele plaatsen haar oorspronkelijke samenstelling zuiver behouden. Twee poelen, nl. de Sasput bij Thou-
rout en de Kraanpoel of Krompoel (1) te Bellem zijn de eenige ons bekende plaatsen van dien aard. Het zijn ondiepe poelen met zandachtigen bodem en helder stilstaande water, die gedeeltelijk door bosschen met heideachtige wegen omringd worden. Door hun physionomie en door hun flora gelijken deze poelen volkomen op de poelen of vennen, die in de provinciën Antwerpen en Limburg bij honderden aangetroffen worden.

Vroeger hebben wij over de flora van den Sasput een klein opstel (2) uitgegeven. Over den Krompoel zijn reeds meerdere mededeelingen verschenen (3). Wij kunnen ons derhalve beperken bij de volgende lijst van kenschetsende planten die in de beide poelen of in hunne onmiddellijke nabijheid groeien:

Alisma natans en ranunculoides, Potamogeton oblongum, Scirpus lacustris, Eriophorum angustifolium, Juncus squarrosus, Veronica scutellata, Pedicularis sylvatica, Lilorella lacustris, Lobelia Dortmannna (4), Pyrola minor, Utricularia vulgaris, Nymphaea alba, Drosera rotundifolia, Elodes palustris, Myriophyllum alterniflorum, Myrica Gale.

Vroeger waren dergelijke poelen in ons gebied ongetwijf

(1) De meeste schrijvers die over de flora van den Krompoel gehandeld hebben, schrijven «Kraanpoel», «Kraenpoel» of «Kraenepeol». Wij kennen den oorsprong van die schrijfwijze niet. De inwoners der streek zeggen «Krompoel», en nooit «Kraanpoel».
(2) De flora van den Sasput, bij Thourout; — Bot. Jaarb., IV, 1892, blz. 52-53.
(3) Zie vooral E. VANDER MEERSCH, Notice sur la florule du Kraene-poel; — Bull. soc. bot. de Belgique, 1874.
(4) Zie over Lobelia Dortmannna, behalve het hooger geciteerde opstel van VANDER MEERSCH, de volgende verhandelingen:
FRANZ BUCHENAU: Morphologische Bemerkungen über Lobelia Dortmannna L., met figuren. — Flora, 1866.
GEVAERT et ERRERA, Sur la structure et les modes de fécondation des fleurs; — Bull. soc. bot. Belgique, 1878.
feld veel talrijker dan thans. Men mag aannemen dat, in 't algemeen, op de lage, vochtige zandgronden, die men tusschen de heuvels van ons gebied veelvuldig aantreft, vroeger poelen of althans moerassen hebben bestaan. Die gronden werden schier alle, door het plaatsen van draineer- buizen, door het graven van slooten enz. drooger gemaakt, en in bosschen, akkerland of mager weiland herschappen, maar hun oorspronkelijke toestand wordt verraden door sommige planten, die thans nog in de poelen en in de moerassige deelen der Kempen overvloedig voorkomen. Enkele voorbeelden mogen hier aangehaald worden: tusschen Bloemendaal en Aalter liggen uitgestrekte moerassige sparrenbosschen, waar Myrica Gale en Drosera rotundifolia bij duizende exemplaren langs de wegen groeien; — te Meirelbeke (bij Gent) bestond in 1893 nog een klein perceel weiland, waarvan de grond als een hellend vlak regelmatig afliep: aan het hoogst gelegen uiteinde groeide schier uitsluitend Calluna vulgaris, aan het ander uiteinde, dat ongeveer 2 meters lager gelegen was, waren nog eenige moerasplanten behouden gebleven, o. a. Sparganium simplex. In 1894 werd die weide gedeeltelijk omgespit. — Te Melle kennen wij een klein moeras, dat midden in de sparrenbosschen ligt, en dat door het graven van slooten zijn oorspronkelijke physionomie eenigszins verloren heeft: maar in die slooten zijn Eriophorum angustifolium, Rhynchospora alba, Drosera rotundifolia, Sphagnum, enz. behouden gebleven, en op den drogeren grond tusschen de slooten groeien o. a. Erica tetralix en de fraaie Gentiana Pneumonanthe.

De vochtige zandgronden en de hooger beschreven poelen zijn de onvruchtbareste gedeelten van ons gebied; zij zijn over 't algemeen arm aan bloemenbezoekende insecten.
Betrekkingen tusschen bloemen en insecten in het Kempisch gedeelte van Vlaanderen.

De flora van ons gebied bestaat uit ongeveer 675 soorten (1). De bestuivingswijze van 6 soorten (5 Lemna-soorten en 1 Callitriche) is twijfelachtig; 3 soorten zijn waterbloemig (2 Ceratopyllum, 1 Myriophyllum), 215 soorten zijn windbloemig (met inbegrip van de Chenopodiaceeën) en ongeveer 451 soorten zijn insectenbloemig.

Het getal der windbloemige soorten bedraagt dus 31,8% van de gansche flora. Die verhouding is voor andere landen als volgt:

- Duitschland: 21,5% der gansche flora. (2)
- Sleeswijk-Holstein: 27,0% » » » (2)
- Noord-Friescher Eilanden: 36,25% » » » (2)
- Halligen (eilanden): 47,3% » » » (2)
- Omstreken van Stuttgart: 21,7% » » » (3)

Vergeleken met andere continentale gedeelten van Midden-Europa is ons gebied dus rijk aan windbloemige planten. Het is vooral de klasse der Eenzaadlobbigen (Monocotylen) die in ons gebied door talrijke windbloemige soorten (173):

(1) De hooger gegeven lijst eindigt met Nr 667; er dient echter opgemerkt te worden dat verscheidene nummers tweemaal voorkomen (zie b. v. 111a, 191a, 233a, 436a, 436b); daarenboven hebben wij de negen inheemsche Salix-soorten (zie Crépin, Flore de Belgique) onder één nummer (Nr 403) en drie Mentha-soorten eveneens onder één nummer (Nr 258) vereenigd. Van een anderen kant hebben wij in onze lijst verscheidene soorten (Nrs 128, 147, 149, 208, 275, 419, enz.) opgenomen, die waarschijnlijk niet inheems zijn. In ieder geval kan het getal 675 van de werkelijkheid niet veel verschillen. De naaktdadigen worden hier niet medegerekend.

(2) P. Knuth, Bloemen en insecten op de Halligen; Bot. Jaarb. VI, blz. 50.
(3) Kirchner, Flora von Stuttgart, blz. XIV.
200 = 86,5 %; — te Stuttgart slechts 72 %) vertegenwoordigd wordt; onder de Tweezaadlobbigen zijn de windbloemige soorten betrekkelijk veel minder talrijk (42 : 475 = 8,8 %; te Stuttgart slechts 6,86 %).

De aanzienlijke rijkdom aan windbloemige planten, waardoor onze flora gekenschietst wordt, moet grootendeels toegeschreven worden aan de relatieve getalsterkte van een zeker aantal windbloemige familiën, nl. de Potamogetonaceëen, Cyperaceëen, Gramineëen en Juncaceëen, zooals blijkt uit onderstaande tabel:

<table>
<thead>
<tr>
<th>Kempisch gedeelte van Vlaanderen:</th>
<th>Omstreken van Stuttgart:</th>
</tr>
</thead>
<tbody>
<tr>
<td>De gansche flora: 675 soorten</td>
<td>De gansche flora: 983 soorten</td>
</tr>
<tr>
<td>Potamogetonaceëen: 18 "</td>
<td>Potamogetonaceëen: 9 "</td>
</tr>
<tr>
<td>Cyperaceëen: 50 "</td>
<td>Cyperaceëen: 51 "</td>
</tr>
<tr>
<td>Gramineëen: 83 "</td>
<td>Gramineëen: 83 "</td>
</tr>
<tr>
<td>Juncaceëen: 16 "</td>
<td>Juncaceëen: 13 "</td>
</tr>
</tbody>
</table>

De genoemde familiën (alsook de Juncaginaceëen, Typhaceëen en Sparganiaceëen, die eveneens windbloemig zijn) bestaan uitsluitend of grootendeels uit soorten die in of aan het water of op vochtige gronden groeien, en wij weten dat de levensvoorwaarden in ons gebied voor dergelijke planten zeer gunstig zijn: men heeft er immers talloze beken, slooten en moerassige gronden, en het regent er in alle seizoenen.

Daar ons gebied betrekkelijk arm is aan bloemenbezoe-kende insecten, zou men kunnen tot de meening gebracht worden dat de rijkdom aan windbloemigen een gevolg is van de relatieve schaarsheid der insecten, — met andere woorden, dat de flora zich tot de insectenarmoede der fauna aangepast heeft. Wij meenen nochtans dat het eene verschijnsel niet een gevolg is van het ander, maar dat zij beide aan een en dezelfde oorzaak moeten toegeschreven worden. Ons gebied heeft immers koele, regenachtige zomers; het is
een laag land, waarvan een groot gedeelte door stilstaande of vloeiende wateren of door vochtige gronden ingenomen wordt; de levensvoorwaarden die aldus ontstaan zijn voor de meeste insecten weinig gunstig, maar voor de hoogerge- noemde windbloemige plantenfamiliën daarentegen zeer gunstig. Het klimaat en de gesteldheid van den grond hebben aldus de fauna en de flora met elkander in harmonie gebracht. Misschien hebben bloemen en insecten op elkander een zekeren invloed uitgeoefend en zich tot elkander eenigszins geadapteerd; aldus is de harmonie wellicht nog volkomener geworden, maar een dergelijke wederkeerige adaptatie heeft hier slechts een zeer geringe rol gespeeld; de fauna en de flora hebben zich veeleer tot dezelfde, algemeene levensvoorwaarden geadapteerd. Ons gebied bevindt zich in een toestand die aan vroegere geologische tijdvakken doet denken: veel water, veel windbloemige planten, weinig insecten.

Van de 451 insectenbloemige planten zijn er enkele, die wij nooit zelf hebben aangetroffen; andere hebben wij nooit bij gunstig weder kunnen gadeslaan; zeer vele soorten worden nooit of schier nooit door insecten bezocht. Ofschoon onze waarnemingen gedurende tien achtereenvolgende jaren (1885-1894) werden voortgezet hebben wij slechts aan 214 soorten (1) insectenbezoek kunnen waarnemen.

Wij meenen niet te overdrijven als wij het getal der soorten, die van insectenbezoek volkomen of bijna volkomen verstoken blijven, op 200 schatten. Verder zullen wij trachten te verklaren waarom zeer veel planten, die nochtans de kenmerken der insectenbloemigen (houtg, enz.) vertoonen, geen insectenbezoek ontvangen. Thans willen wij de betrekkingen tusschen de insecten en de bezochte bloemen onderzoeken.

(1) Daarenboven aan 5 windbloemige soorten.
Het getal der waargenomen bezoeken bedraagt 2308, behalve 112 bezoeken der honigbij (*Apis*); deze 112 bezoeken worden niet medegerekend daar de honigbij *niet inheemsch* is. Een overzicht der waargenomen insectenbezoeken vindt men in de onderstaande tabellen (I en II).

Wij hebben de insectenbloemen verdeeld in zeven klassen, te weten:

1° de pollenbloemen (met inbegrip der bezochte windbloemen): Po.

2° de bloemen met blootliggende honig: A.

3° de bloemen met halfverborgen honig: AB.

4° de bloemen met volkomen verborgen honig: B.

5° de bloemengezelschappen: B'. — Deze klasse hebben wij in drieën verdeeld, nl.: a) de Corymbeferen, Ligulifloren, Valerianaceeën en *Jasione montana*; — b) de Tubulifloren met *diep* verborgen honig en de Dipsaceeën; — c) *Cirsium arvense*: bij deze soort is de honig niet *zoo* diep verborgen als bij de overige *inheemsche* Tubulifloren.

6° de bijenbloemen: Bb.

7° de vlinderbloemen: Vb.

De insecten hebben wij op de volgende wijze in groepen verdeeld:

1° de Coleopteren of kevers.

2° de allotrope Dipteren (de Dipteren met uitzondering van de Syrphiden, Conopiden en Bombyliden).

3° de hemitrope Dipteren (Syrphiden, Conopiden en Bombyliden).

4° de langtongige bijen.

5° de korttongige bijen.

6° de allotrope Hymenopteren.

7° de Lepidopteren.

8° andere insecten (Neuropteren; — ook Acariden). (1).

Daar wij de insectenbezoeken van iedere maand afzonderlijk beschouwen, zijn in vele gevallen twee of meerdere *gelijke* bezoeken (van hetzelfde insect aan dezelfde bloem), die in verschillende maanden vielen, ook voor iedere maand geteld.

TABEL I.

Aantal bezoeken van de verschillende insectengroepen aan de verschillende bloemenklassen.

<table>
<thead>
<tr>
<th>Bloemenklassen</th>
<th>Coleopteren</th>
<th>Allatropen</th>
<th>Hymenopteren</th>
<th>Apis</th>
<th>Korttongige bijen</th>
<th>Allopteren</th>
<th>Lepidopteren</th>
<th>Andere insecten</th>
<th>Totaal voor iedere bloemenklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po.</td>
<td>2</td>
<td>4</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>A.</td>
<td>4</td>
<td>13</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>10</td>
<td>1</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>AB</td>
<td>5</td>
<td>21</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>B.</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>B'...a</td>
<td>3</td>
<td>12</td>
<td></td>
<td>3</td>
<td>23</td>
<td>-</td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Bb</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Vb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Totaal voor iedere insectengroep.</td>
<td>14</td>
<td>51</td>
<td>7</td>
<td>24</td>
<td>17</td>
<td>56</td>
<td>14</td>
<td>13</td>
<td>179</td>
</tr>
<tr>
<td>Mei.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po.</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>A.</td>
<td>14</td>
<td>25</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>AB</td>
<td>13</td>
<td>47</td>
<td>48</td>
<td>11</td>
<td>6</td>
<td>36</td>
<td>10</td>
<td>14</td>
<td>180</td>
</tr>
<tr>
<td>B.</td>
<td>3</td>
<td>22</td>
<td>15</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>70</td>
</tr>
<tr>
<td>B'...a</td>
<td>4</td>
<td>25</td>
<td>13</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>6</td>
<td>12</td>
<td>88</td>
</tr>
<tr>
<td>Bb</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>50</td>
<td>10</td>
<td>13</td>
<td>5</td>
<td>10</td>
<td>107</td>
</tr>
<tr>
<td>Vb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Totaal voor iedere insectengroep.</td>
<td>42</td>
<td>131</td>
<td>100</td>
<td>69</td>
<td>23</td>
<td>101</td>
<td>28</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>Juni.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po.</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>A.</td>
<td>21</td>
<td>19</td>
<td>19</td>
<td>-</td>
<td>5</td>
<td>32</td>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>AB</td>
<td>3</td>
<td>17</td>
<td>22</td>
<td>1</td>
<td>6</td>
<td>26</td>
<td>10</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>B.</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>B'...a</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>61</td>
</tr>
<tr>
<td>Bb</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>Vb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Totaal voor iedere insectengroep.</td>
<td>45</td>
<td>67</td>
<td>60</td>
<td>27</td>
<td>16</td>
<td>49</td>
<td>50</td>
<td>28</td>
<td>-</td>
</tr>
</tbody>
</table>
TABEL I (Vervolg).

Aantal bezoeken van de verschillende insectengroepen aan de verschillende bloemenklassen.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli.</td>
<td></td>
</tr>
<tr>
<td>Po.</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>A.</td>
<td>10</td>
<td>20</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>AB.</td>
<td>1</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>B.</td>
<td>--</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>B' b</td>
<td>6</td>
<td>21</td>
<td>27</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Bb.</td>
<td>--</td>
<td></td>
<td>4</td>
<td>48</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>VB.</td>
<td>--</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Totaal voor iedere insectengroep.</td>
<td>27</td>
<td>65</td>
<td>90</td>
<td>81</td>
<td>15</td>
<td>37</td>
<td>33</td>
<td>92</td>
<td>2</td>
<td>427</td>
</tr>
</tbody>
</table>

Augustus.

Po.	--	1	8	1		2	6	27	4	12
A.	3	40	45	1	2	6	27	4	1	127
AB.	--	6	23			3	2	--	8	30
B.	--	8	19	2	7	6	--	13	1	50
B' b	2	25	35	4	2	12	--	13	1	92
c	--	14	17	4	7	--		--	3	26
Bb.	1	2	13	31	9	1	3	22	7	73
VB.	--		1	--	--	--		--	1	3
Totaal voor iedere insectengroep.	8	89	165	57	27	40	36	83	2	480

September (--October).

Po.	--	11	11	1	--	--		--	12	
A.	--	11	20	2	--	--		15	3	49
AB.	--	9	24			2	4	3	36	
B.	--	6	26	2	4	18	5	20	8	47
B' b	32	59	8	2	15	4	7	1	10	142
c	1	20	15	4	7	1	1	--	7	30
Bb.	--	6	17	3	--	--		--	7	9
VB.	--	2	1	--	--	--		--	--	3
Totaal voor iedere insectengroep.	--	61	169	47	44	29	24	49	3	382
TABEL II.

Aantal bezoeken van de verschillende insectengroepen aan de verschillende bloemenklassen, tot procenten herleid.

<table>
<thead>
<tr>
<th>Bloemenklassen</th>
<th>Coleopteren</th>
<th>Allotrope Dip teren</th>
<th>Hemitrope Dip teren</th>
<th>Langtongige bijen</th>
<th>Korttongige bijen</th>
<th>Allotrope Hymenopteren</th>
<th>Andere insecten</th>
<th>Alle insecten te zamen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po.</td>
<td>14,3</td>
<td>7,8</td>
<td>1,8</td>
<td>7,7</td>
<td>4,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>28,5</td>
<td>25,5</td>
<td>12,5</td>
<td>25,0</td>
<td>71,4</td>
<td>7,7</td>
<td>26,8</td>
<td></td>
</tr>
<tr>
<td>AB.</td>
<td>35,7</td>
<td>41,2</td>
<td>4,1</td>
<td>21,4</td>
<td>28,6</td>
<td></td>
<td>24,5</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>-</td>
<td>2,0</td>
<td>4,1</td>
<td>3,6</td>
<td>15,4</td>
<td></td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>B'.....a</td>
<td>21,4</td>
<td>23,5</td>
<td>12,5</td>
<td>41,0</td>
<td>38,4</td>
<td></td>
<td>25,7</td>
<td></td>
</tr>
<tr>
<td>Bb.</td>
<td>-</td>
<td>-</td>
<td>66,6</td>
<td>7,1</td>
<td>30,8</td>
<td></td>
<td>13,4</td>
<td></td>
</tr>
<tr>
<td>Vb.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,8</td>
<td>28,4</td>
<td>3,9</td>
<td>13,4</td>
<td>31,2</td>
<td>7,8</td>
<td>7,2</td>
<td></td>
</tr>
</tbody>
</table>

(Maart-) April.

Po.	-	2,3	2	1,4	1	-	-	1,3
A.	33,3	19,1	10	8	17,8	-	-	12,0
AB.	30,9	35,9	48	15,9	35,6	35,7	33,3	100
B.	7,1	16,8	15	5,8	17,8	7,0	14,3	13,6
B'.....a	9,5	19,1	13	4,3	24,7	21,4	28,5	17,1
Bb.	10,0	6,8	12	72,4	12,9	17,8	23,8	20,8
Vb.	-	-	-	-	-	-		
	8,1	25,5	19,4	13,4	19,6	5,5	8,1	»

Mei.

Po.	6,6	3,0	3,3	11,1	2,0	-	-	3,3
A.	46,6	28,3	31,6	10,2	64,0	7,1	-	30,0
Ab.	6,6	25,3	36,6	3,7	53,0	20,0	10,7	25,1
B.	8,8	13,4	1,6	7,4	10,2	1,0	-	6,7
B'.....{a	31,1	23,9	16,6	3,7	14,3	6,0	25,0	18,7
B'.....{b	-	5,9	8,3	11,1	4,1	-	14,3	5,5
Bb.	-	1,6	55,5	6,1	1,0	40,7	9,5	
Vb.	-	-	7,4	-	-	3,7	0,9	
	13,8	20,5	18,4	8,3	15,0	15,3	8,6	
TABEL II (Vervolg).

Aantal bezochten van de verschillende insectengroepen aan de verschillende bloemenklassen tot procenten herleid.

<table>
<thead>
<tr>
<th>Bloemenklassen</th>
<th>Coleopteren</th>
<th>Allotrope Dipteren</th>
<th>Hymenopteren</th>
<th>Lang tongige bijen</th>
<th>Kort tongige bijen</th>
<th>Allotrope Hymenopteren</th>
<th>Lepidopteren</th>
<th>Andere Insecten</th>
<th>Alle insecten te zamen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po.</td>
<td>11,1</td>
<td>1,5</td>
<td>12,2</td>
<td>2,4</td>
<td>2,7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4,2</td>
</tr>
<tr>
<td>A.</td>
<td>37,0</td>
<td>30,7</td>
<td>20,0</td>
<td>—</td>
<td>2,7</td>
<td>63,6</td>
<td>3,2</td>
<td>100</td>
<td>17,5</td>
</tr>
<tr>
<td>AB.</td>
<td>3,7</td>
<td>12,3</td>
<td>12,2</td>
<td>1,2</td>
<td>13,5</td>
<td>3,0</td>
<td>22,2</td>
<td>—</td>
<td>6,7</td>
</tr>
<tr>
<td>B.</td>
<td>18,5</td>
<td>12,3</td>
<td>7,7</td>
<td>11,1</td>
<td>8,1</td>
<td>—</td>
<td>21,7</td>
<td>12,1</td>
<td>—</td>
</tr>
<tr>
<td>B' ... b/a</td>
<td>22,2</td>
<td>32,3</td>
<td>30,0</td>
<td>3,7</td>
<td>51,3</td>
<td>9,0</td>
<td>2,8</td>
<td>23,4</td>
<td>—</td>
</tr>
<tr>
<td>Bb.</td>
<td>—</td>
<td>7,4</td>
<td>6,1</td>
<td>6,6</td>
<td>16,0</td>
<td>5,4</td>
<td>11,9</td>
<td>7,9</td>
<td>—</td>
</tr>
<tr>
<td>Vb.</td>
<td>—</td>
<td>1,5</td>
<td>—</td>
<td>4,4</td>
<td>50,2</td>
<td>8,1</td>
<td>3,0</td>
<td>32,6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6,1</td>
<td>15,2</td>
<td>21,1</td>
<td>18,9</td>
<td>8,6</td>
<td>7,7</td>
<td>21,5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Augustus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po.</td>
<td>—</td>
<td>1,1</td>
<td>4,8</td>
<td>1,7</td>
<td>—</td>
<td>2,7</td>
<td>1,2</td>
<td>2,5</td>
<td>—</td>
</tr>
<tr>
<td>A.</td>
<td>—</td>
<td>44,9</td>
<td>27,2</td>
<td>1,7</td>
<td>15,0</td>
<td>75,0</td>
<td>4,8</td>
<td>50</td>
<td>26,5</td>
</tr>
<tr>
<td>AB.</td>
<td>—</td>
<td>6,7</td>
<td>13,9</td>
<td>—</td>
<td>5,0</td>
<td>—</td>
<td>9,6</td>
<td>8,1</td>
<td>—</td>
</tr>
<tr>
<td>B.</td>
<td>—</td>
<td>9,0</td>
<td>11,5</td>
<td>3,5</td>
<td>15,0</td>
<td>—</td>
<td>15,6</td>
<td>10,4</td>
<td>—</td>
</tr>
<tr>
<td>B' ... b/a</td>
<td>—</td>
<td>28,0</td>
<td>21,2</td>
<td>7,0</td>
<td>30,0</td>
<td>8,3</td>
<td>21,6</td>
<td>20,6</td>
<td>—</td>
</tr>
<tr>
<td>Bb.</td>
<td>—</td>
<td>7,8</td>
<td>4,2</td>
<td>1,7</td>
<td>12,5</td>
<td>—</td>
<td>5,5</td>
<td>3,6</td>
<td>5,4</td>
</tr>
<tr>
<td>Vb.</td>
<td>—</td>
<td>2,2</td>
<td>7,8</td>
<td>54,3</td>
<td>2,5</td>
<td>8,3</td>
<td>26,5</td>
<td>15,2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1,7</td>
<td>18,7</td>
<td>34,3</td>
<td>11,8</td>
<td>8,3</td>
<td>7,5</td>
<td>17,3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>September (-October)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po.</td>
<td>—</td>
<td>1,6</td>
<td>6,5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3,1</td>
</tr>
<tr>
<td>A.</td>
<td>—</td>
<td>18,0</td>
<td>11,8</td>
<td>—</td>
<td>—</td>
<td>62,5</td>
<td>6,1</td>
<td>100</td>
<td>12,8</td>
</tr>
<tr>
<td>AB.</td>
<td>—</td>
<td>14,7</td>
<td>14,2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>12,5</td>
<td>16,3</td>
<td>9,4</td>
</tr>
<tr>
<td>B.</td>
<td>—</td>
<td>9,8</td>
<td>11,8</td>
<td>12,7</td>
<td>13,8</td>
<td>12,5</td>
<td>6,1</td>
<td>37,1</td>
<td>—</td>
</tr>
<tr>
<td>B' ... b/a</td>
<td>—</td>
<td>52,4</td>
<td>34,9</td>
<td>17,3</td>
<td>62,0</td>
<td>20,8</td>
<td>40,8</td>
<td>14,1</td>
<td>—</td>
</tr>
<tr>
<td>Bb.</td>
<td>—</td>
<td>1,6</td>
<td>4,1</td>
<td>—</td>
<td>—</td>
<td>4,1</td>
<td>2,0</td>
<td>7,8</td>
<td>—</td>
</tr>
<tr>
<td>Vb.</td>
<td>—</td>
<td>3,5</td>
<td>36,1</td>
<td>—</td>
<td>—</td>
<td>14,3</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>15,9</td>
<td>44,2</td>
<td>12,3</td>
<td>7,5</td>
<td>6,2</td>
<td>12,8</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
In een vroeger verschenen opstel (1) hebben wij reeds doen opmerken dat, in één gebied, de samenstelling der bloemenflora en der insecten-fauna naar gelang van het jaargetijde zeer aanzienlijke verschillen vertoont. Uit onze tabellen blijkt dat b. v. in ons gebied, in de maand Mei, de bloemenklasse AB een zeer aanzienlijk gedeelte der bloeiende flora uitmaakt, en \(\frac{180}{514} = 35 \frac{0}{0} \) van de gezamenlijke insectenbezoeken ontvangt, terwijl diezelfde klasse AB in de maand Juli door een veel geringer aantal soorten en individuen vertegenwoordigd wordt, zoodat blijkt uit het insectenbezoek dat zij in de genoemde maand ontvangt, n.l. \(\frac{20}{42/7} = 6,7 \frac{0}{0} \) van het totaal. Op een gelijke wijze zien wij dat b. v. de Lepidopteren in Mei weinig talrijk zijn en aan de bestuiving der bloemen slechts een gering aandeel hebben, vermits zij slechts \(\frac{42}{514} = 8,1 \frac{0}{0} \) van het totaal der insectenbezoeken volbrengen, terwijl zij in Juli veel talrijker geworden zijn \(\left(\frac{92}{42/7} = 21,5 \frac{0}{0} \right) \) van het totaal). — Als men de bovenstaande tabellen, alsook die welke wij vroeger voor de Alpen (2), voor den plantentuin te Berlijn (3) en voor de Pyreneëen (4) uitgegeven hebben, aandachtig wil onderzoeken, zal men talrijke gevallen van gelijken aard vinden. Hieruit mag reeds a priori besloten worden dat de betrekkingen tusschen bloemen en insecten verschillend zijn van het eene jaargetijde tot het ander (4). Als men nu deze betrekkingen wil leeren kennen is het wenselijk het jaar te verdeelen in een zeker aantal tijdperken, gedurende dewelke de flora en de fauna nagenoeg dezelfde samenstelling behouden. Dit hebben wij zooveel

(2) Waarnemingen gedaan door Müller.
(3) " " " Loew.
mogelijk verwezenlijkt door de waarnemingen van iedere maand afzonderlijk te beschouwen. (1)

In de eerste plaats moeten wij trachten te ontdekken volgens welke wetten de verschillende bloemenklassen en insectengroepen gedurende de successieve maanden aangroeien of verminderen, m. a. w. wij moeten de jaarlijksche evolutie van iedere groep (of klasse) leeren kennen.

Laten wij eerst de bloemen beschouwen. De zeven hooger- vermelde bloemenklassen zijn biologische groepen, d. w. z. dat zij bestaan uit elementen, die gemeenschappelijke biologische kenmerken hebben, maar die tot zeer verschillende systematische groepen behoren. B. v. de klasse der pollenbloemen bestaat uit Ranunculaceëen, Hypericaceëen, Papaveraceëen, Rosaceëen, enz.; en evenzoo voor de andere klassen.

Sommige familiën behooren in haar geheel tot één biologische klasse: b. v. de Compositen behooren alle tot de klasse B'; de Papilionaceëen tot de klasse Bb; de inheemsche Umbelliferen (uitgenomen Sanicula) tot de klasse A; enz.

De vraag is nu in welke mate de evolutie van iedere biologische klasse afhangt van de biologische kenmerken dier klasse en van hare systematische samenstelling.

Door deze beschouwingen wordt een nieuwe vraag opgeworpen: wij moeten trachten te onderven door welke wetten de jaarlijksche evolutie der systematische groepen beheerscht wordt. Om deze vraag op te lossen hebben wij, voor een zeker aantal familiën en voor enkele geslachten, die in ons gebied door een voldoende aantal soorten vertegenwoordigd worden, opgeteld hoeveel soorten in iedere maand bloeien; men vindt de uitkomsten in onderstaande tabel (tabel III).

Bij het samenstellen dezer tabel hebben wij gebruik gemaakt

van de opgaven uit Crépin's *Flore de Belgique*, met enkele, op eigen ervaring gesteunde wijzigingen.

TABEL III.

<table>
<thead>
<tr>
<th>Getal der bloeiende soorten in de maanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
</tr>
<tr>
<td>I. Potamogeton (17 soorten)</td>
</tr>
<tr>
<td>II. Carex (30 »)</td>
</tr>
<tr>
<td>III. Cyperaceen (Caryx niet medegerekend) (20 soorten)</td>
</tr>
<tr>
<td>IV. Gramineae (83 »)</td>
</tr>
<tr>
<td>V. Juncus (13 »)</td>
</tr>
<tr>
<td>VI. Liliaceae (11 »)</td>
</tr>
<tr>
<td>VII. Orchidaceae (11 »)</td>
</tr>
<tr>
<td>VIII. Boraginaceae (11 »)</td>
</tr>
<tr>
<td>IX. Scrophulariaceae (27 »)</td>
</tr>
<tr>
<td>X. Labiaten (28 »)</td>
</tr>
<tr>
<td>XI. Gentianaceae (6 »)</td>
</tr>
<tr>
<td>XII. Rubiaceae (8 »)</td>
</tr>
<tr>
<td>XIII. Compositae (10 »)</td>
</tr>
<tr>
<td>Tüululiflorae (11 »)</td>
</tr>
<tr>
<td>Corymbiferae (31 »)</td>
</tr>
<tr>
<td>Liguliflorae (23 »)</td>
</tr>
<tr>
<td>XIV. Primulaceae (8 »)</td>
</tr>
<tr>
<td>XV. Amentaceae (17 »)</td>
</tr>
<tr>
<td>XVI. Polygonaeeae (18 »)</td>
</tr>
<tr>
<td>Rumex (8 »)</td>
</tr>
<tr>
<td>Polygonum (10 »)</td>
</tr>
<tr>
<td>XVII. Chenopodiaceae (10 »)</td>
</tr>
<tr>
<td>XVIII. Alsineae (20 »)</td>
</tr>
<tr>
<td>XIX. Ranunculaceae (19 »)</td>
</tr>
<tr>
<td>XX. Cruciferae (31 »)</td>
</tr>
<tr>
<td>XXI. Geraniaceae (6 »)</td>
</tr>
<tr>
<td>XXII. Umbelliferae (26 »)</td>
</tr>
<tr>
<td>XXIII. Onagraceae (8 »)</td>
</tr>
<tr>
<td>XXIV. Rosaceae (24 »)</td>
</tr>
<tr>
<td>XXV. Papilionaceae (31 »)</td>
</tr>
</tbody>
</table>

Het spreekt van zelf dat het bovenstaande overzicht slechts een benaderende voorstelling der werkelijkheid kan geven, want soorten waarvan de bloei in de eerste dagen een maand begint, worden op denzelfden rang geplaatst als andere

(1) Niet 20, zooals op blz. 257 ten gevolge eener drukfout aangegeven wordt.
Fig. 124. — Bloeicurven. (De cijfers aan den voet der ordinaten duiden de maanden aan; de Romeinsche cijfers verwijzen naar tabel III.)
die een paar weken later, bij het einde derzelfde maand beginnen te bloeien; daarenboven werd de bloeitijd van sommige soorten tot nog toe niet met de noodige nauwkeurigheid bepaald (zie verder: Opmerking). Ondanks deze gebreken mogen wij uit tabel III den volgenden regel afleiden:

In de bloeiperiode van iedere systematische groep kunnen twee tijdperken onderscheiden worden: een eerste tijdperk, gedurende hetwelk het getal der bloeiende soorten voortdurend aangroeit, tot het toppunt van den bloei bereikt wordt; en een tweede tijdperk gedurende hetwelk het getal der bloeiende soorten voortdurend verminderd.

Op dezen regel komt in ons gebied geen enkele uitzondering voor.

Wij kunnen de uitkomsten, in tabel III in cijfers uitgedrukt, graphisch voorstellen en aldus veel aanschouwelijkker maken: zeven verticale ordinaten, op gelijke afstanden van elkander geplaatst, stellen de zeven maanden (Maart-September: 3, 4, 5, 6, 7, 8, 9) voor; op iedere ordinaat wordt een afstand genomen, evenredig aan het getal der bloeiende soorten voor de overeenkomstige maand. Op die wijze construeert men voor iedere systematische groep een curve (bloecurve).

Wij merken op: 1° dat het toppunt der verschillende families (of geslachten) in verschillende jaargetijden valt; — 2° dat, gedurende de twee laatste maanden, al de groepen haar toppunt voorbij zijn, en reeds uitgebloed of althans aan het dalen zijn. — Wij zien verder dat de bloeiperiode van sommige families met een klein aantal soorten begint, na eenigen tijd snel aangroeit tot aan het toppunt, en daarna langzaam verminderd; dit is o. a. met de Papilionaceëen, Compositen, Chenopodiaceëen, Labiaten en met het geslacht Carex het geval. De bloecurve van andere families heeft nagenoeg een symmetrischen vorm: dit is onder anderen het geval met de
Cyperaceeën (Carex niet medegerekend), Potamogetonaceeën, Gramineeën, Amentaceeën, enz. — Bij sommige groepen (Juncus) zijn er van het begin af talrijke soorten ontloken. Sommige familiën worden gedurende zes of zeven maanden door bloeiende soorten vertegenwoordigd (Gramineeën, Liliaceeën, enz.), terwijl de bloeiperiode van andere groepen (Carex, Amentaceeën, Orchideeën, Juncaceeën, enz.) veel korter is. De tabel III leert ons, dat deze verschillen niet uitsluitend afhangen van den soortenrijkdom der beschouwde groepen.

De bloeiperiode der Liliaceeën (11 soorten) duurt bijna even lang als die der Gramineeën (83 soorten); — de periode van het geslacht Juncus (13 soorten) duurt langer dan die van het geslacht Carex (30 soorten); enz.

Wij merken ook op dat de voornaamste familiën uit de klasse der Choripetalen (nl. de Rosaceeën, Papilionaceeën, Ranunculaceeën, Alsineeën, Cruciferen) vroeger haar top punt bereiken dan de meeste Sympetalen (Labiaten, Scrophularineeën, Compositen). De Umbelliferen onder de Choripetalen en de Boraginaceeën onder de Sympetalen maken hierop uitzondering.

Voor iedere systematische groep heeft de bloeicurve een bijzonderen vorm. Nochtans stemmen sommige familiën door den vorm van hare curve vrij goed met elkander overeen.

(b. v.: 1° Rosaceeën, Ranunculaceeën, Alsineeën; — 2° Potamogetonaceeën en Cyperaceeën; enz.).

De hier beschreven bloeicurven kunnen onder hetzelfde gezichtspunt gebracht worden als de variatie-curven (1), welke door Quetelet, Galton, Wallace, Hugo de Vries en anderen geconstrueerd werden.

"Uit de onderzoekingen van QUETELET over de lengte van den mensch is het bekend, dat het getal individu's, dat meer dan de gemiddelde lengte bezit, bij een gegeven aantal hetzelfde is als het getal van die, welke kleiner zijn dan de middelmaat van hetzelfde aantal, zoodat de menschen met betrekking tot hun lengte symmetrisch om de middelmaat kunnen worden gegroepeerd.... Eveneens is het gelegen met den omvang hunner borstkas,..." (1)

De groepeering der variaties om het centrum volgt de binomiale curve van Newton (fig. 125).

Talrijke waarnemingen hebben bewezen dat QUETELET's wet der variatie niet alleen voor den mensch, maar ook voor planten en dieren geldig is. Wij ontleenen het volgende voorbeeld aan HUGO DE VRIES: bij Oenothera Lamarckiana werd, in October 1893, de lengte gemeten van de onderste rijpe vrucht van den hoofdstengel, bij 568 planten die op dezelfde groeiplaats (bij Hilversum) stonden. De lengte der vrucht wisselde af tusschen 15-34 mill., en bedroeg gemiddeld ongeveer 24 millimeters. Onderstaande tabel geeft een overzicht van de verkregen uitkomsten (dezelfde uitkomsten zijn in fig. 125 graphisch voorgesteld):

Lengte der vrucht in millimeters: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
Getal der individuen: 1, 1, 5, 11, 17, 27, 37, 62, 74, 83, 79, 51,
Lengte der vrucht in millimeters: 27, 28, 29, 30, 31, 32, 33, 34.
Getal der individuen: 43, 32, 18, 13, 5, 5, 3, 1.

Er zijn ook gevallen bekend, waarin de curve eenzijdig ofwel asymmetrisch is (zie DE VRIES, loc. cit.)

Wij mogen het nu waarschijnlijkachten dat, bij een gegeven aantal soorten van één geslacht of van één familie de variaties van een enkel kenmerk eveneens symmetrisch om de middelmaat zullen kunnen worden gegroepeerd, m. a. w. dat de wet der variatie binnen de grenzen van één geslacht of van één familie hare toepassing zal vinden, evenals binnen de grenzen van één soort.

Wij weten immers dat ieder familie, ieder geslacht, enz. bestaat uit een zeker aantal individuen die uit een gemeenschappelijken voorouder zijn gesproten, evenals de individuen die te zamen een soort uitmaken. Evenals men individuen vereenigt tot rassen, rassen

tot variëteiten, en variëteiten op hare beurt tot soorten, zoo vereenigd men soorten tot geslachten, geslachten tot familïën, en zoo verder. Tusschen de begrippen familie, geslacht, soort, variëteit, ras, enz., bestaat geene principieel, maar slechts een quantitatief verschil.

Een bloeicurve nu is niets anders dan een graphische voorstelling van de veranderlijkheid van een gegeven kenmerk (nl. het jaargetijde waarin de bloemen bloeien) bij een zeker aantal vormen die tot dezelfde familie of tot hetzelfde geslacht behooren.

Sommige bloeicurven (b. v. Gramineën; IV) verschillen niet veel van de theoretische waarschijnlijkheids-curve; de meeste curven zijn echter in meerdere of mindere mate asymmetrisch (b. v. JUNCACEEÊN, COMPOSITEN, enz.)

Fig. 125. — Oenothera Lamarckiana.
Curve der vruchtlengte voor 568 planten. De stippe lijn is de curve der wet van QUETELET-GALTON. — (Naar HUGO DE VRIES.)

Hier dient echter opgemerkt te worden dat de methode die wij bij het construeren der bloeicurven gevolgd hebben eenigszins gebrekkig is, daar wij slechts rekenschap hebben gehouden met het getal der bloeiende soorten in iedere maand, en niet met het getal der bloeiende *individuen* van ieder soort. — Tot nog toe ontbreken de noodige bouwstoffen om beters te doen.

Wij zullen hier geen verdere beschouwingen omtrent de bloei-
curven maken; wij hopen daarover later uitvoeriger mededeelingen uit te geven.

Misschien ware het mogelijk op een gelijke wijze, voor de verschillende insectenfamiliën en -geslachten curven te construeren, maar de daartoe vereischte bouwstoffen ontbreken, want de entomologische fauna van ons gebied is tot nog toe slechts onvolkomen gekend, vooral wat de Dipteren en de Hymenopteren betreft. Omtrent het jaargetijde waarin ieder soort voor den dag komt werden daarenboven weinig nauwkeurige waarnemingen gedaan.

Laten wij thans de jaarlijksche evolutie der biologische bloemenklassen en insectengroepen in oogenschouw nemen, en onderzoeken welke betrekkingen tusschen die evolutie en de hooger beschreven bloecurven bestaan. — Bij het construeeren der bloecurven (zie hooger) hebben wij het getal der bloeiende soorten van ieder familie (of geslacht) voor iedere maand als maatstaf genomen. Bij de studie van de jaarlijksche evolutie der biologische groepen zullen wij een andere methode volgen: voor iedere bloemenklasse zullen wij niet het getal der bloeiende soorten, maar het totaal der bezoeken, die de beschouwde klasse in iedere maand van al de insecten ontvangt, tot maatstaf nemen. Het genoemde totaal hangt immers af van het getal der bloeiende soorten, van het getal der bloeiende individuen, van de intensiteit der geuren, van den honigrijkdom, enz.; dit totaal kan dus gelden als een maatstaf van de belangrijkheid der rol, welke de beschouwde bloemenklasse in de physionomie der bloemenwereld van iedere maand vervult (1). Het spreekt van zelf dat aldus slechts met de bloemen die insectenbezoek ontvangen rekenschap wordt gehouden: dit nadeel is echter gering, daar wij hier vooral de betrekkingen

(1) Zie daarover ons opstel in het Botan. Jaarb., 1, 1889, blz. 49 en volgende.
tusschen bloemen en insecten wenschen na te gaan, en dus de niet bezochte bloemen mogen verwaarlozen.

Voor de biologische insectengroepen gaan wij op dezelfde wijze te werk: wij nemen het totaal der bezoeken van iedere insectengroep aan al de bloemen tot maatstaf van de belangrijkheid der beschouwde groep in iedere maand, en door de totalen der successieve maanden te vergelijken leeren wij de evolutie der groep kennen. Hier kunnen wij niet anders te werk gaan: het is onmogelijk het getal der soorten die in iedere maand vliegen voor iedere groep op te tellen, wegens onze onvolkomen kennis der insectenfauna (zie hoöger).

Daar wij voor de biologische bloemenklassen dezelfde methode volgen als voor de insectengroepen zijn de resultaten volkomen vergelijkbaar.

Po: Pollenbloemen. — Het aantal bezoeken dat wij aan pollenbloemen hebben waargenomen is te gering om tot statistische beschouwingen te kunnen gebruikt worden.

Deze klasse wordt in ons gebied door 39 soorten vertegenwoordigd; op 14 soorten (1) hebben wij insecten aangetroffen.

De bloemen dezer klasse worden vooral door insecten met korte monddeelen, alsook door stuifmeelverzamelende bijen bezocht. Vlinders trachten soms met den top van hun zuiger in de weefsels der bloem te boren, zeer waarschijnlijk om er sap uit te zuigen. Sommige pollenbloemen lokken door haren aanzienlijken stuifmeelvoorraad (Anemone, Cheilidonium) of door haren reuk (Spiraea) tamelijk veel insecten aan; de meeste soorten dezer groep worden echter weinig of niet bezocht.

Verreweg de meeste inheemsche pollenbloemen behooren tot geslachten, waarvan al de inheemsche soorten pollenbloemig zijn; deze geslachten behooren tot zeer verschillende familiën, zooals blijkt uit onderstaande overzicht:

(1) Daarenboven op 5 windbloemige soorten.
Monocotylen: Majanthemum (1 soort), Paris (1), Narthecium (1); — Sympetalen: Solanum (2), Verbascum (2), Erythraea (2), Sambucus (1), Anagallis (1), Lysimachia (4), Samolus (1), Pirola (1); — Choripetalen: Polygonum (7), Thalictrum (1), Anemone (1), Papaver (3), Chelidonium (1), Hypericum (5), Rosa (2), Agrimonia (1), Spiraea (1) en misschien Drosera (2).

De meeste pollenbloemen schijnen van honigafsheidende voorouders af te stammen: dit is o.a. bijna ongetwijfeld met Samolus en met verscheidene Polygonum-soorten het geval. Sommige pollenbloemen (b.v. Majanthemum, Nr 189) kunnen, onder zeer gunstige voorwaarden, honig afscheiden.

De Papilionaceeën met eenbroederige meeldraden en Viola tricolor var. arvensis worden wegens haren bouw onder de bijenbloemen gerekend, ofschoon zij geen honig voortbrengen.

A : Bloemen met blootliggende honig. — In ons gebied bestaat deze klasse uit 68 soorten, nl.: 7 Monocotylen: Stratiotes (1), Sagittaria (1), Alisma (3), Butomus (1), Listera (1); — 8 Sympetalen: Adoxa (1), Galium (7); — 53 Choripetalen (met inbegrip van de Apetalen): Salix (9), Polygonum (1), Scleranthus (1), Myosurus (1), Senebiera (1), Euonymus (1), Ilex (1), Euphorbia (4), Hedera (1), Cornus (1), Saxifraga (1), Chrysosplenium (1), Umbelliferen (25), Peplis (1), Crataegus (1), Pyrus (2), Sorbus (1).

De meeste bloemen dezer klasse ontvangen veel insectenbezoek. Zij worden voornamelijk door insecten met korte mondeelen (allootrope insecten) en ook door hemitrope Dipteren bezocht; langtongige Bijen en Lepidopteren worden op deze bloemen weinig aangetroffen.

Onderstaande overzicht geeft het insectenbezoek der klasse A in de verschillende maanden (zie ook tabel II):

<table>
<thead>
<tr>
<th>Maand</th>
<th>APRIL</th>
<th>MEI</th>
<th>JUNI</th>
<th>JULI</th>
<th>AUG.</th>
<th>SEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op 100 bezoeken:</td>
<td>26,8</td>
<td>12,0</td>
<td>30,0</td>
<td>17,5</td>
<td>26,5</td>
<td>12,8</td>
</tr>
</tbody>
</table>
Door deze cijfers wordt geen regelmatige ontwikkelingsgang aangewezen. In April wordt de klasse a vooral vertegenwoordigd door vroeg-bloeiende Wilgen (Salices praeoces), vier geurige katjes veel insecten aanlokken; in Mei door laat-bloeiende Wilgen (Salices serotinae) en door enkele Umbelliferen en Pomaceeëns; — in de volgende maanden voornamelijk door Umbelliferen. Door hare vereeniging tot gezelschappen lokken de bloemen der laatstgenoemde familie zeer veel insecten aan.

AB: Bloemen met half-verborgen honig. — In ons gebied behooren 89 soorten tot deze klasse, nl: 3 Monocotylen: Hydrocharis (1), Epipactis (2); — 2 Sympetalen: Cuscuta (1), Viburnum (1); — 84 choripetalen: Alsineeëns (20), Ranunculaceëns (12), Nymphaeaceëns (2), Cruciferen (28), Tilia (1), Geraniaceëns (5), Oxalis (2), Linum (1), Acer (1), Rhamnus (2), Sedum (2), Circaea (1), Rosaceëns (8). — Uit dit overzicht blijkt dat de klasse AB in ons gebied grootendeels uit Choripetalen bestaat. Dit is ook in de Pyreneëëns het geval. (*)

Onderstaande overzicht geeft het insectenbezoek der klasse AB in de verschillende maanden (zie ook tabel II) en in verschillende streken:

<table>
<thead>
<tr>
<th>Vlaanderen</th>
<th>APRIL</th>
<th>MEI</th>
<th>JUNI</th>
<th>JULI</th>
<th>AUG.</th>
<th>SEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24,5</td>
<td>35,0</td>
<td>25,1</td>
<td>6,7</td>
<td>8,1</td>
<td>9,4</td>
<td></td>
</tr>
<tr>
<td>(+) Alpen onder de boomgrens; id.: ..</td>
<td>..</td>
<td>..</td>
<td>28,5</td>
<td>6,6</td>
<td>3,4</td>
<td>6,5</td>
</tr>
<tr>
<td>Alpen boven de boomgrens; id.: ..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>16,4</td>
<td>8,4</td>
<td>..</td>
</tr>
<tr>
<td>(+) Pyreneën onder de boomgrens; id.: ..</td>
<td>..</td>
<td>..</td>
<td>17,5</td>
<td>..</td>
<td>6,9</td>
<td>..</td>
</tr>
<tr>
<td>Pyreneën boven de boomgrens; id.: ..</td>
<td>..</td>
<td>..</td>
<td>30,1</td>
<td>..</td>
<td>7,3</td>
<td>..</td>
</tr>
</tbody>
</table>

(+ Zie Bot. Jaarb., II, blz. 54 en volgende.
Uit dit overzicht blijkt dat de bloemen met half-verborgen honig gedurende de eerste maanden betrekkelijk sterker vertegenwoordigd zijn dan gedurende de laatste maanden. Dit is niet alleen in ons gebied, maar ook in de Alpen en in de Pyreneeën het geval. Deze ontwikkelingsgang kan (althans is ons gebied) beschouwd worden als een gevolg van de omstandigheid dat de klasse AB grootendeels samengesteld is uit Alsineeën, Ranunculaceeën, Cruciferen en Rosaceeën, (te zamen 68 soorten). De studie der bloecurven (zie de curven XVIII, XIX, XX, XXIV) heeft ons geleerd dat de genoemde familiën reeds in Juni haar toppunt bereiken, terwijl dit met de andere soortenrijke insectenbloemige familïën (nl. de Umbelliferen en de meeste Sympetalen) ruim een maand later plaats grijpt. Dientengevolge zijn de 4 genoemde familiën gedurende de eerste maanden betrekkelijk sterk vertegenwoordigd; gedurende de laatste maanden zijn zij daarentegen haar tijdperk van vermindering ingetreden, terwijl de meeste Corollifloren en de Umbelliferen nog in vollen bloei staan. De ontwikkelingsgang der klasse AB wordt dus, althans in ons gebied, grootendeels beheerscht door den vorm der bloecurve van hare vier voornaamste familïën.

De klasse AB wordt voornamelijk bezocht door allotrope insecten (Coleopteren en Dipteren; in geringere mate door Hymenopteren) en door hemitrope insecten (Dipteren en korttongige bijen); zij wordt door de Lepidopteren en vooral door de langtongige bijen versmaad. Sommige bloemen met half-verborgen honig schijnen de soorten van het geslacht Empis bijzonder sterk aan te lokken; dit is o. a. het geval met Stellaria holostea, waarop wij 8 verschillende Empis-soorten zuigend hebben aangetroffen.

B : Bloemen met volkomen verborgen honig. — In ons gebied bestaat deze klasse uit 63 soorten, nl.: 6 Monocotylen: Colchicum (1), Ornithogalum (1) Allium (1), Orchis (3);

Onderstaande tabel geeft een overzicht van het insectenbezoek der klasse B in de verschillende maanden en in verschillende streken:

<table>
<thead>
<tr>
<th></th>
<th>APRIL</th>
<th>MEI</th>
<th>JUNI</th>
<th>JULI</th>
<th>AUG.</th>
<th>SEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen; op 100 bezoeken</td>
<td>...</td>
<td>...</td>
<td>5,0</td>
<td>6,7</td>
<td>12,1</td>
<td>10,4</td>
</tr>
<tr>
<td>Alpen onder de boomgrens; id.:</td>
<td>...</td>
<td>...</td>
<td>14,4</td>
<td>16,0</td>
<td>16,2</td>
<td>18,7</td>
</tr>
<tr>
<td>Alpen boven de boomgrens; id.:</td>
<td>...</td>
<td>...</td>
<td>12,2</td>
<td>15,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneën onder de boomgrens; id.:</td>
<td>...</td>
<td>...</td>
<td>10,8</td>
<td>17,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneën boven de boomgrens; id.:</td>
<td>...</td>
<td>...</td>
<td>15,1</td>
<td>11,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In ons gebied schijnt deze klasse geen bepaalden ontwikkelingsgang te hebben; in de Pyreneën onder de boomgrens en in de Alpen wordt een aangroeiing gedurende de laatste maanden waargenomen, maar in de Pyreneën boven de boomgrens grijpt het omgekeerde plaats. Het is dus niet mogelijk een algemene gevolgtrekking te formuleren.
De klasse B wordt voornamelijk door allotrope en door hemitrope insecten bezocht; door langtongige Bijen en door Vlinders wordt zij meer bezocht dan de klassen A en AB. De klasse B vormt onder de insectenbloemen als het ware een middelstand: zij wordt derhalve door insecten uit alle groepen bezocht. De meeste soorten deze klasse lokken echter weinig insecten aan; enkele bevoorrechte soorten (Myosotis palustris, Mentha, Thymus, Lycopodium, Cardamine pratensis, Rubus fruticosus) ontvangen veel insectenbezoek.

B': Bloemengezelschappen met volkomen verborgen honig.—
Deze klasse wordt in ons gebied vertegenwoordigd door 74 soorten, nl.: Al de Valerianaceën (5), Dipsaceën (3) en Compositen (65), en Jasione (1). — Deze soorten behooren schier alle tot de groep der Aggregaten (Sympetalen).

Onderstaande tabel geeft een overzicht van het insectenbezoek der klasse B' in de verschillende maanden en in verschillende strekten:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen op 100 bezoek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpen onder de boomgrens; id.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpen boven de boomgrens; id.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneën onder de boomgrens; id.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneën boven de boomgrens; id.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De klasse B' ondergaat dus overal gedurende de laatste maanden een aanzienlijke aangroeiing. In ons gebied ontvangt zij in September meer insectenbezoek dan al de andere bloemenklassen te zamen. Voor de maand April is het cijfer in ons gebied hooger dan voor de maand Mei: dit moet toegeschreven worden aan de omstandigheid dat twee soorten (Bellis, Taraxacum), die beide in tallooze exemplaren voor-
komen en veel bezocht worden, in April haar toppunt bereiken en reeds in Mei aan het dalen zijn, terwijl de soorten der klasse B' die in Mei bloeien minder verspreid zijn, en minder insecten aanlokken. Te beginnen met de maand Mei tot de maand September treedt de klasse B', in verhouding tot de andere insectenbloemen, meer en meer op den voorgrond. Dit gaat hand in hand met den vorm der bloecurve der Compositen (curve XIII): gedurende de maanden April-Juli stijgt deze curve zeer snel, in Juli bereikt zij haar toppunt, in Augustus en September daalt zij langzaam terwijl bijna al de andere groote familën (zie de curven) in die maanden spoedig dalen. Ook de Dipsaceeën, die eveneens tot de klasse B' behooren (Dipsacus, Scabiosa) bloeien vooral in de maanden Juli-Augustus-September.

Met betrekking tot het insectenbezoek hebben wij de klasse B' in drie groepen verdeeld, nl.: 1° B'a: de Ligulifloren, Corymbiferen, Valerianaceeen en Jasione montana. Deze bloemen worden door langtongige bijen weinig bezocht; zij schijnen in 't bijzonder Lepidopteren aan te lokken; door de andere insectengroepen worden zij in meerdere of mindere mate bezocht, door de hemitrope insecten een weinig meer dan door de allotrope. De bloemen B'a kunnen dus, wat het insectenbezoek betreft, nagenoeg op een gelijken rang geplaatst worden als de klasse B, maar de bezoekers zijn hier veel talrijker, hetgeen door de vereeniging der bloemen tot gezelschappen veroorzaakt wordt.

2° B'b) de Tubulifloren (uitgenomen Cirsium arvense) en de Dipsaceeën. Voor deze bloemen vertoonen de langtongige bijen een duidelijke voorkeur; door de hemitrope Dipteren en door de korttongige bijen worden zij in geringere mate bezocht; door de allotrope insecten (Hymenopteren, Allotr. Dipteren en Coleopteren) worden zij versmaad; door de Lepidoteren worden zij, evenals de bloemen B'a, met voor-
liefde bezocht. De bloemen $B'b$ kunnen dus tusschen de klasse B en de klasse Bb (bijenbloemen) geplaatst worden; zij zijn als het ware op weg om bijenbloemen te worden. Bij eene soort (die in ons gebied niet voorkomt), nl. *Cirsium Eriophorum*, is de honig 7-8 mill. diep verborgen; deze soort beschouwen wij als een echte bijenbloem. Zij wordt in de Pyreneën uitsluitend door langtonjige Bijen (*Bombus*) bezocht. - Het is opmerkenswaardig, dat de kleur der meeste soorten der groep $B'b$ blauw, paars of rood is, terwijl de kleur der groep $B'a$ schier altijd wit of geel is. Dit schijnt te strooken met de meening dat de langtonjige bijen de roode en blauwe kleuren boven de witte en gele verkiezen. Daartegen kan echter in 't midden gebracht worden dat *Jasione montana* en *Cirsium arvense* (zie verder) door langtonjige bijen betrekkelijk weinig bezocht worden, ofschoon zij blauw en paars gekleurd zijn. De bloemenkeus de langtonjige bijen schijnt door de diepte der honigbehouders (en ook door de hoeveelheid honig) bepaald te worden; wij meenen dat de kleur hierbij slechts een zeer geringe rol speelt. Bij de beide laatstgenoemde soorten is de honig ondiep gelegen, en daar-door wordt verklaard waarom zij door de langtonjige bijen versmaad worden (1).

3° $B'c$) *Cirsium arvense*. Door zijn insectenbezoek stemt deze distel met de bloemen $B'a$ vrij goed overeen. Hij wordt door langtonjige bijen veel minder bezocht dan de andere inheemsche *Cirsium*-soorten, hetgeen moet toegeschreven worden aan de geringe diepe zijner honigklok. Bij *C. arvense* bedraagt deze diepe slechts $1-1\frac{1}{2}$ mill.; — bij *C. palustre* $2\frac{1}{2}$ mill., bij *C. lanceolatum* 4-6 mill. Deze verschillen in de

(1) Tot ons spijt hebben wij geen gunstige gelegenheid gevonden om het insectenbezoek van *C. oleraceum* gade te slaan. Het ware belangrijk dit insectenbezoek te kennen, want *C. oleraceum* heeft gele bloemen en tevens een vrij diepe honigklok.
diepte der honigklok correspondeeren met overeenkomstige verschillen in het insectenbezoek; dit blijkt duidelijk uit de lijsten die wij hooger hebben gegeven (Bot. Jaarb., V. blz. 403 en volgende). — *Scabiosa succisa* dient wellicht op denzelfden rang als *C. arvense* te worden geplaatst.

Overzicht van het insectenbezoek der bijenbloemen in de verschillende maanden (zie ook tabel II) en in verschillende streken:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 bezoeken</td>
<td>13,4</td>
<td>20,8</td>
<td>9,5</td>
<td>20,1</td>
<td>15,2</td>
<td>7,8</td>
</tr>
<tr>
<td>Alpen onder de boomgrens; id.</td>
<td>»</td>
<td>»</td>
<td>21,1</td>
<td>18,7</td>
<td>17,6</td>
<td>17,7</td>
</tr>
<tr>
<td>Alpen boven de boomgrens; id.</td>
<td>»</td>
<td>»</td>
<td>13,0</td>
<td>12,0</td>
<td>»</td>
<td></td>
</tr>
<tr>
<td>Pyreneeën onder de boomgrens; id.</td>
<td>»</td>
<td>»</td>
<td>18,1</td>
<td>»</td>
<td>16,0</td>
<td>»</td>
</tr>
<tr>
<td>Pyreneeën boven de boomgrens; id.</td>
<td>»</td>
<td>»</td>
<td>12,9</td>
<td>»</td>
<td>16,6</td>
<td>»</td>
</tr>
</tbody>
</table>
Uit deze tabel kunnen wij, evenmin als hooger voor de klassen A en B, een algemeene gevolgtrekking afleiden, althans wat ons gebied betreft. Misschien zouden de cijfers een regelmatigen ontwikkelingsgang aanwijzen indien onze waarnemingen talrijker waren. Het cijfer voor Juni is immers zeer laag, vergeleken met de vrij hooge cijfers voor Mei en Juli, en van die aanzienlijke onregelmatigheid kunnen wij geen verklaring geven.

Zoals bekend is worden de bijenbloemen door de allotrope insecten (Coleopteren, allotr. Dipteren en Hymenopteren) ver- smaad; ook door de hemitrope Dipteren en door de korttongige Bijen worden zij weinig bezocht. In ons gebied worden zij door de Lepidopteren veel bezocht; de langtongige bijen vertoonden voor deze bloemen een zeer sterke voorkeur.

Deze voorkeur doet zich in de zes achtereenvolgende maanden gelden, ofschoon de laatstgenoemde insecten gedurende de vier laatste maanden door de bloemen B’h (Tubuliflore Compositen, enz.) sterk aangelokt worden.

Vb: *Vlinderbloemen.* — Deze klasse wordt in ons gebied door 10 soorten vertegenwoordigd, nl.: 3 Monocotylen: *Orchidaceeën* (3); — 2 Sympetalen: *Convolvulaceeën* (1), *Caprifoliaceeën* (1); — 5 Choripetalen: *Sileneeën* (5).

Deze klasse is in ons gebied betrekkelijk arm aan soorten; daarenboven zijn de drie vlinderbloemige Orchideeën in ons gebied zeer zeldzaam. Wij hebben op de Vlinderbloemen slechts enkele malen insecten aangetroffen. Het getal der gedane waarnemingen is te gering om tot enige beschouwing te kunnen aanleiding geven.

Jaarlijksche evolutie der insectengroepen. — **Coleopteren:** gedurende de drie eerste maanden nemen deze insecten in ons gebied voortdurend aan betrekkelijke getalsterkte toe; in Juni bereiken zij hun toppunt, daarna dalen zij spoedig (in September zijn zij verdwenen). — In
de Alpen onder de boomgrens schijnt deze regel eveneens zijne toepassing te vinden; ook in de Alpen boven de boomgrens en in den plantentuin te Berlijn vermindert het getal der Coleopteren gedurende de laatste maanden. (Voor de Pyreneën zijn de gegevens onvolledig, daar de maand Juli ontbreekt). — Wij mogen aannemen dat de bloemenbezoekende Coleopteren in het midden Europeesch gebied gedurende de eerste maanden betrekkelijk talrijker zijn dan gedurende de laatste.

Overzicht van het bloemenbezoek der Coleopteren:

<table>
<thead>
<tr>
<th></th>
<th>APRIL</th>
<th>MEI</th>
<th>JUNI</th>
<th>JULI</th>
<th>AUG.</th>
<th>SEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>op 100 bezoeken</td>
<td>7,8</td>
<td>8,1</td>
<td>13,8</td>
<td>6,1</td>
<td>1,7</td>
<td>0</td>
</tr>
<tr>
<td>Alpen onder de boomgrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5,9</td>
<td>7,9</td>
<td>3,5</td>
<td>3,4</td>
</tr>
<tr>
<td>Alpen boven de boomgrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,8</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneën onder de boomgrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8,2</td>
<td>10,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneën boven de boomgrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,1</td>
<td>4,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantentuin te Berlijn (Loëw)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8,0</td>
<td>3,6</td>
<td>3,5</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Allotrope Dipteren: Deze insecten bereiken hun toppunt in April en dalen gedurende de volgende maanden (de geringe aangroeiing in Augustus mag als toevallig beschouwd worden). Dit schijnt in de Pyreneën *onder de boomgrens* eveneens het geval te zijn; boven de boomgrens zijn de allotrope Dipteren in de Pyreneën en in de Alpen daarentegen gedurende de laatste maanden betrekkelijk talrijker dan gedurende de eerste. In den plantentuin te Berlijn heeft Loëw weinig allotrope Dipteren waargenomen; deze insecten *schijnen* aldaar vooral in September hun toppunt te bereiken, maar dit is twijfelachtig. In de Alpen onder de boomgrens blijft het resultaat eveneens twijfelachtig.
Overzicht van het bloemenbezoek der allotrope Dipteren:

<table>
<thead>
<tr>
<th></th>
<th>APRIL</th>
<th>MEI</th>
<th>JUNI</th>
<th>JULI</th>
<th>AUG.</th>
<th>SEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen</td>
<td>28,4</td>
<td>25,5</td>
<td>20,5</td>
<td>15,2</td>
<td>18,7</td>
<td>15,9</td>
</tr>
<tr>
<td>Alpen onder de boomgrens</td>
<td>21,2</td>
<td>10,6</td>
<td>8,7</td>
<td>16,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpen boven de boomgrens</td>
<td>21,0</td>
<td>24,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneëen onder de boomgrens</td>
<td>27,3</td>
<td>22,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneëen boven de boomgrens</td>
<td>34,1</td>
<td>42,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantentuin te Berlijn (Loëw)</td>
<td>8,9</td>
<td>2,4</td>
<td>7,3</td>
<td>17,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De hemitrope Dipteren zijn in ons gebied gedurende de drie eerste maanden veel minder talrijk dan gedurende de drie laatste maanden; deze groep schijnt van April tot September vrij regelmatig aan te groeien. Ook in den plantentuin te Berlijn (Loëw) schijnt de beschouwde groep gedurende de laatste maanden een aanzienlijke aangroeiing te ondergaan, maar voor Mei is het cijfer hier veel hooger dan voor Juni. In de Alpen onder de boomgrens (H. Müller) zijn de hemitrope Dipteren in Juni en September sterker vertegenwoordigd dan in Juli en Augustus, en in de twee laatstgenoemde maanden zijn zij onder de boomgrens nagenoeg even sterk vertegenwoordigd als boven de boomgrens. In de Pyreneëen schijnen de hemitrope Dipteren in Augustus betrekkelijk minder sterk vertegenwoordigd te zijn dan in Juni, en dit is in de Subalpische evenals in de Alpische zone het geval. — De jaarlijksche evolutie der hemitrope Dipteren schijnt dus van de eene streek tot de andere aanzienlijk te verschillen. De thans voorhanden zijnde bouwstoffen laten echter geen definitieve gevolgtrekkingen toe.
Overzicht van het bloemenbezoek der hemitrope Dipteren:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen; op 100 bezoeken:</td>
<td>3,9</td>
<td>19,4</td>
<td>18,4</td>
<td>21,1</td>
<td>34,3</td>
<td>44,2</td>
</tr>
<tr>
<td>Alpen onder de boomgrens; id.:</td>
<td>20,9</td>
<td>10,0</td>
<td>10,0</td>
<td>16,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpen boven de boomgrens; id.:</td>
<td>10,5</td>
<td>8,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneeën onder de boomgrens; id.:</td>
<td>21,4</td>
<td>11,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneeën boven de boomgrens; id.:</td>
<td>16,1</td>
<td>4,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantentuin te Berlijn; id.:</td>
<td>17,1</td>
<td>11,9</td>
<td>31,6</td>
<td>37,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De hemitrope Dipteren worden in ons gebied schier uitsluitend door Syrphiden vertegenwoordigd; de Conopiden zijn weinig talrijk, de Bombyliden ontbreken schier volkomen.

De korttongige bijen zijn in ons gebied gedurende de eerste maanden betrekkelijk sterker vertegenwoordigd dan gedurende de laatste maanden; de vermindering van April tot September is volkomen regelmatig. Deze groep heeft dus in ons gebied denzelfden ontwikkelingsgang als de allotrope Dipteren. Hetzelfde verschijnsel wordt in de Pyreneeën, in de Alpen boven de boomgrens, en te Berlijn (LoEW) waargenomen; in de Alpen onder de boomgrens is er in September een aangroeiing te bespeuren.

Overzicht van het bloemenbezoek der korttongige bijen:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen; op 100 bezoeken:</td>
<td>31,2</td>
<td>19,6</td>
<td>15,0</td>
<td>8,6</td>
<td>8,3</td>
<td>7,5</td>
</tr>
<tr>
<td>Alpen onder de boomgrens; id.:</td>
<td>7,3</td>
<td>4,2</td>
<td>3,7</td>
<td>13,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpen boven de boomgrens; id.:</td>
<td>3,0</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneeën onder de boomgrens; id.:</td>
<td>10,0</td>
<td>6,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneeën boven de boomgrens; id.:</td>
<td>15,6</td>
<td>5,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlijn; id.:</td>
<td>15,0</td>
<td>10,7</td>
<td>7,3</td>
<td>7,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
De jaarlijksche evolutie der langtongige bijen schijnt in ons gebied door geen bepaalde regel beheerscht te worden (in de maand Juli schijnt deze groep haar maximum te bereiken). In de Alpen onder de boomgrens en in de Pyreneën schijnt deze insectengroep gedurende de laatste maanden aan te groeien; in den plantentuin te Berlijn (Loew) wordt het omgekeerde waargenomen. In de Alpen boven de boomgrens is het resultaat der gedane waarnemingen in dit opzicht twijfelachtig. Uit onderstaande tabel blijkt dat ons gebied arm is aan langtongige bijen; deze armoede wordt vooral in 't oog springend als men Vlaanderen met Berlijn vergelijkt (in Vlaanderen werd Apis echter niet medegerekend).

Overzicht van het bloemenbezoek der langtongige bijen:

<table>
<thead>
<tr>
<th></th>
<th>APRIL</th>
<th>MEI</th>
<th>JUNI</th>
<th>JULI</th>
<th>AUG.</th>
<th>SEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bezoeken</td>
<td>13,4</td>
<td>13,4</td>
<td>8,3</td>
<td>18,9</td>
<td>11,8</td>
<td>12,3</td>
</tr>
<tr>
<td>Alpen onder de boomgrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td>17,3</td>
<td>20,4</td>
<td>28,2</td>
<td>30,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpen boven de boomgrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td>14,7</td>
<td>12,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneën onder de boomgrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td>12,9</td>
<td>19,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneën boven de boomgrens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id.</td>
<td>11,0</td>
<td>22,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlijn</td>
<td>46,5</td>
<td>66,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De langtongige bijen worden in ons gebied, evenals in het hooggebergte (Alpen en Pyreneën) (1), voornamelijk door sociale soorten (Bombus met inbegrip van Psithyrus) vertegenwoordigd, terwijl de niet sociale vormen schaarsch zijn. Dit blijkt uit onderstaande tabel:

Overzicht der waargenomen Bombus- (en Psithyrus-) soorten:

<table>
<thead>
<tr>
<th></th>
<th>Bombus</th>
<th>Psithyrus</th>
<th>—</th>
<th>totaal 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>In ons gebied</td>
<td>13;</td>
<td>5;</td>
<td>—</td>
<td>18</td>
</tr>
<tr>
<td>Berlijn (Loew)</td>
<td>9;</td>
<td>3;</td>
<td>—</td>
<td>12</td>
</tr>
</tbody>
</table>

(1) Zie Pyreneënbloemen, blz.449.
Duitschland (Müller): (1) Bombus 13; Psithyrus 4; — 17
Alpen (»): » 23; » 5; — 28
Pyreneën: » 15; » 2; — 17

In ons gebied schijnen de allotropë Hymenopteren, evenals de Lepidopteren (zie verder), gedurende de eerste maanden aan te groeien en gedurende de laatste maanden te verminderen; in de maand Juni bereiken zij hun toppunt. Het cijfer voor Mei is echter lager dan voor April: daardoor wordt de regelmatigheid der curve gebroken, en de gevolgtrekking is twijfelachtig.

Overzicht van het bloemenbezoek der allotrope Hymenopteren:

<table>
<thead>
<tr>
<th></th>
<th>APRIL</th>
<th>MEI</th>
<th>JUNI</th>
<th>JULI</th>
<th>AUG.</th>
<th>SEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlaanderen; op 100 bezoeken:</td>
<td>7,8</td>
<td>5,5</td>
<td>15,3</td>
<td>7,7</td>
<td>7,5</td>
<td>6,2</td>
</tr>
<tr>
<td>Alpen onder de boomgrens; id.: . . .</td>
<td>»</td>
<td>»</td>
<td>3,7</td>
<td>2,6</td>
<td>2,2</td>
<td>2,8</td>
</tr>
<tr>
<td>Alpen boven de boomgrens; id.: . . .</td>
<td>»</td>
<td>»</td>
<td>»</td>
<td>3,9</td>
<td>3,6</td>
<td>»</td>
</tr>
<tr>
<td>Pyreneën onder de boomgrens; id.: .</td>
<td>»</td>
<td>»</td>
<td>9,4</td>
<td>»</td>
<td>9,7</td>
<td>»</td>
</tr>
<tr>
<td>Pyreneën boven de boomgrens; id.: .</td>
<td>»</td>
<td>»</td>
<td>5,9</td>
<td>»</td>
<td>6,5</td>
<td>»</td>
</tr>
<tr>
<td>Plantentuin te Berlijn (Loew); id.: .</td>
<td>»</td>
<td>0,7</td>
<td>3,6</td>
<td>»</td>
<td>3,7</td>
<td>8,8</td>
</tr>
</tbody>
</table>

In de Alpen onder de boomgrens schijnen de allotrope Hymenopteren eveneens in Juni hun toppunt te bereiken; in de Alpen boven de boomgrens en in de Pyreneën is er tusschen de verschillende maanden geen noemenswaardig verschil. In den plantentuin te Berlijn schijnen de genoemde insecten in September veel talrijker te worden; het cijfer

(1) Müller's waarnemingen werden in twee verschillende provinciën, nl. Westphalen en Thüringen, gedaan; het totaal der waargenomen bezoeken was veel groter dan het onze. Als men hiermede rekenschap houdt mag men besluiten dat ons gebied betrekkelijk zeer rijk is aan Hommels en Koekoekshommels.
voor Mei is echter te laag om vertrouwen te verdienen.

De **Lepidopteren** (Vlinders) bereiken in ons gebied hun toppunt in Juli; gedurende de vier eerste maanden heeft een voortdurende aangroeiing plaats, gedurende de laatste maanden wordt een regelmatige vermindering waargenomen.

Overzicht van het bloemenbezoek der Lepidopteren:

<table>
<thead>
<tr>
<th>Vlaanderen; op 100 bezoeken:</th>
<th>APRIL</th>
<th>MEI</th>
<th>JUNI</th>
<th>JULI</th>
<th>AUG.</th>
<th>SEPT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpen onder de boomb grens; id.:</td>
<td>7,8</td>
<td>8,1</td>
<td>8,6</td>
<td>21,5</td>
<td>17,3</td>
<td>12,8</td>
</tr>
<tr>
<td>Alpen boven de boomb grens; id.:</td>
<td>»</td>
<td>»</td>
<td>23,1</td>
<td>43,9</td>
<td>43,4</td>
<td>15,6</td>
</tr>
<tr>
<td>Pyreneëen onder de boomb grens; id.:</td>
<td>»</td>
<td>»</td>
<td>30,5</td>
<td>45,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyreneëen boven de boomb grens; id.:</td>
<td>»</td>
<td>»</td>
<td>10,6</td>
<td>17,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlijn; id.:</td>
<td>»</td>
<td>2,7</td>
<td>0,6</td>
<td>10,6</td>
<td>7,5</td>
<td></td>
</tr>
</tbody>
</table>

Uit bovenstaande overzicht blijkt dat de jaarlijksche evolutie der Lepidopteren in de Alpen (en wellicht ook in de Pyreneëen?) nagenoeg op een gelijke wijze als in ons gebied plaats heeft. De vlinderbezoeken die Loew te Berlijn waargenomen heeft zijn (vooral in Mei en Juni) zoo weinig talrijk dat wij mogen aannemen dat toevallige oorzaken (wellicht de nabijheid eener groote stad) hier eene rol hebben gespeeld.

Ons gebied is arm aan Lepidopteren; een aantal soorten, die voor een twintigtal jaren algemeen aangetroffen werden (b. v. *Papilio Machaon, Vanessa Polychloros, V. Io, V. Atalanta, Rhodocera Rhamni, Aporia Crataegi*, enz.) zijn thans zeldzaam of zeer zeldzaam geworden. Sommige entomologen zijn de meening toege- daan dat het verdwijnen van een aantal vlinders in ons gebied aan de steeds toenemende uitbreiding der cultuur, en ook aan de rupswering moet toegeschreven worden. Het komt ons voor dat deze verklaring niet voldoende is: sedert een tiental jaren is de akkerbouw in ons gebied veelleer achteruit- dan vooruitgegaan (1), en de rupsen

(1) Zie hooger, blz. 408.
van verscheidene der hoogergenoemde vlinders leven op Daucus Carota, Urtica enz., en hebben dus van de rupswering weinig te lijden. Van een anderen kant hebben wij Vanessa Cardui, die vroeger in ons gebied weinig verspreid was, in 1879 en 1880 in talloze exemplaren zien voor den dag komen; daarna is de genoemde soort opnieuw zeldzaam geworden; — in 1887 is Vanessa Antiopa, die te voren in ons gebied bijna nooit werd aangetroffen, plotseling verschenen (wel is waar in niet zeer talrijke exemplaren) en daarna is zij wederom spoorloos verdwenen; — in 1892 zijn duizende exemplaren van Macroglossa Stellatarum (vooral langs de kust, minder in het binnenland) voor den dag gekomen; in 1893 was deze soort nog tamelijk verspreid, in 1894 hebben wij geen enkel exemplaar meer gezien. — Het schijnt dus alsof sommige vlinders, onder voorwaarden die tot nog toe onbekend zijn, zich plotseling op een verbazende wijze konden vermeerderen, en daarna weder verdwijnen. Misschien is het tijdelijk verdwijnen van de hoogergenoemde soorten eveneens een voorbijgaande verschijnsel; in ieder geval is het moeilijk daarvan een voldoende verklaring te geven.

Laten wij thans onderzoeken of de jaarlijksche evolutie der biologische bloemenklassen met de jaarlijksche evolutie der biologische insectengroepen hand in hand gaat. Te dien einde zullen wij de bloemen en de insecten, naar 't voorbeeld van Loëw, ieder in drie klassen verdeelen. De klassen die wij hier onderscheiden stemmen echter niet volkomen overeen met de klassen die Loëw met dezelfde namen bestempeld heeft:

a) allotrope bloemen: de klassen Po, A, AB;
b) hemitrope bloemen: de klassen B, B'a, B'c;
c) eutrope bloemen: de klassen B'b, Bb, Vb;

en

a) allotrope insecten: Coleopteren, allotrope Dipteren en allotrope Hymenopteren;
b) hemitrope insecten: hemitrope Dipteren en korttongige bijen;
c) eutrope insecten: langtongige bijen en vlinders.
Onderstaande tabel geeft een overzicht van het insecten-
bezoek der drie bloemenklassen en van het bloemenbezoek der overeenkomstige insectengroepen in ons gebied:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allotrope bloemen:</td>
<td>55,7</td>
<td>48,3</td>
<td>58,4</td>
<td>28,4</td>
<td>37,1</td>
<td>25,3</td>
</tr>
<tr>
<td>insecten:</td>
<td>44,0</td>
<td>30,1</td>
<td>40,6</td>
<td>29,0</td>
<td>27,9</td>
<td>22,1</td>
</tr>
<tr>
<td>Hemitrope bloemen:</td>
<td>30,7</td>
<td>30,7</td>
<td>25,4</td>
<td>42,9</td>
<td>36,4</td>
<td>51,7</td>
</tr>
<tr>
<td>insecten:</td>
<td>35,1</td>
<td>30,0</td>
<td>33,4</td>
<td>29,7</td>
<td>42,6</td>
<td>51,7</td>
</tr>
<tr>
<td>Eutrope bloemen:</td>
<td>13,4</td>
<td>20,8</td>
<td>15,0</td>
<td>28,0</td>
<td>25,8</td>
<td>21,9</td>
</tr>
<tr>
<td>insecten:</td>
<td>20,6</td>
<td>21,5</td>
<td>16,9</td>
<td>39,4</td>
<td>29,1</td>
<td>25,1</td>
</tr>
</tbody>
</table>

Uit bovenstaande cijfers kan slechts moeilijk een gevolgtrekking afgeleid worden: nergens kunnen wij een volkomen regelmatigen ontwikkelingsgang constateeren. Wij zullen ons derhalve bij de volgende beschouwingen beperken: de allotrope bloemen en de allotrope insecten schijnen gedurende de drie eerste maanden betrekkelijk talrijker te zijn dan gedurende de drie laatste maanden. De hemitrope en eutrope bloemen en de hemitrope en eutrope insecten schijnen daarentegen gedurende de laatste maanden betrekkelijk talrijker te zijn dan gedurende de eerste.

De lager georganiseerde bloemen en insecten schijnen dus vooral in de lente voor den dag te komen; de hooger georganiseerde bloemen en insecten schijnen de zomermaanden te verkiezen. Dit verschijnsel kan in verband gebracht worden met de omstandigheid dat de meeste inheemsche Choripetalen allotrope bloemen hebben (1) terwijl hemitrope en eutrope bloemen vooral onder de Sympetalen talrijk zijn, — en dat de meeste soortenrijke choripetale familiën vroeger haar toppunt bereiken dan de groote sympetale familiën.

Opmerking: De poging die wij hebben gedaan om den jaarlijkschen ontwikkelingsgang der bloemenklassen en der insectengroepen te leeren kennen heeft niet de uitkomsten gehad die wij hoopten te verkrijgen. Voor de verschillende plantenfamiliën hebben wij kunnen aantonen dat de jaarlijksche evolutie een

(1) De familie der Papilionaceën is de eenige soortenrijke familie die op dezen regel uitzondering maakt.
bepaalden regel volgt (zie de bloeicurven); in de evolutie van sommige biologische bloemenklassen en insectengroepen hebben wij eveneens een zekere regelmaat kunnen vinden, maar voor andere groepen hebben wij daarentegen geen regel kunnen ontdekken; ook het parallelisme tusschen de evolutie der bloemen en die der insecten blijft zeer twijfelachtig. De negatieve uitkomsten die wij in vele gevallen verkregen hebben doen twijfel ontstaan omtrent de waarde der positieve resultaten, en doen ons vertrouwen in deze wankelen.

De vraag is nu waarom de resultaten niet volkomen bevredigend zijn. Het antwoord op deze vraag moet wellicht gezocht worden in de volgende omstandigheden:

In ons gebied is de temperatuur der zes maanden gedurende de welke waarnemingen werden gedaan (April-September) betrekkelijk laag. Dientengevolge is de ontwikkeling van bloemen en insecten langzaam, en de bloei van de meeste soorten duurt verscheidene achtervolgende maanden. De soorten die gedurende verscheidene maanden bloeien worden in onze statistische tabellen voor iedere maand door haar insectenbezoek vertegenwoordigd; indien wij het insectenbezoek van dergelijke soorten gedurende haar geheele bloeitijd hadden waargenomen zouden onze tabellen volkomen vertrouwen verdienen, maar in dit opzicht komen er in onze waarnemingen aanzienlijke leemten voor. — Wij willen hier slechts een enkel voorbeeld aanhalen: Thymus Serpyllum bloeit van Juni tot September; wij hebben voor deze plant een aantal bezoekers in Juli en enkele bezoekers in September aangeteekend, in Augustus echter geen enkel bezoek. — Dergelijke leemten komen voor vele planten voor; ofschoon zij in zekere mate de eene tegen de andere opwegen worden de resultaten daardoor niettemin eenigszins vervalscht. Om hierin te voorzien zouden de door ons verzamelde bouwstoffen door talrijke nieuwe waarnemingen dienen aangevuld te worden.

Daarenboven vertoont ons klimaat zeer aanzienlijke verschillen van het eene jaar tot het ander. In sommige jaren (b. v. 1893) zijn de maanden Maart en April zeer warm, en sommige soorten die gewoonlijk in Mei bloeien komen reeds in April voor den dag; in andere jaren (b. v. 1887, 1891) zijn de genoemde maanden veel kouder: de bloei van sommige soorten, die gewoonlijk in April ontluiken, kan daardoor tot Mei uitgesteld worden. De tien jaren
gedurende dewelke wij onze waarnemingen hebben gedaan, hebben in dit opzicht zeer veel verscheidenheid vertoond; een aantal bezoe-
ken, die voor April dienden geteld te worden, werden in de jaren
met een koude lente in Mei waargenomen en voor Mei in rekening
gebracht; in jaren met een warme lente heeft het omgekeerde
meermalen plaats gegrepen. De volgende maanden zijn eveneens, naar
geland van de jaren, zeer verschillend. In 1887 b. v. waren Juli en de
eerste helft van Augustus buitengewoon droog en warm. Dientenge-
volge bloeiden een aantal soorten vroeger dan in gewone jaren,
terwijl de ontwikkeling en de bloei van andere soorten door gebrek
aan water vertraagd werden. In 1894 waren de maanden Maart en
April droog en warm, de volgende maanden koel en regenrijk;
dientengevolge bloeiden een aantal voorjaars-soorten vroeger, een
aantal zomer-soorten later dan in gewone jaren. Daarenboven duurde
de bloeitijd van vele zomer-soorten langer dan in gewone jaren. Uit
deze beschouwingen blijkt dat de verschillende maanden in ons
gebied niet ieder jaar dezelfde biologische beteekenis hebben.

Wij hebben echter voor ieder maand de waarnemingen der tien
jaren bijeengeteld en zodoende hebben wij in veel gevallen feiten
bijengebracht die niet onder gelijke omstandigheden werden waargenomen. — Wij willen hier nog doen opmerken dat de jaarlijksche
evolutie van vele soorten wellicht door den invloed van den mensch
gewijzigd wordt: een aantal planten die in onze weiden groeien
worden omstreeks 1 Juli afgemaaid, als haar bloei pas begonnen is
of vóór het begin van haar bloei. De afgemaide bloeistengels worden
later (einde Juli, Augustus, September) vervangen door nieuwe
bloeistengels (zie hooger, blz. 415), die anders wellicht niet zouden
uitgeschoten zijn; aldus wordt de bloei van vele planten uitgesteld,
of de bloeitijd wordt verlengd, of door het maaien als het ware in
twee tijdperken gesneden. — Hooger hebben wij gezien dat ook vele
onkruidsoorten zich ieder jaar, ten gevolge van de verrichtingen van
den landbouwer, in twee of meer bloeiende generatien kunnen voor-
doen (zie blz. 390 en volgende).

Wij meenen dat duidelijker resultaten zouden verkregen worden,
indien onderzoekingen over den jaarlijkschen ontwikkelingsgang
van bloemen en insecten in andere, daartoe beter geschikte streken
gedaan werden.

In het Middellandsch Gebied b. v. is het klimaat niet zoo verander-
lijk als in onze streken; de successieve jaren stemmen derhalve beter met elkander overeen. Daarenboven is de bloeitijd van ieder soort veel korter; in weinige dagen kan de physionomie van het plantenrijk diepe veranderingen ondergaan. De flora en de fauna zijn veel rijker, en het is mogelijk een groter aantal feiten bijeen te verzamelen. Bloemenbiologische waarnemingen van gelijken aard als die welke door ons in Vlaanderen werden gedaan zouden in het Middellandsch gebied waarschijnlijk veel belangrijker gevolgtrekkingen toelaten, vooral indien daartoe een streek werd gekozen, waar de flora zooveel mogelijk tot één plantenformatie behoort en zoo weinig mogelijk den invloed van den mensch ondergaat. De waarnemingen zouden kunnen in tijdperken van 15 of 20 dagen verdeeld worden. — Het midden van Europa, waar een vastelandsklimaat heerscht, zou eveneens verkieslijk zijn boven de streken die zich in de nabijheid van den Oceaan bevinden.

Over de **bloemenkeus der insecten** hopen wij later een afzonderlijk opstel uit te geven.

Hooger hebben wij tusschen de bloemen en de insecten van ons gebied en die van andere streken eenige vergelijkingen gemaakt. Wij meenen ons bij dat weinige te moeten beperken, daar men uit de bouwstoffen die thans voorhanden zijn geen definitieve gevolgtrekkingen kan afleiden.

III.

Over zelf- en kruisbevruchting (kapitalisten en proletariërs).

Zooals bekend is berust de algemeen aangenomen bloemen-theorie op de onderstelling dat kruisbevruchting voor de planten voordeeliger is dan zelfbevruchting. Door deze onderstelling kan men verklaren waarom, bij zeer veel plantensoorten, zelfbevruchting onmogelijk of bijna onmogelijk is, terwijl kruisbevruchting door de constructie der bloemen bevorderd wordt. Bij andere planten zijn zelf- en
kruisbevruchting beide ongeveer in gelijke mate mogelijk: dergelijke gevallen kunnen eveneens in overeenstemming gebracht worden met de theorie, want kruisbevruchting is slechts mogelijk door de tusschenkomst van een uitwendig transportmiddel (wind, insecten, enz.), en het kan gebeuren dat de plant van die uitwendige hulp verstoken blijft (dit geschiedt meermalen als het insectenbloemen geldt). In dit geval zou de plant onvruchtbaar blijven indien zij zich met zelfbestuiving niet kon behelpen: zelfbestuiving is immers, ondanks de voordeelen der kruisbevruchting, verkieslijk boven volkomen onvruchtbaarheid. Bij een derde groep planten is zelfbevruchting de regel: kruisbevruchting grijpt slechts bij uitzondering plaats, of is geheel onmogelijk (Illecebrum, enz.). Deze gevallen kunnen verklaard worden als men naar 't voorbeeld van H. Müller wil aannemen dat zelfbevruchting voldoende is tot de instandhouding van het ras, en alleen schadelijk wordt als zelf- en kruisbevruchte nakomelingen tegenover elkander staan in den strijd voor het bestaan, in welk geval de zelfbevruchte nakomelingen op den duur zullen ten gronde gaan. Een dergelijke strijd wordt natuurlijk vermeden indien er slechts nakomelingen van één soort, nl. zelfbevruchte, bestaan.

De zoo even aangehaalde algemeene verklaringen zijn echter niet voldoende (1). Voor ieder plantensoort in het bijzonder moeten wij onderzoeken welke betrekkingen er bestaan tusschen de bevruchting en andere levensverrichtingen en -omstandigheden, b. v. de voeding, het midden waarin de plant leeft, hare betrekkingen met sommige dieren (b. v. met mieren), hare vegetatieve vermeerdering, haar levensduur, enz. Wij moeten daarenboven trachten, bij ieder plantensoort, de verhouding te bepalen tusschen de voordeelen

(1) Zie onze Inleiding, Algemeene Beschouwingen; Bot. Jaarboek, V, blz. 259 en volgende.
welke de kruisbevruchting kan opleveren en de prijs dien de plant voor hare kruisbevruchting moet betalen. De bestuiving staat in verband met talrijke andere verschijnselen: zij mag derhalve niet bestudeerd worden als een levensverrichting die op zich zelf staat, maar als een gedeelte van een geheel, waarvan al de samenstellende deelen in elkander grijpen.

Reeds hebben verscheidene schrijvers tusschen de bestuiving en andere levensverschijnselen een samenhang gevonden. Burck heeft aangetoond dat de cleistogamie bij Myrmecodia een gevolg is van de myrmecophilie (1): de genoemde plant wordt bewoond door mieren die haar tegen de aanvallen van hare vijanden verdedigen; hare bloemen blijven steeds gesloten en de teedere bloemdeelen blijven aldus van de vraatzucht der mieren gevrijwaard; dientengevolge is kruisbevruchting onmogelijk; zelfbevruchting kan alleen plaats grijpen.— Warming (2) heeft de meening uitgesproken dat in Groenland, waar bloemenbezoekende insecten schaarsch zijn, de planten die zich vegetatief kunnen vermeerderen, en waarvan de instandhouding dus niet uitsluitend op het voortbrengen van zaad berust, over 't algemeen insecten aanlokken en tot kruisbevruchting aangepast zijn, terwijl zelfbevruchting daarentegen de regel is bij de soorten die zich uitsluitend door zaad vermenigvuldigen. De laatstgenoemde soorten moeten kost wat kost zaad voortbrengen en de bevruchting mag niet overgelaten worden aan insecten waarvan de hulp onzeker is; de eerstgenoemde kunnen door uitloopers, bollen, enz., behouden blijven, zij kunnen zonder gevaar voor uitsterven op insectenbezoek blijven wachten en aldus de voordeelen

der kruisbevruchting genieten. Door Warming worden onder anderen de volgende voorbeelden aangehaald: bij *Pedicularis lapponica* is kruisbevruchting door insecten de regel, het voortbrengen van zaad is bijgevolg onzeker, maar de vermeerdering door onderaardsche uitloopers is zeer actief; de bloemen van *P. lanata, hirsuta* en *flammea* zijn daarentegen tot zelfbevruchting aangepast, en de vegetatieve vermeerdering ontbreekt bijna volkomen. *Cardamine pratensis* vermeerdert zich door broedknoppen die op de wortelbladen ontstaan en de bloemen worden door insecten bevrucht; *C. bellidifolia* vermeerdert zich daarentegen niet vegetatief, en hare bloemen zijn klein en bevruchten zich zelf. — Enz.

In ons gebied nu doen zich talrijke gevallen voor, die met Warming's hypothese schijnen te stroomen: *Convolvulus arvensis* en *sepium* hebben groote fraaie bloemen en vermeerderen zich vegetatief, terwijl de *Cuscuta*-soorten, die zonder zaad niet kunnen voortbestaan, kleine zelfvruchtbare bloemen hebben; — *Linaria vulgaris* is bij uitblijvend insectenbezoek grootendeels onvruchtbaar, maar kan zonder zaad voortbestaan; *L. minor* en *elatine* hebben kleine, zelfvruchtbare bloempjes en sterven ieder jaar af; — enz. (Zie verder). — Ons gebied is echter veel rijker aan insecten dan Groenland, en feiten zooals de hooger aangehaalde, die in Groenland schijnbaar hunne verklaring vinden in de schaarschheid der insecten, kunnen in ons gebied bezwaarlijk op die wijze verklaard worden. Daarenboven zijn er een aantal planten bekend die veel insecten aanlokken en uitsluitend of bijna uitsluitend door kruisbevruchting zaden voortbrengen, en die nochtans van vegetatieve vermeerderingsmiddelen verstoken zijn, b. v.: *Brassica*-, *Sinapis*-, *Raphanus*-soorten, *Daucus Carota, Pastinaca sativa*, enz., enz. — Al deze soorten zijn monocarpisch, d. w. z. dat zij na het voortbrengen van zaad afsterven; dit kan moeilijk met Warming's hypothese vereenigd worden.
Door de onderstaande verklaring kunnen de hier aangehaalde feiten, en vele andere die wij verder vermelden, onder een enkel gezichtspunt vereenigd worden:

De *insectenbloemige* planten moeten zich opofferingen getroosten om insecten aan te lokken: zij moeten groote bloembekleedsels vormen, honig en riekende stoffen afscheiden, en daarenboven gaat een gedeelte van haar stuifmeel verloren. Deze uitgaven kosten echter een zekere hoeveelheid organische stoffen, die de plant grootendeels ontleent aan den voorraad reserveclose, die zij vóór den bloei in hare weefsels aangelegd heeft.

Men mag aannemen dat over 't algemeen, de organische stoffen die tot het vormen van bloemen en vruchten gebruikt worden, reeds grootendeels in de plant voorhanden zijn als de bloei begint. Deze stoffen worden opgehoogt in bijzondere organen (knollen, bollen, wortels, wortelstokken; — schors, mergstralen, enz.) die daarnaar den naam van bevaarplaatsen van voedsel of voorraadkamers ontvangen hebben. Later verlaten zij deze organen weer om naar de plaatsen van verbruik, nl. naar de bloemknoppen enz., te worden vervoerd.

Zie over bevaarplaatsen van voedsel en reserveclose: de Vries, leerboek der plantenphysiologie; tweede druk., blz. 206.
Zie ook hoogeboter, Jaarb., V, blz. 277 (Raphanus sativus).

Is de voorraad aanzienlijk, is het kapitaal groot, dan kan de plant ook groote, honigrijke, riekende bloemen vormen en veel insecten aanlokken: kruisbevruchting door insecten wordt de regel. Indien de voorraad daarentegen gering is moet de plant met hare schaarsche middelen zuiniger te werk gaan: de opofferingen die zij kan doen zijn zoogering, dat zij niet voldoende zijn om insecten aan te lokken. Bijgevolg blijft de plant van insectenbezoek volkomen of bijna volkomen verstoken: zij wordt genoodzaakt zich zelf te bevruchten.

Men kan aldus de insectenbloemige planten in twee groepen verdeelen: de *kapitalisten*, die over een welgevulde voor-
raadkamer beschikken, die de noodige uitgaven kunnen doen om insecten aan te lokken en door deze dieren regelmatig kruisbevrucht worden; — en de proletariërs, die reeds bloeien als het noodige kapitaal nog niet is bijeengebracht, die derhalve honig en andere lokmiddelen grootendeels of volkomen moeten ontberen, en bijgevolg van de voordeelen der kruisbevruchting verstoken blijven.

Uit dit oogpunt kunnen wij een veel groter aantal feiten verklaren dan door Warming’s hypothese.

Al onze boomen en heesters zijn kapitalisten bij uittrekkingsheyt: deze planten bloeien gewoonlijk voor de eerste maal als zij verscheidene jaren oud zijn, nadat zij den noodigen tijd hebben gehad om een aanzienlijke hoeveelheid reservesstoffen in hare voorraadkamers op te hoopen. De bloemen van al onze boomen en heesters (de windbloemige soorten daargelaten) lokken veel insecten aan, en kruisbevruchting is de regel. — Verreweg de meeste overblijvende planten behooren eveneens tot de groep der kapitalisten, maar hier is de voorraad reservesstoffen in vele gevallen minder aanzienlijk dan bij de boomen en de heesters: het zijn minder rijke kapitalisten. De bloemen der meeste overblijvende planten lokken talrijke insecten aan: deze planten zijn nog rijk genoeg om aan hare bloemen een voldoende hoeveelheid honig, riekende stoffen, enz. te schenken; kruisbevruchting door insecten is de regel.

— Onder de kruidachtige planten die slechts eenmaal bloeien (monocarpische soorten) worden nog veel kapitalisten aangetroffen. De meeste twejarige soorten zijn kapitalist: gedurende het eerste jaar van haar bestaan vormen zij een kapitaal. Zij bloeien gedurende het tweede jaar en het kapitaal wordt alsdan verbruikt om vruchten en zaden te vormen; daarna sterft de plant af. Het kapitaal is echter groot genoeg om gedeeltelijk besteed te worden aan weelde-uitgaven (honig, honigbehouders, enz.) die moeten dienen om insecten aan te
lokken, zonder de voeding der vruchten en der zaden te benadeelen. Dit is o. a. het geval met Daucus, Pastinaca, een aantal Distels en veel andere tweejarige soorten; deze planten worden door insecten veel bezocht: kruisbevruchting is bij haar de regel. — Onder de eenjarige en vooral onder de ephemere planten (1) zijn de meeste soorten proletariërs: bij deze planten is de levensduur tot een minimum verkort; zij bloeien als het ware te vroeg, alvorens zij een voldoende kapitaal hebben gevormd. Al de reservestoffen waarover zij beschikken, moeten voor de zaden voorbehouden worden. De plant is te arm om de voordeelen der kruisbevruchting te koopen. De hoeveelheid honig, riekende stoffen en stuifmeel die zij kan opofferen om insecten aan te lokken is over 't algemeen te gering om wezenlijke diensten te bewijzen; de bloemen zijn klein, doof gekleurd en worden door insecten nooit of schier nooit bezocht: zelfbevruchting is de regel. Alchemilla arvensis, Scleranthus annuus, Illecebrum verticillatum, Peplis Portula, Radiola linoides zijn typische proletariërs. — Het verschil tusschen proletariërs en kapitalisten met betrekking tot de bestuivingswijze wordt zeer in 't oog springend als men een zeker aantal kapitalistische soorten met verwante proletarische soorten vergelijkt. In onderstaande overzicht geven wij een aantal voorbeelden:

<table>
<thead>
<tr>
<th>Kapitalisten</th>
<th>Proletariërs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Veel insectenbezoek; bloemen met aanzienlijke lokmiddelen uitgerust; kruisbevruchting de regel)</td>
<td>(Weinig of geen insectenbezoek; bloemen klein, volkomen of bijna volkomen van lokmiddelen verstoken; zelfbevruchting de regel).</td>
</tr>
<tr>
<td>Convolvulus-soorten 2</td>
<td>Cuscuta-soorten 0 (2)</td>
</tr>
</tbody>
</table>

(1) Planten, die zich ieder jaar in twee of meer successieve generatien voordoen.
(2) Cuscuta europaea is een overblijvende kapitalist die zich vegetatief vermeerderd; hare bloemen zijn geurig en veel groter dan bij de inheemsche Cuscuta-soorten, die eenjarig en proletarisch zijn.
De klasse der kapitalisten bestaat uit polycarpische planten (1), nl. boomen, heesters en kruidachtige polycarpische soorten, en uit een zeker aantal monocarpische soorten, nl. de meeste tweejarige en enkele eenjarige soorten. — Onder de proletariërs treffen wij verreweg de meeste eenjarige en ephemere monocarpische soorten aan.

Zeer veel polycarpische kapitalisten hebben vegetatieve vermeerderingsmiddelen, terwijl de monocarpische soorten (kapitalisten zoowel als proletariërs) zich niet vegetatief vermeerderen.

Tusschen kapitalisten en proletariërs komen overgangsvormen voor: Geranium columbinum, Myosotis caespitosa, Vicia sativa, enz. staan in de groep der kapitalisten op de laagste sport; zij kunnen bijna als proletariërs beschouwd worden.

Tusschen exemplaren van een enkel soort kunnen soms aanzien-

(1) Planten die verscheidene malen zaad dragen.

Voor enkele soorten schijnt onze theorie niet geldig te zijn. Het geslacht Epilobium bestaat in ons gebied uitsluitend uit kapitalisten: E. angustifolium is een rijke kapitalist, met groote bloemen die veel bezocht en schier altijd kruisbevrucht worden. Epilobium tetragonum, roseum, enz. zijn minder rijk aan kapitaal en hunne bloemen zijn dan ook kleiner, maar deze bloemen kunnen nochtans onmogelijk als proletarische bloemen gelden, en toch worden zij door insecten schier nooit bezocht. Zelfbestuiving is de regel en grijpt vóór het ontluiken der bloem plaats. Dit verschijnsel kunnen wij niet verklaren. — Bij Epilobium hirsutum schijnen verschillende variëteiten of rassen te bestaan.

Een merkwaardig geval wordt bij de soorten van het geslacht Euphorbia waargenomen: hier hebben wij: 1° polycarpische kapitalisten die zich naar den regel gedragen, veel insectenbezoek ontvangen en wegens de volkomen protérogynie der schijnbloemen zelfonvruchtbaar zijn (E. dulcis, amygdaloïdes, enz.); - 2° monocarpische proletariërs, die schier nooit door insecten bezocht worden: b. v. E. Peplus, exigua, helioscopia. De schijnbloemen dezer proletariërs zijn echter volkomen protérogynisch; zij kunnen zich zelf niet bevruchten. Nochtans zijn deze planten steeds vruchtbaar. Misschien grijpt hier apogamie plaats. — (Het is misschien niet onbelangrijk te doen opmerken dat sommige Euphorbia-soorten zich met betrekking tot de kieming zonderling gedragen: de kieming van E. exigua grijpt eerst negen jaar na de uitzaaing plaats; de zaden van E. Cyparissias kiemen eerst vier à zeven jaar na de uitzaaing (1).
Bij de windbloemige planten is het transportmiddel van het stuifmeel de voortgedreven lucht: wij mogen aannemen dat kruisbevruchting dus overal en altijd zal mogelijk zijn, want het transportmiddel ontbreekt nooit. Daarenboven worden betrekkelijk weinig opofferingen vereischt om het overbrengen van het stuifmeel te verzekeren. — Bij de insectenbloemige planten is kruisbevruchting slechts mogelijk door de tusschenkomst van gekorvene dieren, die bij ongunstig weder in hunne schuilplaatsen verborgen blijven, en die daarenboven op sommige plaatsen (b.v. in moerassen) weinig talrijk zijn: hier kan dus niet altijd op het transportmiddel van het stuifmeel gerekend worden. Daarenboven is de prijs dien de plant voor het overbrengen van het stuifmeel moet betalen aanzienlijker dan bij de windbloemige soorten. Bij de windbloemen wordt de prijs betaald in den vorm van stuifmeel, dat in groote hoeveelheid verloren gaat, en van groote stempels die het stuifmeel moeten opvangen; bij de insectenbloemen zijn de stempels doorgaans kleiner en het verlies aan stuifmeel is gewoonlijk geringer, maar de bloem moet honig, riekkende stoffen en (misschien) groote bloembekleedels vormen.

Naar aanleiding van deze beschouwingen mogen wij het waarschijnlijk achten, dat wij onder de windbloemigen veel talrijker gevallen van kruisbevruchting zullen aantreffen dan onder de insectenbloemigen; — deze vooronderstelling wordt in 't algemeen door de waarneming der feiten gestaafd.

In ons gebied wordt de klasse der windbloemigen vertegenwoordigd door 215 soorten, die tot 25 verschillende familieën behooren. Bij negentien deze familieën is zelfbevruchting door volkomen dichogamie, ofwel door de eenslachtigheid der bloemen in de meeste gevallen onmogelijk, nl. bij de Potamogetonaceeën, Juncaginaceeën, Typhaceeën, Sparganiaceeën, Cyperaceeën, Araceeën (Acorus), Plantaginaceeën, Oleaceeën (Fraxinus), Betulaceeën, Corylaceeën, Cupuliferen,
Myricaceeën, Salicaceeën (*Populus*), Urticaceeën, Cannabinaeeën, Euphorbiaceeën (*Mercurialis*), Haloragidaceeën, Hippuridaceeën en Rosaceeën (*Poterium*). — Bij *Artemisia* (Compositen) is zelfbestuiving mogelijk, maar kruisbestuiving is de regel. — Onder de Gramineeën, Juncaceeën, Chenopodiaceeën, Amarantaceeën en Polygonaceeën is kruisbestuiving eveneens de gewone regel en bij vele soorten zelfs de eenige mogelijke bevruchtingswijze, maar in deze familiën treffen wij nochtans een zeker aantal soorten aan, bij welke aanpassingen tot zelfbestuiving schijnen te bestaan. Voorbeelden: de bloemen van sommige Gramineeën blijven alle of ten deele gesloten (*Leersia, Hordeum*) of gaan slechts bij gunstig weder open (*Bromus secalinus*); bij een aantal *Juncus*-soorten (o. a. *J. bufonius*) blijven de bloemen alle of ten deele (althans onder ongunstige omstandigheden) gesloten. Bij sommige Polygonaceeën (*Rumex*-soorten) eindelijk schijnt zelfbevruchting de regel te zijn.

Onder de windbloemige planten worden dus zeer weinig soorten aangetroffen, die de voordeelen der kruisbevruchting hebben laten varen — Onder de insectenbloemigen is kruisbevruchting daarentegen bij talrijke soorten onmogelijk of bijna onmogelijk geworden (niet bij gebrek aan insecten, maar bij gebrek aan lokmiddelen) zooals hooger werd medegedeeld.

Het is opmerkenswaardig dat verreweg de meeste windbloemige planten van ons gebied polycarpische kapitalisten zijn, en dat zeer vele zich vegetatief kunnen vermeerderen; proletariërs (eenjarige of ephemere monocarpische soorten) zijn onder de windbloemigen weinig talrijk, en worden bijna uitsluitend gevonden in die familiën, waarin ook voorbeelden van zelfbevruchting voorkomen (Gramineeën, Juncaceeën, Chenopodiaceeën (1)).

(1) Uitzonderingen: *Mercurialis annua* is monocarpisch en zelffruchtabiel (evenals de proletarische *Euphorbia's*); deze plant kan echter
Wij willen thans onderzoeken *op welke wijze het plantenproletariaat is ontstaan.*

Verreweg de meeste proletariërs onzer flora zijn planten die als onkruid op akkerland groeien. Telkens proletariërs en kapitalisten tegenover elkander staan in den strijd voor het bestaan worden de proletariërs op den duur versmacht en uitgeroeid. In onze beschrijving van het Kempisch gedeelte van Vlaanderen (zie hooger) hebben wij de aandacht gevestigd op een aantal verschijnselen, die bewijzen dat het voortbestaan van de meeste proletariërs in ons gebied op den duur niet denkbaar is zonder de tusschenkomst van den mensch.

Op het akkerland, waar de meeste kapitalisten door de spade en den ploeg ten onderen worden gebracht, kunnen alleen planten leven, waarvan de levensduur *zeer kort* is. Aan deze planten wordt niet den noodigen tijd gelaten om een voldoende kapitaal reservestoffen bijeen te verzamelen; zij worden derhalve genoodzaakt hare uitgaven tot het volstrekt noodige te beperken: het zijn proletariërs. Wij mogen het waarschijnlijk achten dat, in ons gebied, *bijna al de proletariërs nakomelingen zijn van kapitalisten, die hun levensduur genoeg hebben kunnen verkorten om op akkerland te leven.*

Wij mogen van een anderen kant aannemen dat iedere omstandigheid, die een *voldoende* verkorting van den levensduur der planten veroorzaakt, proletariërs kan doen ontstaan. In ons gebied is de *mensch,* die het akkerland (en ook de oevers van slooten enz.) met vrij korte tusschenpoozen omwerkt, de *voornaamste* factor die tot het onstaan van een

in half-kapitalistische exemplaren voorkomen. — Verscheidene *Rumex-*sorten zijn *polycarpisch* en kapitalist, en nochtans schijnen zij de voordeelen der kruisbevruchting te hebben laten varen: dit kunnen wij niet verklaren. Hier zijn (evenals bij *Leersia* enz.) andere factoren in het spel.
plantenproletariaat aanleiding heeft gegeven, want buiten de culuurgronden worden in ons gebied schier nergens proletariërs aangetroffen.

De volgende waarneming levert eens te meer het bewijs dat het voortbestaan der proletariërs van de tusschenkomst van den mensch afhangt: te Meirelbeke bij Gent werd, voor een vijftiental jaren, een perceel sparrenbosch uitgerooid; daarna werd het terrein — ongeveer één hectare — beploegd en met koren bezaaid, en een aantal gewone akkerproletariërs kwamen tusschen het koren voor den dag. Na een paar jaren werd de cultuur verlaten, en sindsdien werd het terrein aan zich zelf overgelaten. Aan de zuidzijde van het perceel loopt een heideachtigen boschweg, waar de plantengroei grootendeels uit Calluna vulgaris bestaat. Deze plant nu heeft zich sedert een tiental jaren, meer en meer over het beschikbare terrein verspreid; van jaar tot jaar rukt zij verder voort; ongeveer de helft van het terrein, dat eenmaal met cultuurplanten en proletariërs bedekt was, heeft thans hetzelfde uitzicht als de oorspronkelijke heiden, die men in de provinciën Antwerpen en Limburg aantreft: Calluna vulgaris, een kapitalist, heeft al de proletariërs weggeveegd. In het gedeelte van het terrein, dat het verst van den heideachtigen weg verwijderd is, en waar Calluna nog niet overheersend is, zijn de proletariërs eveneens sedert verscheidene jaren verdwenen; zij werden uitgerooid door kapitalisten (Teucrium Scorodonia, Hieracium, Hypericum-soorten, enz.) die vermoedelijk op hunne beurt door Calluna zullen overrompeld worden. — De verspreiding van Calluna geschiedt voornamelijk in Noordoostelijke richting, dus in de richting van den Zuidwestenwind, die in ons gebied gedurende het grootste gedeelte van het jaar heerscht.

Moest de mensch verdwijnen, dan zouden de meeste proletariërs na weinige jaren eveneens verdwijnen: er is ons geen enkel plekje bekend, waar zij niet door kapitalisten zouden versmacht worden (zie hooger, de beschrijving van ons gebied). — Zeer waarschijnlijk is de tusschenkomst van den mensch, nl. de onbewuste teeltkeus, die hij heeft gepleegd, niet de eenige oorzaak van de verkorting van den levensduur; andere factoren hebben daarbij een rol kunnen spelen en
proletariërs doen ontstaan. De invloed dezer onbekende factoren is echter ongetwijfeld zeer beperkt geweest, want proletariërs, die kunnen voortbestaan op gronden, welke niet van tijd tot tijd omgewerkt worden, zijn in ons gebied zeer weinig talrijk. (*Drosera; Cicendia filiformis*, misschien enkele *Filago*-soorten, *Radiola linoides*; enz.)

Onze hypothese omtrent het ontstaan der proletariërs geeft een bevredigende verklaring van een aantal bijzonderheden, die wij in de constructie van de bloemen dier planten constateerden. De meeste proletariërs scheiden honig af, maar de honigafscheiding is zoo gering, dat zij daardoor nutteloos wordt; vele proletariërs hebben een gekleurde bloemkroon, maar deze bloemkroon is zoo klein, dat zij als lokmiddel geen diensten bewijst; de bloemen der meeste proletariërs verspreiden een reuk; deze reuk is echter zoo zwak, dat men talrijke bloempjes moet bijeenbrengen om hem waar te nemen; enz. Al deze inrichtingen zijn nutteloos; wij moeten ze beschouwen als overblijfsels van inrichtingen die bij de rijke voorouders der proletariërs veel volmaakter waren en bijgevolg insecten konden aanlokken.

In ons gebied, waar de landbouw *sedert eeuwen* een hoogen trap van volmaaktheid heeft bereikt, waar de akkers schier nooit braak liggen en met veel zorg worden gewied, zijn de voorwaarden tot het ontstaan van proletariërs zeer gunstig. In sommige landen, waar de cultuurgronden met minder zorg worden omgewerkt en gewied, heeft het akkeronkruid wellicht in geringere mate den proletarischen vorm aangenomen. Het ware hoogst belangwekkend het onkruid, dat op de akkers van minder beschaafde volkeren (Arabieren, Kabylen; — Negers, enz.) voorkomt, met ons onkruid *uit een biologisch oogpunt* te vergelijken.

Uit de waargenomen feiten en uit de bovenstaande beschouwingen blijkt, dat het voortbestaan van de meeste
proletariërs slechts mogelijk is op gronden, waar steeds herhaalde omwentelingen en verwoestingen het leven der kapitalisten onmogelijk maken. Dergelijke levensvoorwaarden zijn echter voor de proletariërs zelven zeer noodlottig. Bij ieder omwerking van den grond en bij ieder wieding grijpt een slachting plaats: telkens worden duizende en nogmaals duizende proletariërs ten onderen gebracht.

De meeste akkerproletariërs zijn echter buitengewoon vruchtbaar, en kunnen derhalve, ondanks de steeds herhaalde slachtingen, behouden blijven. — Uit dit oogpunt kunnen wij wellicht verklaren waarom zoo weinig windbloemige soorten onder de proletariërs aangetroffen worden. Wij zullen verder (§ V) aantoonen dat de meeste windbloemigen eenzadige vruchten hebben, terwijl de vruchten van veel insectenbloemige planten veelzadig zijn. Dientengevolge is de vruchtbaarheid der windbloemigen over 't algemeen geringer dan die der insectenbloemige soorten. Misschien werden veel windbloemige soorten door haar geringere vruchtbaarheid verhinderd zich te adapteeren tot de voorwaarden, die op het akkerland heerschen, en konden zij derhalve den proletarischen vorm niet aannemen.

Wij moeten nochtans doen opmerken dat sommige akkerproletariërs zeer vruchtbaar zijn ofschoon zij eenzadige vruchten hebben; b. v. Polygonum Persicaria en Lepathifolium, Chenopodium album, Alchemilla arvensis, enz. Bij deze soorten zijn de bloemen zeer talrijk, en daardoor wordt de vruchtbaarheid vermeerderd. — Hier dient nog bijgevoegd te worden dat de meeste windbloemigen in of aan het water of althans op vochtige gronden groeien (zie hooger, blz. 420), terwijl de cultuurgronden, althans in ons gebied, over 't algemeen droge terreinen zijn. Deze omstandigheid heeft waarschijnlijk eveneens bijgedragen om talrijke windbloemige planten uit de akkers te verbannen en om ze van den invloed van den mensch te vrijwaren.
Op de akkers worden enkele kapitalisten aangetroffen, die met buitengewoon sterke vegetatieve vermeerderingsmiddelen uitgerust zijn, en die derhalve onder dezelfde voorwaarden als de proletariërs kunnen voortbestaan. Dit is onder anderen het geval met *Triticum repens, Muscari botryoides, Mentha arvensis, Tussilago Farfara*, enz.

IV.

Over de uitstrooiing van het stuifmeel bij de windbloemige planten.

Verreweg de meeste bloemenbiologen hebben zich schier uitsluitend op de studie der insectenbloemen toegelegd: een aantal wonderbare, buitengewoon ingewikkelde mechanismen, die het overbrengen van het stuifmeel door insecten bevorderen, zijn reeds beschreven geworden. De windbloemen hebben daarentegen veel minder de aandacht op zich getrokken. Men weet, in 't algemeen, dat de windbloemen droog, poederig stuifmeel hebben, dat de organen die het stuifmeel voortbrengen schier altijd zeer beweeglijk zijn en door een zwakke luchtstroom tot schommelen kunnen gebracht worden, en dat de stempels meestal groter zijn dan bij de insectenbloemen. Men weet ook dat de windbloemen geen honig voortbrengen, geen reuk verspreiden, en dat zij doorgaans van groote bloembekleedselen verstoken zijn. De meeste bloemenbiologen schijnen verder de meening toege- dan, dat de uitstrooiing van het stuifmeel bij deze planten als het ware blindelings en zonder eenigen vasten regel geschiedt.

Als men echter een zeker aantal windbloemen aandachtig onderzoekt en vergelijkt, ondervindt men dat de uitstrooiing van haar stuifmeel beheerscht wordt door bepaalde we t t e n, die in hoofdzaak dezelfde zijn als die, welke de verspreiding
der zaden door den wind beheerschen, zooals wij verder zullen zien.

Deze wetten kunnen geformuleerd worden als volgt:
1° het stuifmeel wordt in vrijheid gesteld op zulke wijze dat het niet rechtstreeks op den grond kan vallen; bij windstil weder blijft het onbepaald in de stuifmeelbehouders liggen; — 2° de stuifmeelvoorraad van iedere bloem wordt niet op een keer, maar geleidelijk, bij kleine gedeelten, door de lucht medegevoerd. (1)

Laten wij deze stellingen door enkele voorbeelden toelichten:

Bij den Gagel (*Myrica Gale*; zie hooger, Bot. Jaarb., VI, blz. 128) staan de mannelijke bloemen in katjes. Ieder katje bestaat uit een spil, waarop een zeker aantal *gewelfde* schubben ingeplant zijn; in den oksel van iedere schub staat een mannelijke bloem, die uit een viertal meeldraden zonder bloemdek bestaat. *Vóór* den bloei (Februari-Maart) zijn de schubben aangedrukt; zij bedekken elkander dakpansgewijze, en verbergen volkomen de bloemen die in hare oksels staan; het geheele katje heeft het uitzicht van een langronden, bruinachtigen knop. Als de bloei begint laten de schubben een weinig van elkander los, en aldus ontstaan een aantal smalle spleten tusschen hare randen. Tevens gaan de helmknoppen open; zij ontlasten hun inhoud, en het droge stuifmeel van iedere bloem verzamelt zich in de holle basis der corresponderende schub. In dezen toestand schijnt het katje, bij een oppervlakkig onderzoek, nog niet volkomen ontloken te zijn; de bloemen zijn immers nog geheel tusschen de schubben weggedoken. Maar uit een biologisch oogpunt zijn de bloemen

(1) De hier geformuleerde wetten werden, met betrekking tot de verspreiding der zaden, door HILDEBRANDT ontdekt.
reeds uitgebloed: de meeldraden zijn reeds geledigd en gedeeltelijk verdroogd, en hebben hun stuifmeel aan de schubben toeovertrouwd. Telkens het katje nu heen en weer wordt geschud, wordt een klein stuifmeelwolkje, dat door de sleten tusschen de schubben ontsnapt, in vrijheid gesteld. Het geheele katje gedraagt zich als een peperhuisje, waarvan de inhoud door herhaaldelijk schudden uitgestrooid wordt. Als de katjes bloeien heeft de plant nog geen bladen en hare dunne takjes vangen weinig wind; de spil der peperhuisjes is vrij kort en stijf; dientengevolge is er een vrij sterke luchtstroom nodig om een aanzienlijke hoeveelheid stuifmeel in vrijheid te stellen. Bij iederen windstoot zal slechts een klein gedeelte van het stuifmeel medegevoerd worden, en de uitstrooiing van het stuifmeel zal langen tijd duren. De toppen der schubben verwijderen zich echter meer en meer van de spil, en tevens worden de sleten breeder: het stuifmeel dat tusschen de schubben ligt, wordt nu meer en meer aan de werking van den wind blootgesteld, en een zwakkere luchtstroom wordt nu voldoende om het peperhuisje te ledigen. Eindelijk zijn de schubben horizontaal afstaande of zelfs iets naar onderen gericht en de spil van het katje wordt slapper; in dezen toestand is het katje, onder gewone omstandigheden, reeds volkomen geledigd; indien er nochtans stuifmeel in de holle schubben is blijven liggen zal het nu, door de geringste bewegingen der lucht, weggeblazen worden. — De voordeelen van de zoo even beschreven uitstrooiingswijze liggen voor de hand: daar het verschijnsel vrij langen tijd duurt, zal de wind nu eens sterk, dan weder zwak zijn, nu eens in deze, dan weder in gene richting blazen, het stuifmeel zal aldus in verschillende richtingen en op verschillende afstanden terecht komen, de stuifmeelvoorraad van het katje (en van de geheele plant) zal zoo gelijkmatig mogelijk over een vrij groot terrein uitgezaaid worden. Al de stempels, die zich
binnen de grenzen van het uitzaaingsterrein bevinden, zullen aldus zoo volkomen mogelijk in de gelegenheid gesteld worden om stuifmeelkorrels te ontvangen.

Als de katjes van den Gagel aan de werking van den wind onttrokken worden, — als men ze b. v. in een gesloten kamer brengt — behouden zij hun stuifmeel weken en zelfs maanden lang (dit hebben wij proefondervindelijk geconstateerd), en de hoeveelheid stuifmeel, die rechtstreeks uit de katjes op den grond kan vallen, is onbeduidend. Zelfs bij het einde van den bloei, als de schubben zich volkomen uitgespreid hebben, vormt ieder schub een napje, waarin het stuifmeel, bij volkomen windstilte, onbepaald blijft liggen. Het spreekt van zelf dat inrichtingen, waardoor het uitvallen van het stuifmeel verhinderd wordt, zeer voordeelig zijn, want stuifmeel dat eenmaal op den grond ligt mag als verloren beschouwd worden.

Bij den Gagel zijn het de schubben der katjes die als stuifmeelbehouders fungeeren; dit is eveneens met een aantal andere windbloemige Amentaceëën het geval (1), maar niet bij alle soorten op dezelfde wijze, en niet overal op een zoo volmaakte wijze als bij den Gagel. Zie o. a. onze beschrijvingen van Betula (N° 396), Alnus (397), Corylus (398), Carpinus (399), enz. — Bij Triglochin (N° 51; zie Bot. Jaarb., V.) wordt het stuifmeel, dat uit de helmknoppen valt, in de holle dekbladen der bloemen onlast; bij Potamogeton (N° 6 en volgende; zie Bot. Jaarb., V.) zijn het de lepelvormige aanhangselen der helmbindsels (schijn-bloemdek) die de rol van stuifmeelbehouders vervullen, — enz.

Bij vele windbloemige planten doen de helmknoppen zelf als stuifmeelbehouders dienst: ieder stuifmeeltakje gaat open met een spleet, die zich eerst slechts over een klein gedeelte

(1) Kerner von Marilaun (Pflanzenleben, II) heeft hierop de aandacht gevestigd.

Kerner von Marilaun heeft reeds de aandacht der biologi- gen op dergelijke verschijnselen gevestigd, en het valt niet te betwijfelen dat een grondige studie van andere windbloemen nog veel interessante feiten van gelijken aard zal aan den dag brengen.

De droge veelzadige vruchten gaan gewoonlijk op zulke wijze open, dat hare zaden niet rechtstreeks op den grond kunnen vallen, en dat zij niet alle te gelijkertijd, maar successievelijk uitgezaaid worden. Een der fraaiste voorbeelden wordt door de vrucht van *Papaver* opgeleverd. Deze vrucht
heeft de gedaante van een rondachtige of peervormige doos, met talrijke zaden, die aan wandstandige lijsten vastgehecht zijn. Als de zaden rijp zijn komen zij van de dragers los; zij verzamelen zich op den bodem der doos, terwijl er in het bovenste gedeelte van den wand een aantal nauwe openingen (poriën) ontstaan. De zaden kunnen van zelf niet ontsnappen; als de rijpe vrucht, die door den verdroogden stengel gedragen wordt, door den wind heen en weer geschud wordt, ontsnapt er nu en dan een zaadje door een der poriën. Het duurt soms maanden alvorens de vrucht (peperhuisje) geheel geledigd is, en de zaden worden in verschillende richtingen en op verschillende afstanden van de moederplant uitgezaaid, naar gelang van de richting en van de sterkte van den wind. Wij hebben het resultaat van die uitstrooiingswijze op de volgende wijze nagegaan: in onzen tuin te Melle stond een Papaver-plant (P. somniferum) met een drietal vruchten. De grond werd rondom de plant gewied, en de verdroogde stengels met de vruchten bleven den geheelen winter staan zonder aangeraakt te worden. In de lente van het volgend jaar zag men honderde Papaver-plantjes opslaan. Deze plantjes nu waren vrij gelijkmatig verspreid over een oppervlak waarvan de middellijn 2 à 3 m. bedroeg, met de verdroogde moederplant in het centrum, — bijna zoo gelijkmatig als waren zij door de hand van een zaaiert uitgestrooid. Waren de zaden daarentegen, onder den invloed der zwaartekracht, eenvoudig uit de vruchten gevallen, dan waren zij alle dicht bijeen blijven liggen, en later zouden honderde plantjes elkander verdrongen hebben en grootendeels ten gronde gegaan zijn; waren al de zaden te gelijker tijd, door een enkelen windstoot in vrijheid gesteld, dan zouden zij alle in dezelfde richting op den grond geworpen zijn, en dit ware eveneens nadeelig geweest, ofschoon misschien in geringere mate dan in de eerste onderstelling. De verspreiding der zaden wordt hier
beheerscht door dezelfde wetten als wij hooger voor de uitstrooiing van het stuifmeel hebben leeren kennen: in de beide gevallen wordt een blinde kracht, n. l. de wind, tot het volbrengen van een regelmatigen arbeid aangewend.

De meeste droge, veelzadige vruchten vertoonen inrichtingen, waardoor de hooger vermelde resultaten verkregen worden. Deze inrichtingen vertoonen veel verscheidenheid, en zijn niet alle even volmaakt. De zoo even beschreven Papaver-vrucht is een van de volmaaktste zaaimachines die in het plantenrijk bekend zijn, en kan, in dit opzicht, nevens de mannelijke katjes van Myrica Gale geplaatst worden. Een tweede voorbeeld mag hier nog bijgevoegd worden (1): de rijpe vruchten van Delphinium, Aconitum en andere Ranunculaceëen hebben de gedaante van rechtopstaande kokers, die in hun bovenste gedeelte met een spleet opengaan. In het begin is de spleet tot een derde of een vierde van de totale lengte der vrucht beperkt; de rijpe zaden liggen op den bodem der vrucht en kunnen slechts ontsnappen als deze heen en weer geschud wordt. De opening is hier echter wijder dan bij Papaver, en in sommige gevallen breidt de spleet zich later naar onderen uit, en gaat de koker over zijn geheele lengte open, op dezelfde wijze als de helmknoppen van Secale, enz.

Hier dient nog bijgevoegd te worden dat bij sommige planten, de rijpe vruchten plotseling openspringen, en hare zaden wegslingereren: dit is onder anderen het geval met Impatiens, vele Papilionaceëen, enz. Wij kennen eveneens enkele planten, waarvan de bloemen losspringen en het stuifmeel wegslingereren, b. v. Urtica (zie hooger, Nr 405-406).

Uit de bovenstaande voorbeelden blijkt welk merkwaardig

(1) In Hildebrandt's klassieke verhandeling over de verspreiding der planten worden veel andere voorbeelden vermeld.
Parallelisme bestaat tusschen twee levensverrichtingen, die nochtans geheel onafhankelijk zijn van elkander. Men blijft in bewondering stilstaan als men nagaat hoeveel verscheidenheid er heerscht in de middelen die de Natuur gebruikt om in twee zoo verschillende gevallen een doel van gelijken aard te bereiken, en hoeveel eenheid er tevens heerscht in het algemeene plan.

V.

Over de betrekkingen tusschen den bouw der vruchten en de transportmiddelen van het stuifmeel.

Bij de windbloemigen, en ook bij de planten waarvan de bestuiving door het water geschiedt, worden de stuifmeelkorrels *uitgestrooid* en ieder afzonderlijk op den stempel gebracht: dientengevolge gaat een groot gedeelte van het stuifmeel verloren, en ieder stempel kan slechts op een klein getal mannelijke kiemcellen rekenen. Bij de insectenbloemige planten wordt het stuifmeel daarentegen toevertrouwd aan bloemenbezoekende dieren, die meer of minder regelmatig van de eene bloem naar de andere vliegen: het transportmiddel van het stuifmeel is hier dus veel zekerder. Niet alleen is het verlies geringer, maar ieder stempel ontvangt *een groter aantal stuifmeelkorrels* dan bij de windbloemige planten, daar het lichaam der insecten schier altijd met talrijke stuifmeelkorrels bepoeierd is. Naar aanleiding daarvan mogen wij het *a priori* waarschijnlijk achten dat de stampers der windbloemen, over 't algemeen, minder zaadknoppen zullen voortbrengen dan de stampers des insectenbloemen. Ieder zaadknop heeft immers ten minste één stuifmeelkorrel tot zijne bevruchting nodig: wij mogen dus vooronderstellen dat er een zeker proportionaliteit bestaat.
tusschen het getal der stuifmeelkorrels die op den stempel gebracht worden, en het getal der zaadknoppen die in den stamper zitten.

Laten wij onderzoeken in hoeverre onze onderstelling door de feiten bevestigd of tegengesproken wordt:

De EENZAADLOBBIGEN worden in ons gebied vertegenwoordigd door ongeveer 200 soorten, die tot 16 verschillende familiën behooren, te weten:

<table>
<thead>
<tr>
<th>Familie</th>
<th>Wind- of Waterbloemig??</th>
<th>In iederen stamper</th>
<th>In iedere bloem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemnaceeën</td>
<td>Windbloemig</td>
<td>1-7 zaden (1)</td>
<td>1 stamper</td>
</tr>
<tr>
<td>Potamogetonaceeën</td>
<td></td>
<td>1 zaad</td>
<td>1-4 stampers</td>
</tr>
<tr>
<td>Juncaginaceeën</td>
<td></td>
<td>1 »</td>
<td>6 stampers</td>
</tr>
<tr>
<td>Typhaceeën</td>
<td></td>
<td>1 »</td>
<td>1 stamper</td>
</tr>
<tr>
<td>Sparganiaceeën</td>
<td></td>
<td>1 »</td>
<td>1 »</td>
</tr>
<tr>
<td>Cyperaceeën</td>
<td></td>
<td>1 »</td>
<td>1 »</td>
</tr>
<tr>
<td>Gramineeën</td>
<td></td>
<td>1 »</td>
<td></td>
</tr>
<tr>
<td>Juncaceeën</td>
<td></td>
<td>3 zaden</td>
<td>1 »</td>
</tr>
<tr>
<td></td>
<td></td>
<td>talrijke zaden</td>
<td></td>
</tr>
<tr>
<td>Araceeën</td>
<td></td>
<td>1-3</td>
<td>1 »</td>
</tr>
<tr>
<td>Acorus</td>
<td></td>
<td>1-enkele »</td>
<td></td>
</tr>
<tr>
<td>Arum</td>
<td>Insectenbloemig</td>
<td>1 »</td>
<td></td>
</tr>
<tr>
<td>Calla</td>
<td></td>
<td>talrijke »</td>
<td></td>
</tr>
<tr>
<td>Hydrocharidaceeën</td>
<td></td>
<td>1 zaad</td>
<td>talrijke stampers</td>
</tr>
<tr>
<td>Alismaceeën</td>
<td></td>
<td>talrijke zaden</td>
<td>6 »</td>
</tr>
<tr>
<td>Butomaceeën</td>
<td></td>
<td>deurzaans talrijke zaden</td>
<td>1 stamper</td>
</tr>
<tr>
<td>Liliaceeën</td>
<td></td>
<td>talrijke zaden</td>
<td>1 »</td>
</tr>
<tr>
<td>Amaryllidaceeën</td>
<td></td>
<td>talrijke »</td>
<td>1 »</td>
</tr>
<tr>
<td>Fragnaceeën</td>
<td></td>
<td>talrijke »</td>
<td></td>
</tr>
<tr>
<td>Orchidaceeën</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uit bovenstaande overzicht blijkt dat, onder de inheemsche Eenzaadlobbigen, de stampers der windbloemige familiën en -geslachten schier alle één zaad of een klein getal zaden voortbrengen, terwijl de stampers der insectenbloemige familiën in verreweg de meeste gevallen veelzadig zijn. De eenige uitzonderingen op deze regel zijn: onder de windbloemigen de Juncaceeën, onder de insectenbloemigen de Alismaceeën. Bij de laatstgenoemde familie zijn talrijke dicht

(1) Schier altijd één zaad.
aanengesloten eenzadige stampers tot een geheel vereenigd.

De Tweezaadlobben worden in ons gebied vertegenwoordigd door ongeveer 475 soorten, die tot de volgende familïen behooren:

<table>
<thead>
<tr>
<th>Familie</th>
<th>Windbloemig</th>
<th>In iederen stamper</th>
<th>In iedere bloem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantaginaceën</td>
<td></td>
<td>1 zaad</td>
<td>1 stamper</td>
</tr>
<tr>
<td>Litorella</td>
<td></td>
<td>doorgaans 2-4 zaden</td>
<td></td>
</tr>
<tr>
<td>Plantago</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleaceën</td>
<td></td>
<td>1 zaad</td>
<td>1 *</td>
</tr>
<tr>
<td>Fraxinus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compositen</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Artemisia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betulaceën</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Corylaceën</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Cupuliferen</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Myricaceën</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Salicaceën</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populus</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Urticaceën</td>
<td></td>
<td>1 zaad</td>
<td>1 *</td>
</tr>
<tr>
<td>Cannabinaceën</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Ulmaceën</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Ceratophyllaceën</td>
<td></td>
<td>Waterbloemig</td>
<td></td>
</tr>
<tr>
<td>Polygonaceën</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Rumex</td>
<td>Windbloemig</td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Chenopodiaceën</td>
<td></td>
<td>Schier altijd 1 zaad</td>
<td>1 *</td>
</tr>
<tr>
<td>Amaranthaceën</td>
<td></td>
<td>meerdere stampers</td>
<td></td>
</tr>
<tr>
<td>Ranunculaceën</td>
<td></td>
<td>1 zaad</td>
<td>1 *</td>
</tr>
<tr>
<td>Thalictrum p. p.</td>
<td></td>
<td>2-3 zaden</td>
<td>1 stamper</td>
</tr>
<tr>
<td>Euphorbiaceën</td>
<td></td>
<td>4 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Mercurialis</td>
<td></td>
<td>1-4 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Callitrichaceën</td>
<td></td>
<td>1 zaad</td>
<td>1 *</td>
</tr>
<tr>
<td>Haloragidaceën</td>
<td></td>
<td>2-3 zaden</td>
<td>1 stamper</td>
</tr>
<tr>
<td>Hippuridaceën</td>
<td></td>
<td>1 zaad</td>
<td>1 *</td>
</tr>
<tr>
<td>Rosaceën</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Potentieol</td>
<td></td>
<td>2-meerdere zaden</td>
<td>1 *</td>
</tr>
<tr>
<td>Convolvulaceën</td>
<td>Insectenbloem</td>
<td>4 zaden</td>
<td>1 *</td>
</tr>
<tr>
<td>Boraginaceën</td>
<td></td>
<td>talrijke zaden</td>
<td>1 *</td>
</tr>
<tr>
<td>Solaneeën</td>
<td></td>
<td>1 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Scrophulariaceën</td>
<td></td>
<td>talrijke »</td>
<td>1 *</td>
</tr>
<tr>
<td>Lentibulariaceën</td>
<td></td>
<td>talrijke »</td>
<td>1 *</td>
</tr>
<tr>
<td>Orbancheëne</td>
<td></td>
<td>talrijke »</td>
<td>1 *</td>
</tr>
<tr>
<td>Verbenaceën</td>
<td></td>
<td>4 zaden</td>
<td>1 *</td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
<td>4 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Oleaceëen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligustrum</td>
<td></td>
<td>2-4 »</td>
<td>1 *</td>
</tr>
<tr>
<td>Gentianaceëen-</td>
<td></td>
<td>talrijke »</td>
<td>1 *</td>
</tr>
</tbody>
</table>

(1) Enkele soorten zijn insectenbloemig.
(2) Zie *Addenda*, Nr 420.
(3) Apogamie? (Zie Nr 563.)
<table>
<thead>
<tr>
<th>Plantenfamilie</th>
<th>Insectenbloemig</th>
<th>In iedereen stapler</th>
<th>In iedere bloem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apocynaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubiaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprifoliaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valerianaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipsaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compositen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campanulaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobellaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primulaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ericaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypopityaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygonaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caryophyllaceaeën</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paronychiaceaeën</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portulacaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nymphaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papaveraceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumariaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruciferen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resedaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droseraceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypericaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elatinaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiliaceëu</td>
<td>Insectenbloemig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malvaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geraniaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalidaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acerineëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygalaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celastraceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquifoliaceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphorbiaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphorbia (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araliaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbelliferae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crassulaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saxifragaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onagraceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lythraceaeëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papilionaceëu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Bij sommige proletarische soorten, die schier nooit bezocht worden, grijpt wellicht apogamie plaats.
Uit dit overzicht blijkt dat de inheemsche Tweezaadlobbigen die zonder de tusschenkomst van insecten bestoven worden schier alle eenzadige stampers, of stampers met een klein getal zaadknoppen hebben, terwijl veel insectenbloemige families stampers met talrijke zaadknoppen voortbrengen. — Het geslacht *Populus* (windbloemig met veelzadigen stamper) is de eenige uitzondering.

Wij mogen dus als een algemeenen regel aannemen dat de stampers der windbloemige planten bijna steeds eenzadig (of armzadig) zijn, terwijl veelzadige stampers schier uitsluitend bij insectenbloemige planten voorkomen.

Van de twee uitzonderingen (*Juncus, Populus*) is er één die voor een bevredigende verklaring vatbaar is, n. l. *Juncus*. Wij weten immers dat bij de meeste inheemsche *Juncus*-soorten (zie Addenda, blz. 366) zelfbestuiving mogelijk is en in veel gevallen plaats grijpt. Bij deze planten wordt de bestuiving dus niet uitsluitend aan den wind toevertrouwd (hetgeen daarentegen met de meeste windbloe- migen het geval is): dientengevolge kan ieder stempel een groot aantal stuifmeelkorrels ontvangen (te meer daar deze korrels, bij de Juncaceeën, 4 aan 4 vereenigd zijn), en kunnen talrijke zaadknoppen (macrosporangia) bevrucht worden. — Wat *Populus* betreft, de planten van dit geslacht zijn wellicht nakomelingen van insecten- bloemige Salicaceeën (b. v. *Salix*) die de veelzadigheid harer voorouders behouden hebben; het spreekt echter van zelf dat een dergelijke verklaring een louter hypothese is.

Het is ook schier uitsluitend bij de insectenbloemige planten dat wij ingewikkeldere vruchtconstructies aantreffen. De eenzadige en de armzadige vruchten zijn over 't algemeen van een eenvoudig maaksel en gaan schier nooit open; de veelzadige vruchten vertoonen daarentegen, in veel gevallen, een ingewikkelden bouw (doosvruchten, hauwen, peulen, koker- vruchten, enz. enz.); zij gaan schier altijd open om haar rijpe zaden in vrijheid te stellen, en het opengaan dezer vruchten vereischt gecompliceerde inrichtingen, die bij de eenzadige vruchten ontbreken.
Wij mogen onderstellen — en dit wordt door de meeste bloemenbiologen aangenomen — dat de insectenbloemige planten, in 't algemeen, uit windbloemige planten gesproten zijn (1), en dat de algemene biologische kenmerken der insectenbloemen (reuk, honig, enz.) aanpassingen zijn tot het insectenbezoek.

Van een anderen kant mogen wij onderstellen — dit wordt eveneens algemeen aangenomen — dat de ingewikkelde constructie en de verregaande verscheidenheid der bloembekleedsels, der meeldraden, der stempels enz. die wij bij de insectenbloemige planten aantreffen, eveneens ten deele ontstaan zijn door de tusschenkomst der insecten, en een gevolg zijn van de verbazende verscheidenheid, welke deze dieren in hun lichaamsbouw, in hunne gewoonten en in hun bloemenarbeid vertoonen.

Op een gelijke wijze kunnen wij aannemen dat het ontstaan van veelzadige vruchten eerst mogelijk is geworden, nadat de insecten in de plaats van den wind, met de bestuiving der bloemen waren belast geworden. Zoolang de wind het eenige transportmiddel was, moest ieder zaadknop zijn eigen stempel hebben. Zoodra de stempels, dank aan de medehulp der insecten, een groot aantal stuifmeelkorrels konden ontvangen, werd het ook mogelijk iederen stempel met de bevruchting van talrijke zaden te belasten. Dientengevolge werd de vrucht, in een aantal plantengroepen, veelzadig: niet alleen werd hare structuur daardoor meer ingewikkeld, maar de vereeniging van talrijke zaden in één vruchtbeginsel ging hand in hand met een aantal verschillende combinatiën van vruchtbladen, zaaddragers, tusschenschott en wat dies

(1) In enkele gevallen heeft het omgekeerde plaats gehad (b. v. Artemisia, Thalictrum minus, enz.), maar dergelijke uitzonderingen ontnemen aan de hier aangehaalde hypothese niets van haar algemeene beteekenis.
meer, en er kwam aldus een verbazende verscheidenheid in den bouw der vruchten tot stand. Toen de vruchten veelzadig geworden waren moest aan een nieuwe vereischte voldaan worden: de rijzen zaden moesten van elkander verwijderd en uitgestrooid worden. Te dien einde moesten de rijpe vruchten open gaan; dit werd verwezentlich door een aantal nieuwe inrichtingen en combinatien, en daardoor werd de verscheidenheid der vruchten nog vermeerderd. — De ingewikkelde constructie en de verscheidenheid der vruchten bij de insectenbloemige planten schijnt dus een onrechtstreeks gevolg te zijn van de tusschenkomst der insecten in de bevruchting.

Als wij de hooger aangehaalde hypothesen betreffende de bloemdeelen, met de door ons gemaakte onderstelling betreffende den bouw der vruchten onder een gezichtspunt samenwatten, leeren wij de tusschenkomst der bloemenbezoekende insecten beschouwen als een onzaglijke factor in de evolutie en in de differentiatie van het phylum der zaadplanten.

Alphabetische lijst der bloemenbezoekende insecten.

Coleopteren.—Kevers. 521/131

Agriotes pallidulus, 326, 556.
 » spurator, 342.
Amara familiaris, 458, 461.
Anaspis Geoffroyi, 612.
Anthobium torquatum etc., 213, 279, 388, 472, 491, 509, 526; 620, — a 301, 424.
Anthrenus Museorum, 572, 633.

Pimpinellae, 342, 572, 612.
Apion assimile, 597.
» Craccae, 290.
Athous haemorrhoidolis, 591, 593, 626.
Attagenus Pellio, 612.
Bruchus, zie Mylabris.
Cantharis fusca, 511, 572, 592a, 593, 626.
 » livida, 572, 591.
testacea, 202, 503.
- rustica, 620.
- Zie ook Rhagonycha.
Cetonia stictica, 326, 612; - a 227.
Coccinella bipunctata (var. quadrimaculata) : 626.
- sp., a 345.
- Zie ook Micraspis.
Crypdccephalpus aureolus, 371.
Dasytes (Mesodasytes) plumbeus, 572.
- sp., 616.
Donacia, 483.
Elater, zie Agriotes, Athous, Lacon, Limonius.
Epuraeaa (Nidula) aestiva, 403, 550.
Grammoptera ruficornis, 572, 612.
Hydrothassa marginella, 472.
Lacon murinus, 342.
Leptura fulva, 338, 344, 572, 584, 593.
- livida, 344.
- (Strangalia) maculata, 303, 342, 572, 627.
- sp., 616.
Limonius aeruginosus, 362, 403, 612.
Malachi viridis etc., 344, 519; - a 99.
Melighetes Brassicae etc., 181, 458, 481, 492, 565, 597, 602, 620, 626; - a 282.
Mesodasytes, zie Dasytes.
Micraspis (Coccinella) sedecimpunctata, 469.
Mordella aculeata, 624.
Mordellistena humeralis, 572.
Mylabris (Bruchus) luteicornis, 450.
Necydalis, zie Stenopterus.
Nidula, zie Epuraeae.
Oedemera lurida, 344, 372.
Phylllobius Pyri, 326, 362.
Phyllopertha horticola, 503.
- (—) testacea (var. limbata), 501.
Stenopterus (Necydalis) rufus, 633.
Stilbus testaceus, 469.
Strangalia, zie Leptura.
Tachyporus obtusus, 597.
Trichius fasciatus, 320, 344, 572.
Trichodes alvearius, 342, 372, 572.

- Trixagus fumatus, 454, 612, 627.
- tomentosus, 454, 524, 620, 626; - a 620.
- Valgus hemipterus, 344.
Onbepaalde Coleopteren, 625.

Lepidopteren. — Vlinders.
Adela sp., 217, 519; - a 301, 424.
Anthocaris Cardamines, 344, 491, 509, 511.
Aporia Crataegi, 319, 627, 649.
Argytmnis sp., 312, 650.
Coenonympha, zie Hipparchia.
Deilephulus sp., 302.
Epinephele, zie Hipparchia.
Hesperia (lineola?) 242, 260, 278, 312, 320, 360, 376.
- (Sylvanus?) 242, 278, 312, 319, 360, 392, 441.
- sp., 610, 627, 640, 650, 656, 657, 659, 660.
Hipparchia (Pararge) Egeria, 391.
- (Epinephele) Hyperanthus, 419, 627.
- (—) Janira, 260, 312, 320, 388, 344, 376, 419, 627, 649, 650, 656.
- (Epinephele) Tithonus, 327, 391, 627.
Ino (Statics?), 312, 344, 376, 441.
Macroglossa, 302.
Papilio Machaon, 649.
Pararge, zie Hipparchia.
Rapae, 213, 272, 310, 312, 315, 318, 356, 500, 649.
 sp., 204, 264, 388, 500, 603.
Plusia gamma. 211, 256, 260, 310, 356, 650.
Pterophoride, 345, 391.
Rhodocera Rhamni, 324, 525, 627.
 Sesia sp., 572.
Thecla Ilicis, 260, 376, 419, 627, 649.
 Vanessa Antiope, 327.
 — Atalanta, 322; — a 256.
 — Cardui, 312.
 — Io, 324, 472, 649.
Urticae, 264, 310, 312, 320, 322, 324, 326, 362, 369, 491, 499, 525, 649.
Zygaena Filipendulae, 312, 319, 360, 376, 656, 659.
 sp. 338;

Hymenopteren. — Vliegenachtigen.

Allantus arcuatus, 320, 344, 419, 455, 472, 572, 584, 588, 593, 627.
 Schaefferi, 344, 575, 576, 584, 588, 589.
 succinctus, 575, 578, 584.
 sulfuripes, 344.
 tricolor, 575.
 Vespa, 572.
 sp., 589; — a 587, 633.
Amblyteles oratorius, 572.
Ammophila sabulosa, 319, 320, 327, 391, 650.
Andrena albicans, 326, 362, 403, 472, 491, 501, 509, 511, 519, 525, 626, 627.
 albicus, 181, 362, 403, 509, 511, 626.
 argentata, 501.
 chrysopyga, 624.
 chrysoceles, 501.
 cingulata, 230, 472, 542.
 Clarkella, 362, 403.
 convexuscula, 202, 279, 371, 403, 419, 546, 638, 649.
 extricata, 326, 362, 458.
 fucata, 624.
 fulva, 324, 403, 481, 492, 627.
 fulvescens, 326, 360, 362, 371.
 fulvicrus, 320, 326, 338, 458, 472, 511 575.
 Gwynana, 260, 320, 324, 326, 362, 387, 458, 461, 472, 481, 509, 525.
 labialis, 362.
 Listerella 320, 327.
 minutula, 230, 326, 458, 519, 542.
 nana, 261, 627.
 nigro-aenea, 329, 403, 638.
 nitida, 326, 362, 458, 491, 519.
 ovina (pratensis), 362, 403.
 parvula, 260, 261, 326, 403, 458, 491, 511, 605, 624.
 praeox, 403.
 pratensis, zie ovina.
 propinqua, 326, 502.
 ruficrus, 458, 509.
 Schenckii, 638.
 tibialis, 362, 403, 458, 501, 509, 572, 624.
 Trimmerana, 501.
 varians, 403, 511.
 ventralis, 403, 501.
 Xanthura, 660.
 sp., 567, 572; — a 218.
Anthidium manicatum, 280.
 sp. 542.
Anthophora pilipes, 264, 387, 525, 526
Athalia Rosae, 338, 575, 584, 588.
 spinarum, 572, 575.
Banchus falcator, 572.
Bassus festivus, 575.
Bombus agrorum, 210, 223, 242, 260, 261, 262, 263, 264, 272, 278, 279, 280, 302, 312, 318, 319, 362, 390, 391, 458, 500,
...
... uniglumis, vestalis, trivialis, rupestris, ziebicornis, Ephippium, pilifrons, sp., quadricolor sp., rutilator — campestris, ericetorum (fasciata) 260, circumcincta, Solidaginis, rufa, elongator, fucata, sp., sp., succincta, 575, adunca, 519, 626, luteus, brassicaria, ook bifida.

Odynerus (Symmorphus) bifasciatus, 572.

Nomada bifida, 326, 495.

Mega
cylis (Pimpla) bellator, 575, 576.

Macropis labiata, 383.

Megachile centuncularis, 315.

Microlycus, 597.

Mieren, 103, 448.

Myrmica Ruginodis, 279, 344, 526, 626.

Nematus histrion, 403.

Nomada bifida, 326, 495.

Ocydromia glabricula, 541.

Odynerus (Symmorphus) bifasciatus, 572.

Ophi
tus, 587,

Oxybelus quatuordecimnotatus, 320, 572, 584.

Panurgus Banksianus, 360, 360.

Pachymus calceator, 455, 593.

Pezomachus fasciatus, 597.

Phygadeuon trichops, 559.

Pimpla brassicaria, 593.

Pimpla brassicaria, 593.

Polyblastus mutabilis, 575.

Pompillus calceator, 455, 593.

Psammophila viatica, 376.

Psithyrus barbutellus, 263, 280, 318, 319, 362, 640.

Pteromalus communis, 458.

Pycnocryptus peregrinator, 501.

Sapyga punctata, 572.

Selandria serva, 575.

Sphæcodes Geoffrèllus, 362, 584, 612, 620.

Thyreopus (Crabro) ebracteatus, 572, 576.

Thyreus clypeatus (Ceratocolus vexillatus), 578.

Tryphon brachycanthus, 572.

Vespa Crabro, 310.

Wirbel...
Lactucae, Purio, arenosa, opaca, pratensis, Macquarti, jugorum, pubera, decora, viduata, Marci, 403, fasciata, Zie laniger, tessellata, nemorum, hyalinipennis, aestivalis, radicum, simplex, pulchripes, 2.2-L intricarius, pluvialis, antiqua, pennipes, variabilis, triquetra, pusilla, vomitoria, sparsa, antiqua, stercorea, praecox, livida, varipes, mutabilis, Mitis, rustica, Z platura, fulgens, Johannis, trigramma, Aricia, Calliphora, Bombylius, Ascia, Conops, Chrysogaster, Chironomus, Cheilosia, Criorhina, Chrysops, Dilophus, Cyrtoneura, hortorum, 569, 576, 578, 584, 591.

Dolichopus festivus, 588.

Echinomyia (Tachina) tessellata, 320.

Empis chioptera, 403.

» decora, 193, 230, 472.

» florismoma, 230, 453, 454, 472, 627.

» hyalinipennis, 181.

» opaca, 454, 472, 495.

» pennipes, 454, 541.

» rustica, 454, 469.

» stercorea, 454, 491.

» tessellata, 319, 454, 556, 612, 620, 627.

» trigramma, 590.

» vernalis, 454.

» sp., 463, 565, 567; — α 301, 424.

» intricarius, 256, 303, 310, 312, 320, 362, 372, 376, 403, 491, 507, 610.

» jugorum, 320, 578.

» nemorum, 328, 344, 391, 454, 472, 491, 500, 511, 584, 588, 627.

* sp. 257, 513, 519; — α 260, 301, 581.

Eumerus lunulatus, 514, 575, 588, 624.

Exorista affinis, 458, 575.

> confinis, 575.

> dubia, 403.

Frontina nigricans, 575.

Graphomyia maculata, 584.

Gymnopterus rusticus, 624.

> nigripennis, 624.

> transfugus, 471.

> trivittatus, 310, 320, 419.

> versicolor, 310.

> sp., 213, 227, 311, 508, 572, 587; — α 301, 633.

Hilara quadrijovittata, 353, 403.

Hydrotæa dentipes, 575.

> coarctata, 549a.

> conica, 488, 569.

> nigrimanana, 320.

> praepotens, 627.

Leptis vitripennis, 501, 509.

Lucilia Caesar, 327, 328, 344, 345, 514, 572, 575, 576, 578, 584, 588, 589, 626.

> cornicina, 256. 327, 569.

> rufigiceps, 572, 584.

> splendida, 463.

> Sylvarum, 26, 27, 256, 259, 326, 362, 376, 584.

> sp., 193, 419, 587; — α 267.

Macquartia chalybeata, 344.

Melanostoma mellina, 27, 30, 227, 326, 301, 403, 422, 454, 472, 475, 478, 485, 488, 491, 519, 562, 584, 605, 610; — α 123, 252.

> pictus, 213.

> scriptus, 213, 376, 500, 587.

Merodon avidus, 572.

> spinipes, 572.

Mirtalpoms (Tachina) haemorrhoidalis, 259, 575, 584.

Miltogramma (Tachina) conica, 320, 376.

Morinia melanoptera, 320, 344, 369.

Musca cornina, 419, 575, 588.

Myopa fenestra, 576.

Myopa atrina, 319, 320, 372.

> buccata, 403, 509.

> ferruginea, 312.

> polystigma, 403, 459.

> testacea, 213.

Myospila meditabunda, 584.

Nemopoda (Sepsis) stercoraria, 591.

Nemoraea (Tachina) argentifera, 637.

Nemotelus pantherinus, 344.

> tigrinus, 472.

Ocydromia glabrícula, 458.

Odontomyia tigrina, 344, 501.

> viridula, 320.

Olivencia (Tachina) lateralis, 320, 466, 575.

Onesia, zir Sarcophaga.

Orthoneura nobilis, 472, 572.

Oscinis pratensis, 372.

Pachyrhina (Tipula) histrio, 572.

> (—) pratensis, 591.

Pipiza funebris, 575.

> quadraculata, 488.

Plagia marginata, 304.

> manicatus, 454, 509.

> peltatus, 256, 311, 320, 391, 422, 459, 463, 542, 546; — α 429.

Pipiza scutatus, 263, 458, 504, 572.

Plocota apiformis, 626.

Pollenia (Musca) rudis, 27, 259, 320, 327, 391, 403, 419, 458, 572, 575, 587.

> (—) Vesptillo, 320, 327, 403.

Porphyrops penicillatus, 360, 624.

Psychoda phalaenoides, 597.

Rhamphomyia nigripes, 403.

Sarcophaga albiceps, 338, 348, 591.
 » carnaria, 259, 312, 338, 391, 419, 546, 572, 626, 627.
 » (Onesia) dispar, 362.
 » dissimilis, 213.
 » (Onesia) gentilis, 458, 492.
 » haemorrhhoa, 509, 626.

Scatophaga medaria, 27, 326, 338, 344, 362, 403, 458, 460, 482, 491, 542, 578, 621.
 » stercoraria, 326, 344, 403, 458, 572, 575.
 » sp., a 323, 345.

Scatophaga notata, 403.
 » pulicaria, 403, 458.

Sciara sylvatica, 507.

Sciomyza cinerella, 536.

Siphona (Tachina) flavifrons, 328.

Spilogaster (Anthomyia) duplicata, 591, 637; zie ook Bot. Jaarb., V, blz. 305.
 » (—) impuncta, 591.
 » (—) quadrum, 575.
 » (—) urbana, 372, 578.

Stomoxys calcitrans, 348.

Stratiomys Cenisia, 572.
 » longicornis, 627.

Syrphiden, 508, 589; — a 205, 276, 558.

 » bifasciatus, 511.
 » cinctellus, 312, 320.
 » cinctus, 360.
 » corollae, 360.
 » Pyrastrini, 311, 365, 633.
 » seleniticus, 315.
 » sp., 546.

Tachina rustica, 626.

Tephritis pantherina, 338.

Tetanocera robusta, 576.

Tipula ochracea, 593.
 » Zie ook Pachyrhina.

Volucella bombylans, 320, 376, 627.
 » bombylans var. plumata, 312, 310, 376.
 » sp., 612.

Zodion cinereum, 633.

Alphabetsche lijst der planten.

Acer, 551.
Achillaea, 338.
Adoxa, 299.
Aegopodium, 572.
Aethusa, 581, α 581.
Agrimonia, 629.
Agropyrum, 162.
Agrostemma, 444.
Agrostis, 101.
Aira, 110.
Ajuga, 270.
Albersia, 437.
Alchemilla, 632.
Alisma, 27.
Allium, 183.
Alnus, 397.
Aloepeorus, 97, α 99.
Allyssum, 515.
Añaagallis, 382.
Anemone, 460.
Angelica, 584, α 584.
Anthemis, 340.
Anthoxanthum, 90.
Anthriscus, 591.
Antennaria, 336.
Antirrhinum, 226.
Apera, 104.
Arabis, 497.
Arabidopsis, 497.
Arenaria, 452.
Arnesseris, 354, α 354.
Arrhenatherum, 116.
Artemisia, 597.
Arum, 32.
Atriplex, 436b.
Avena, 114.
Ballota, 274.
Batrachium, 480.
Barbara, 495.
Barkhausia, 367.
Bellis, 326.
Betonica, 270.

Betula, 396.
Bidenia, 329.
Brachypodium, 144.
Brassica, 509.
Briza, 127.
Bromus, 136.
Brunella, 278.
Butomus, 30.
Calamagrostis, 105.
Callitriche, 563.
Calluna, 301, α 301.
Caltha, 482.
Campanula, 377, α 377.
Capsella, 519, α 519.
Carex, 38.
Cardamine, 491.
Carduus, 316.
Carлина, 313.
Carpinus, 399.
Carum, 573.
Catabrosa, 124.
Centauria, 311.
Cerastium, 459, α 463.
Ceratophyllum, 409.
Chelidonium, 488.
Chenopodium, 429, α 429.
Chrysosplenium, 597.
Cicendia, 283.
Cicuta, 568.
Cineraria, 346.
Circum, 605.
Cirsium, 318, α 319.
Cladium, 72.
Colchicum, 180.
Comarum, 619.
Convallaria, 187.
Convolvulus, 204, α 205.
Cornus, 565.
Corydalis, 488a.
Corylus, 398.
Corynephorus, 108.
Crataegus, 612.
Crepis, 368.
Cuscuta, 206.
Cynodon, 109.
Cynoglossum, 208.
Cynosurus, 121.
Cyperus, 68.
Dactylis, 135.
Daucus, 588.
Deschampsia, 111a.
Dianthus, 438.
Diplotaxis, 507.
Dipsacus, 308, 308.
Drosera, 520.
Echium, 211.
Elaeagnus, 537.
Elodes, 536.
Endymion, 182.
Epilobium, 598, 599.
Epipactis, 200.
Erica, 392.
Eriophorum, 185.
Eriogonum, 85.
Erysimum, 502.
Erythraea, 286.
Eupatorium, 322, 322.
Euphorbia, 558, 558.
Euphorbia, 259, 259.
Myosotis, 213, a 215.
Myosurus, 470.
Myrica, 402.
Myriophyllum, 606.
Narcissus, 191.
Nardus, 150.
Narthecium, 186.
Nasturtium, 498.
Nuphar, 484.
Nymphaea, 483.
Oenanthe, 578.
Ononis, 642.
Orchis, 193.
Ornithogalum, 181.
Ornithopus, 658, a bladz. 380.
Orobanche, 249.
Oxalis, 547.
Panicum, 91.
Papaver, 485.
Paris, 190.
Pastinaca, 586.
Pedicularis, 245.
Pedatis, 324.
Peucedanum, 585.
Phleum, 100.
Phragmites, 120.
Picris, 358.
Pimpinella, 574, a 575.
Pirola, 335.
Plantago, 252, a 252.
Platanthera, 198.
Poia, 129.
Polygala, 552.
Polygonatum, 188.
Polygonum, 419, a 420.
Populus, 404.
Potamogeton, 6.
Potentilla, 621.
Poterium, 631.
Primula, 387.
Prunus, 634.
Pulicaria, 328.
Pyrethrum, 344.
Pyrus, 613.
Quercus, 400.
Radiola, 550, a 550.
Ranunculus, 471.
Raphanus, 514.
Reseda, 522.
Rhamnus, 556.
Rhinanthus, 243.
Rhyrschospora, 70.
Rosa, 616, a 616.
Rubus, 626.
Rumex, 411.

Sagina, 448.
Sagittaria, 26.
Salyx, 403.
Sambucus, 300.
Samolus, 389.
Sanguisorba, 630.
Sanicula, 567.
Saponaria, 439.
Sarothamnus, 638.
Saxifraga, 596.
Scabiosa, 310.
Scandix, 590.
Scirpus, 73.
Scleranthus, 466.
Scrophularia, 223.
Scutellaria, 276, a 276.
Sedum, 504.
Selinum, 583.
Senebiera, 521.
Sencio, 347, a 348.
Serrata, 314.
Setaria, 94.
Sherardia, 291.
Silas, 582.
Silene, 440.
Sinapis, 513, a 513.
Sisymbrium, 503.
Siium, 576.
Solanum, 219, a 220.
Solidago, 327.
Sonchus, 364.
Sorbus, 615.
Sparganum, 35.
Spiraea, 633, a 633.
Spiranthes, 203.
Specularia, 380.
Spergularia, 445.
Stachys, 271, a 272.
Stellaria, 454.
Stratiotes, 25.
Tanacetum, 345, a 345.
Taraxacum, 362, a 362.
Teesdalia, 517
Tilia, 538.
Torilis, 589.
Tragopogon, 359.
Trifolium, 649.
Triglochin, 31.
Triodia, 119.
Trisetum, 115.
Tussilago, 323, a 323.
Typha, 33.
Ulex, 637.
Ulmus, 408.
Urtica, 405.
Utricularia, 247.
 Vaccinium, 300.
 Valeriana, 230.
 Valerianella, 305.
 Verbascum, 221.
 Verbena, 255.
 Veronica, 230, a 233a.
 Viburnum, 301, a 301.
 Vicia, 659.
 Vinca, 290.
 Viola, 524.
 Zannichellia, 23.

RÉSUMÉ DU TRAVAIL PRÉCÉDENT.

Sur la fécondation des fleurs dans la partie campinienne des Flandres.

Introduction. Dans la première partie de l'introduction (Inleidig, Bot. Jaarb., V, 1893, p. 158 et suivantes) nous donnons un aperçu de l'historique de la partie de la botanique qui s'occupe de la fécondation et de la pollination des fleurs. Nous passons successivement en revue les découvertes de Camerarius (1691); — les écrits de Patrick Blair (1720), Tournefort (1700), Pontedera (1720); — les expériences de Bradley (1717), James Logan (1739), Müller (1751), Gleditsch (1751), et les admirables recherches de Koelreuter (1761-1766). — Nous nous arrêtons plus longuement au livre de Christian Conrad Sprengel, intitulé: *Das neu entdeckte Geheimniss der Natur in Bau und Befruchtung der Blumen* (Berlin, 1793; — ce livre a été réimprimé en 1893 avec des fac-similés des planches par le Dr Paul Knuth; — Leipzig, Wilhelm Engelmann, in Ostwald's Klassiker der exakten Wissenschaften, N°s 48-51; 4 vol. 12° cartonnés). Le livre de Sprengel a été le point de départ des travaux modernes sur la pollination; la conclusion générale de ce livre peut être résumée comme suit: «la Nature semble ne pas vouloir qu'une fleur soit fertilisée par son propre pollen».

En 1799, Andrew Knight publie les résultats de ses expériences faites avec *Pisum sativum*; il en conclut que chez aucune espèce, la fécondation directe ne se continue pendant une suite indéfinie de générations.

En 1837, Herbert, à la suite d'expériences faites avec des Amaryllidées etc., émet l'opinion que la fécondation croisée donne de meilleurs résultats que la fécondation directe. — Vers la même
époque, Gaertner publie une série de mémoires et de livres (1826, 1837, 1844, 1849) sur l'hybridation et sur la physiologie et la biologie de la fleur.

Une nouvelle ère s'ouvre pour l'étude de la question par les travaux de Darwin. Dans son ouvrage sur l'origine des espèces, Darwin rapproche les observations de Sprengel des résultats obtenus par Koelreuter, Knight, Herbert, Gaertner et de ses observations personnelles, et il déduit de l'ensemble de ces documents la loi suivante : « aucun être organisé ne subit l'autofécondation pendant une infinité de générations, mais il est absolument nécessaire qu'un croisement avec un autre individu se produise de temps en temps » (loi de Knight-Darwin) — Darwin a publié ultérieurement une série d'ouvrages devenus classiques (1862, 1869, 1876, 1877), dans lesquels il décrit les particularités biologiques d'un grand nombre d'Orchidées, et de nombreuses expériences faites dans le but de comparer les effets de la fécondation croisée et de la fécondation directe chez la même espèce végétale. Un de ces ouvrages (1877) est consacré spécialement à la fécondation des plantes à fleurs polymorphes (hétérostylie, trimorphisme, etc.). — Il résulte des expériences de Darwin entre autres 1° que chez un grand nombre d'espèces l'autopollination demeure sans résultat ; 2° que chez les espèces où les deux modes de pollination sont suivis de fécondation, la fécondation croisée donne en général des résultats meilleurs que l'autofécondation ; 3° que les avantages obtenus par la fécondation croisée sont plus ou moins considérables suivant que les individus croisés sont unis par des liens de parenté plus ou moins étroits : lorsque les liens de parenté sont forts étroits, il peut arriver que la fécondation croisée ne présente que des avantages minimes ou semble même être désavantageuse ; 4° on observe, chez la même espèce, des différences individuelles très notables au point de vue des avantages que procure la fécondation croisée. Parfois la fécondation dépend en partie des conditions physiques (température) dans lesquelles elle s'effectue ; 5° en somme, on observe une longue série de transitions, depuis les cas extrêmes où la fécondation directe est impossible, en passant par les cas où la fécondation directe est possible, mais donne des résultats moins bons que la fécondation croisée, jusqu'aux autres cas extrêmes dans lesquels la fécondation directe donne des résultats qui ne le cèdent guère aux effets de la
fécondation croisée ; 6° des conditions d’existence favorables peuvent dans certains cas compenser les effets défavorables de la fécondation directe.

Les recherches de Darwin ont appelé l’attention générale sur la biologie florale. En 1863, von Mohl publie un mémoire consacré à l’étude des fleurs cleistogames, dans lequel l’auteur cherche à démontrer que la loi de Knight-Darwin n’est pas une loi générale.

Les travaux publiés depuis cette époque par Darwin lui-même (voir plus haut) et par Burck (voir plus loin) et les observations que nous avons faites nous-même démontrent, à notre avis, que von Mohl avait raison.

Nous donnons ensuite une analyse sommaire des principaux travaux de Hildebrandt, Delpino, Fritz Müller et Severin Axell ; le paragraphe suivant (Bot. Jaarb., V, p. 206 et suivantes) est consacré aux travaux de Hermann Müller (1873-1883). Müller a entre autres le grand mérite d’avoir étudié non seulement la structure des fleurs dans ses rapports avec les insectes, mais aussi la structure et les mœurs des insectes dans leurs rapports avec les fleurs, continuant ainsi la voie si brillamment tracée par Delpino. Il arrive aux conclusions générales suivantes : les fleurs anémophiles sont les plus anciennes ; les fleurs entomophiles sont issues des fleurs anémophiles : parmi les fleurs entomophiles, les moins parfaites (et, d’une manière générale, les plus anciennes) sont celles qui ne renferment pas de nectar (fleurs à pollen : Po). Ensuite sont venues les catégories suivantes dans l’ordre suivant : les fleurs à nectar librement exposé (A) ; id. à nectar partiellement caché (AB) ; id. à nectar complètement caché (cette catégorie comprend des fleurs non-associeées, désignées par B, et les fleurs associées, désignées par B’) ; enfin les fleurs mélithophiles (Bb) et les fleurs lépidoptérophiles (Vb), dont le nectar est encore plus profondément caché, et se trouve, chez beaucoup d’espèces, renfermé dans des réceptacles à structure compliquée. Pendant que les fleurs évolutaient dans le sens indiqué plus haut, les insectes floricoles subissaient une évolution correspondante : tandis que le nectar devenait de plus en plus difficilement abordable, les trompes s’allongaient, les organes des sens devenaient plus parfaits, les insectes devenaient plus adroits. On peut ainsi établir pour les insectes floricoles une classification biologique correspondante à la classification biologique des fleurs, savoir : 1° au bas
de l'échelle, les insectes peu adroits, à pièces bucales courtes : coléoptères, diptères (sauf les trois familles citées plus bas) et Hyménoptères à l'exception des abeilles; — 2° les insectes d'adresse moyenne, à pièces bucales de longueur moyenne : Conopides, Syrphides, Bombylides ; abeilles à trompe courte ; — 3° les insectes les plus adroits, à trompe longue ou très longue : abeilles à trompe allongée, Lépidoptères (surtout les Sphingides). — Müller a également essayé d'établir une comparaison entre les Alpes et l'Allemagne au point de vue des rapports qui existent entre les fleurs et les insectes.

Nous passons ensuite en revue les travaux principaux de Schulz, Kirchner ; — de Loew, qui a contribué dans une large mesure à étendre nos connaissances, surtout en ce qui concerne les insectes (1) et qui a perfectionné la classification donnée par Müller ; — Heinsius, Verhoeff, Altken, Knuth, Scott-Elliot, Robertson, Burck, Bateson, Focke, Real, Wilson. — Nous insistons assez longuement (Bot. Jaarb., V, p. 236 et suivantes) sur la théorie de Weismann concernant la continuité du plasma germinatif, et sur les travaux de Burck, à qui revient le mérite d'avoir réuni la théorie de Weismann et la théorie des fleurs sous le même point de vue. Burck a démontré entre autres que chez certaines plantes les fleurs sont toujours cleistogames : ceci prouve que la loi de Knight-Darwin n'est pas une loi générale. — Il résulte de la théorie de Weismann et des considérations de Burck que la fécondation croisée peut non seulement produire un accroissement de vigueur et de fertilité des descendants (Knight-Darwin), mais qu'elle peut être utile en mélangant les caractères des parents, et en provoquant de la sorte des

(1) Depuis l'impression de notre mémoire, Loew a publié un ouvrage intitulé : Blütenbiologische Floristik des mittleren und nördlichen Europa sowie Grönlands (Stuttgart, Enke, 1894 ; 424 pages 8°). Dans ce travail, l'auteur a réuni, en un corps de documents, la plupart des travaux parus sur la biologie florale depuis dix ans ; les travaux analysés sont rangés en ordre géographique (Alpes ; Pyrénées ; Alpes scandinaves ; région arctique ; région littorale subatlantique, comprenant les Pays-Bas, le Schleswig-Holstein et les îles allemandes de la mer du Nord ; région des plaines et des montagnes de l'Europe centrale), et pour chaque région en ordre systématique. L'auteur établit des comparaisons entre les diverses régions. Cet ouvrage a sa place marquée dans la bibliothèque de tous les botanistes.
variations héréditaires. Dans certaines circonstances, la production
de pareilles variations est indispensable à la conservation de la race.
— Ces considérations élargissent notablement les bases de la biolo-
gie florale.

Nous terminons la première partie de notre introduction par un
aperçu des idées de WALLACE.

La seconde partie de notre introduction (Algemeene beschouwingen;
— Nous essayons de démontrer, par une série d'exemples, qu'on a
attribué aux couleurs des fleurs un rôle beaucoup trop important.
Nous nous basons surtout sur les faits suivants : 1° certaines fleurs
anémophiles, qui n'attirent pas d'insectes, sont plus vivement colo-
rées que certaines fleurs entomophiles qui sont visitées par des
insectes; 2° les fleurs mâles d'un bon nombre d'anémophiles sont
plus voyantes et plus vivement colorées que les fleurs femelles; la
même chose s'observe chez beaucoup d'entomophiles, ce qui a
suggéré une explication fort ingénieuse de Sprengel; mais les faits
analogues qu'on peut constater chez les anémophiles, et qui sont abso-
lument contraires à la théorie, n'ont pas été assez remarqués. Nous
rapprochons ces faits (rien de plus qu'un rapprochement!) de la
théorie de la sexualité exposée par Geddes et Thomson, et nous
considérons comme peu probable l'hypothèse d'après laquelle les
couleurs des fleurs seraient une adaptation aux insectes. — Nous
essayons également de montrer qu'une série d'autres particularités,
que la plupart des auteurs considèrent comme des adaptations aux
insectes, sont des cas de variation individuelle, ou sont susceptibles
d'autres explications. — Nous étudions ensuite (Bot. Jaarb., V,
p. 259) la loi de KNIGHT-DARWIN et la théorie de NAEGELI concernant
la fécondation : nous sommes porté à considérer la loi de Naegeli
(les résultats de la fécondation atteignent leur optimum quand la
différence d'origine entre les éléments sexuels qui s'unissent atteint
une certaine valeur moyenne) comme la pierre angulaire de la théorie
florale; les effets de la fécondation croisée comparés à ceux de la
fécondation directe varient beaucoup; la loi de Knight-Darwin est
un corollaire de la loi de Naegeli.

En ce qui concerne l'explication du mécanisme des fleurs, nous
essayons de montrer que chaque cas particulier doit être étudié à
part; pour chaque plante, il faut établir le bilan des avantages et des désavantages que présente la fécondation croisée; il faut entre autres chercher à déterminer le rapport qui existe entre les avantages obtenus par la fécondation croisée au point de vue de la vigueur et de la fertilité des descendants et les sacrifices que la plante doit faire pour assurer le transport du pollen d'une fleur à l'autre. Ces deux valeurs varient énormément sous l'influence d'une foule de facteurs; c'est le rapport de ces deux valeurs qui détermine les avantages de la fécondation croisée dans la lutte pour l'existence. La question se complique encore davantage par cette circonstance que la variabilité provoquée par le croisement peut être un avantage complètement indépendant des autres avantages. — La solution de chaque cas particulier devient ainsi un problème très compliqué.

Nous avons décrit le mécanisme floral de toutes les espèces indigènes étudiées jusqu'à ce jour et de quelques espèces cultivées de la région. Nos descriptions ont été en partie empruntées à d'autres auteurs, que nous avons cités pour chaque espèce; chaque fois que cela nous a été possible, nous avons contrôlé les assertions des auteurs. Pour un certain nombre d'espèces, nous avons redressé des inexactitudes; d'autres sont décrites ici pour la première fois. La plupart de nos figures sont dessinées d'après nature; alors même qu'il s'agit d'espèces déjà décrites ou figurées par d'autres auteurs. Pour les figures empruntées à d'autres ouvrages, nous avons chaque fois cité la source.

Nous avons mentionné, pour chaque espèce, les insectes observés (1).

Les descriptions des espèces suivantes sont en tout ou en partie originales:

Hydrocharis Morsus-Ranae, Sagittaria sagittifolia, Ornithogalum umbellatum

N. B. Les espèces pour lesquelles nous avons donné des figures originales sans modifier les descriptions des auteurs qui nous ont précédé ne sont pas mentionnées dans la liste précédente.

Considérations générales. Algemeene beschouwingen, Bot, Jaarb., VI, p. 381 et suivantes):

I. Essai d'une description botanique de la partie campionienne des Flandres (loc. cit., p. 381). La région dans laquelle nos observations ont été faites comprend la partie des provinces appelées Flandre Occidentale et Flandre Orientale qui appartient à la région campionienne (voir la carte, p. 382 : Kempisch Gebied). Notre région est soumise depuis fort longtemps à une culture intensive: l'homme a imprimé à toute la végétation un caractère spécial. Nous avons étudié la végétation de notre région en considérant l'action inconsciente de l'homme comme un facteur dont les effets sont régis par des lois fixes, absolument comme la température, l'humidité, la constitution du sol. En nous plaçant à ce point de vue, nous avons essayé de décrire la végétation telle qu'elle se présente aujourd'hui; nous avons ainsi donné une image des conditions dans lesquelles nos observations ont été faites.
La région qui nous occupe est un pays bas, peu accidenté, parcouru par quelques rivières et par d'innombrables ruisseaux à cours lent; le sol est meuble, composé de sable et d'argile. Il pleut dans toutes les saisons, les hivers sont doux, les étés peu chauds. Nous y distinguons les formations végétales suivantes : 1° terres cultivées; 2° forêts; 3° prairies; 4° étangs et marécages.

Nous décrivons successivement ces diverses formations, en insistant particulièrement sur les effets inconscients de l'action de l'homme. Dans les deux formations mentionnées en premier lieu, la végétation parcourt un certain nombre d'états successifs qui reviennent périodiquement. La période dure plus ou moins longtemps. Exemples : 1° une parcelle de terre est occupée successivement par du seigle, des navets et des pommes de terre; au bout de deux années, le seigle revient, etc. Ici la période est de deux années : de mois en mois, la végétation (mauvaises herbes) se modifie, sous l'influence des saisons, des plantes cultivées (lutte pour l'existence entre les plantes cultivées et les mauvaises herbes) et des travaux (labourage, sarclage, hersage etc.) exécutés par l'agriculteur. — 2° Dans un bois taillis coupé une fois tous les 7 ans environ, la période est de 7 années; dans un bois de Pinus silvestris la période est ordinairement de 25 à 30 années, depuis le moment où les jeunes sapins sont plantés (repiqués) jusqu'au moment où les arbres sont complètement développés et abattus. La végétation se modifie d'année en année. — Dans les prairies, le fauchage modifie profondément la composition et la biologie du tapis végétal, et ici encore l'influence inconsciente de l'homme se fait sentir, entre autres en procédant à une sélection inconsciente. Sélection produite par le bétail.

II. Rapports entre fleurs et insectes dans la partie campiennne des Flandres (p. 419). La flore de notre région comprend environ 675 espèces, dont 215 (31,8 %) anémophiles. Cette proportion élevée (voir le tableau comparatif, page 419) s'explique par cette circonstance que notre région est riche en espèces hygrophiles, et les grandes familles hygrophiles (Cypéracées, Potamées, Joncées, etc.) sont presque toutes anémophiles. La grande richesse en eaux stagnantes et courantes et le climat pluvieux favorisent le développement des plantes aquatiques et hygrophiles, et sont peu favorables aux insectes. Notre région est relativement pauvre en insectes floricoles. Nous résumons en
disant que notre région se trouve dans des conditions analogues à celle des anciennes époques géologiques : beaucoup d'eau, beaucoup de plantes anémophiles, peu d'insectes floricoles.

 Parmi les 451 espèces entomophiles, il en est beaucoup qui ne sont jamais ou presque jamais visitées par des insectes (voir plus loin, III). Nous donnons (pages 423-424) un tableau statistique (tabel I) des visites observées, rangées suivant les mois de l'année, les classes biologiques de fleurs (Po, A, AB, B, B', Bb, Vb) et les groupes biologiques d'insectes. Nous avons suivi pour les fleurs et pour les insectes, la même classification biologique que dans notre mémoire sur les fleurs des Pyrénées, avec cette différence que nous avons subdivisé la classe B' en trois sous-classes : 1° B'a, comprenant les Corymbifères, Liguliflores, Valerianées et Jasione montana ; 2° B'b comprenant les Tubuliflores (sauf Cirsium arvense) et les Dipsacées ; 3° B'c comprenant Cirsium arvense. Chez cette espèce, le nectar est moins profondément caché que chez les autres Tubuliflores indigènes. Nous avons réduit les chiffres de tabel I en centièmes (voir tabel II, p. 425-426).

 Nous étudions ensuite l'évolution des diverses classes de fleurs et des divers groupes d'insectes pendant les divers mois de l'année (Avril-Septembre). Nous observons que chaque classe de fleurs comprend des espèces appartenant à des groupes systématiques fort différents, mais présentant des caractères biologiques communs. Il résulte de là a priori que l'évolution annuelle de chaque classe biologique sera déterminée et par sa composition systématique et par ses caractères biologiques. — Nous sommes amené ainsi à examiner d'abord si l'évolution annuelle des groupes systématiques (familles, genres), est régie par des lois déterminées. Pour résoudre cette question, nous avons compté pour les familles et pour les genres qui renferment un nombre suffisant d'espèces indigènes combien d'espèces sont en fleurs dans les divers mois. Les résultats sont consignés dans le tableau III (p. 429), et représentés graphiquement fig. 124 (p. 430). Nous constatons que la courbe de floraison de chaque famille présente une période ascendante, un point culminant et une période descendante. Dans la flore indigène cette règle ne souffre aucune exception. — Les maximums des diverses familles tombent à diverses époques ; la forme des courbes est fort différente d'une famille à une autre. Nous pouvons comparer ces courbes, qui
représentent les variations d'un seul caractère (l'époque de la floraison) chez un certain nombre de formes unies par des liens de parenté, aux courbes de variabilité (courbe binomiale de Newton) que QUETELET, GALTON, DE VRIES et d'autres auteurs ont fait connaître (voir fig. 125, page 434). — Il n'est pas encore possible de construire des courbes analogues pour les insectes, à cause de notre connaissance imparfaite de la faune entomologique de notre région. — Pour étudier l'évolution annuelle des classes biologiques de fleurs, nous prenons comme mesure de l'importance de chaque classe pendant chaque mois le nombre total des visites que les fleurs de la classe considérée reçoivent pendant le mois considéré ; semblablement, nous prenons comme mesure de l'importance de chaque groupe biologique d'insectes le nombre total des visites que les insectes du groupe considéré font à toutes les fleurs pendant chaque mois. En procédant ainsi, nous ne tenons aucun compte des fleurs qui ne sont pas visitées, mais nous obtenons pour les fleurs et pour les insectes des chiffres comparables.

Résultats (Fleurs): **Po** (fleurs à pollen). 39 Espèces; fleurs en général peu visitées, sauf quelques espèces odorantes ou très riches en pollen. Visites trop peu nombreuses pour permettre des conclusions. — **A** (fl. à nectar librement exposé). 68 Espèces: 7 Monocotylées, 8 Sympétales, 53 Choripétales, dont 25 Ombellifères. Fleurs beaucoup visitées. L'évolution annuelle (voir les chiffres à la page 437) ne présente aucune régularité. — **AB** (fl. à nectar partiellement caché). 89 Espèces indigènes: 3 Monocotylées, 2 Sympétales, 84 Choripétales. Dans toutes les régions où des observations ont été faites (Flandres, Alpes, Pyrénées) les fleurs **AB** sont proportionnellement plus fortement représentées pendant les premiers mois que pendant les derniers mois (voir le tableau, page 438). Ceci est en rapport avec l'évolution des quatre familles prédominantes de ce groupe (voir les courbes XVIII, XIX, XX, XXIV), lesquelles atteignent leur point culminant plus tôt que la plupart des autres grandes families entomophiles de notre région. Certaines espèces, par ex. *Stellaria holostea*, semblent attirer tout particulièrement les espèces du genre *Empis*. — **B** (fl. à nectar complètement caché). 63 Espèces: 6 Monocotylées, 34 Sympétales, 23 Choripétales. Ici les Sympétales prédominent, tandis que les Choripétales prédominent dans les classes **A** et **AB**. Dans notre région, la classe **B** n'a pas d'évolution
régulière. Dans les autres régions, les résultats sont contradictoires (voir le tableau, page 440); une conclusion générale est donc impossible. Ces fleurs sont en général peu visitées, sauf quelques espèces privilégiées. — **B’** (fl. associées à nectar complètement caché). 74 Espèces, appartenant toutes au groupe des *Agregatae*, sauf *Jasione*. Cette classe subit un accroissement notable pendant les derniers mois de l’année; en Septembre, elle reçoit 53,5 0/0 de toutes les visites. Dans toutes les régions où des observations ont été faites, on observe la même marche ascendante vers la fin de l’année (voir le tableau, page 441). Dans notre région, le chiffre élevé pour Avril provient de l’abondance extrême de *Bellis perennis* et *Taraxacum officinale* pendant ce mois. Les groupes **Ba** et **Bc** sont peu visités par les abeilles à trompe allongée, le groupe **B’b** est au contraire beaucoup visité par ces insectes et peut être considéré comme plus ou moins mélittophile. — **Bb** (fl. mélittophiles). 107 Espèces indigènes: 7 (ou 8) Monocotylées, 54 Sympétales appartenant à 13 familles, 45 Choripétales appartenant à 7 familles. Les Symptéales sont en majorité, de même que dans les classes **B** et **B’**. L’évolution annuelle a lieu en apparence sans règle fixe (voir le tableau, p. 444). — **Vb** (fl. lépidoptérophiles) 10 Espèces, dont 3 Monocotylées (très rares dans la région), 2 Sympétales, 5 Choripétales. Cette classe est pauvre dans notre région. Les visites observées sont très peu nombreuses.

Évolution annuelle des groupes d’insectes. — 1° **Coléoptères:** la courbe est ascendante pendant les 3 premiers mois, descendante pendant les 3 derniers; point culminant en Juin. Il *semble* en être de même dans la région subalpine des Alpes; dans la région alpine des Alpes et à Berlin il y a diminution pendant les derniers mois. Pour les Pyrénées, les données sont incomplètes. — 2° **Diptères allotropes:** courbe descendante d’Avril à Septembre (le léger accroissement en Août semble accidentel). Pour les autres régions, les résultats sont contradictoires (voir les chiffres, page 447). — 3° **Diptères hémithropes:** accroissement continu d’Avril à Septembre dans notre région. Les chiffres pour les autres régions semblent indiquer que l’évolution de ce groupe varie notablement d’un pays à l’autre, mais on ne peut se prononcer d’après les données actuelles (voir les chiffres, page 448). Dans notre région, ce groupe se compose surtout de Syrphides; peu de Conopides, très
peu de Bombylides. — 4° Abeilles à trompe courte: diminution continue depuis avril jusqu'à septembre. Dans les Pyrénées, dans la région alpine des Alpes et à Berlin on constate également une diminution pendant les derniers mois; dans la région subalpine des Alpes, il y a augmentation en septembre (voir les chiffres, page 448). — 5° Abeilles à trompe allongée: l'évolution de ce groupe ne suit aucune règle fixe dans notre région. Pour les autres régions les résultats sont contradictoires (voir les chiffres, page 449). Notre région est pauvre en abeilles à trompe allongée; ce groupe y est surtout représenté par des espèces sociales (Bombus et Psithyrus), lesquelles sont relativement nombreuses. — 6° Hyménoptères allotropes: dans notre région, ces insectes semblent augmenter pendant les premiers mois et diminuer pendant les derniers mois; le point culminant est atteint en juin (le chiffre pour le mois de mai est trop bas; ceci rend la conclusion douteuse). Dans les autres régions, les résultats sont contradictoires (voir les chiffres, page 450). — 7° Lépidoptères: dans notre région, le point culminant est atteint en juillet; dans les Alpes, la courbe d'évolution semble présenter, comme dans notre région, une partie ascendante, un point culminant et une partie descendante; il en est peut-être de même dans les Pyrénées. Les résultats des observations faites à Berlin semblent avoir subi l'influence de causes accidentelles (peut-être le voisinage d'une grande ville). Notre région est pauvre en Lépidoptères.

Nous avons examiné ensuite la question de savoir s'il existe un certain parallélisme entre l'évolution des groupes biologiques de fleurs et celle des groupes biologiques d'insectes. A cet effet, nous avons divisé les fleurs en trois groupes, savoir: 1° fl. allotropes (les classes Po, A, AB); 2° fl. hémitropes (B, B'a, B'c); 3° fl. eutropes B'b, Vb, Bb). Semblablement, nous avons divisé les insectes en trois groupes: 1° insectes allotropes (coléoptères, diptères allotropes et hyménoptères allotropes); 2° insectes hémitropes (diptères hémitropes et abeilles à trompe courte); 3° insectes eutropes (abeilles à trompe allongée et Lépidoptères). Cette classification ne correspond pas exactement à la classification de Loew. — Les chiffres du tableau de la page 453 indiquent l'importance des divers groupes pendant les divers mois de l'année dans notre région. Nous nous bornons à la conclusion suivante: il semble résulter des chiffres que
pendant les trois premiers mois (avril-juin) les insectes et les fleurs allotropes sont mieux représentés que pendant les trois derniers mois (juillet-septembre); le contraire semble avoir lieu pour les insectes et les fleurs hémitropes et eutropes. — Les fleurs et les insectes à organisation simple semblent donc préférer le printemps, les fleurs et les insectes à organisation plus élevée semblent préférer l'été. Ceci peut être mis en rapport avec le fait que les grandes familles choripétales de notre région ont des fleurs allotropes (sauf les Papilionacées), et que la plupart des grandes familles choripétales (sauf les Ombellifères) atteignent leur point culminant plus tôt que la plupart des grandes familles sympétales (voir les courbes de floraison, fig. 124). — Nos conclusions relatives au parallélisme qui semble exister entre l'évolution annuelle des fleurs et celle des insectes ne sauraient cependant être considérées comme définitives, car la régularité des chiffres (page 453) laisse à désirer.

Remarque (Opmerking, page 453): la tentative que nous avons faite pour déterminer l'évolution annuelle des groupes de fleurs et d'insectes n'a pas donné les résultats que nous avions espérés. Pour les groupes systématiques et pour quelques groupes biologiques nous avons trouvé une évolution régulière, mais pour d'autres groupes nous n'avons pu découvrir aucune loi fixe. Les résultats négatifs ébranlent la confiance que nous inspirent les résultats positifs. — L'insuccès dépend en partie de ce que nos observations ne sont pas assez nombreuses, et en outre très probablement des conditions dans lesquelles nos observations ont été faites. Nous pensons qu'on obtiendrait des meilleurs résultats en faisant des observations dans une région où le climat est moins variable d'une année à l'autre, où l'été est plus chaud et où l'évolution des plantes et des insectes est par conséquent plus rapide, — et où l'action de l'homme est moins importante. La région méditerranéenne, et le centre de l'Europe, où règne un climat plus continental, seraient bien préférables aux régions situées au voisinage de l'Océan.

Nous espérons publier plus tard un travail spécial sur les préférences que les insectes manifestent vis à vis des fleurs. Nous croyons que les documents dont nous disposons aujourd'hui ne permettent pas d'établir une comparaison définitive entre les fleurs et les insectes de notre région et ceux d'autres pays.

III. Fécondation directe et fécondation croi-
sée (capitalistes et prolétaires). Warming a émis l'idée qu'au Groenland, où les insectes floricoles sont peu nombreux, les plantes à multiplication végétative active sont surtout adaptées à la fécondation croisée, tandis que les plantes privées de reproduction végétative, lesquelles doivent par conséquent porter des graines sous peine de s'éteindre, sont surtout adaptées à l'autofécondation. Cette idée de Warming s'applique à un grand nombre de faits observés dans notre région, mais il est d'autres faits contraires à cette hypothèse. Il existe en effet une série de plantes bisannuelles monocarpes, sans reproduction végétative, qui sont cependant adaptées à la fécondation croisée (Brassica, Raphanus, Cirsium, etc., etc.). Nous pensons que l'hypothèse suivante permet d'expliquer un nombre de faits beaucoup plus grand que la théorie de Warming :

Les plantes entomophiles doivent faire des sacrifices pour attirer les insectes; les matériaux qui doivent servir à la production de nectar, de substances odorantes etc. sont empruntés en très grande partie aux réserves que la plante contient au moment où la floraison commence. Si ces réserves sont considérables, la plante pourra produire beaucoup de nectar etc., elle attirera beaucoup d'insectes et sera adaptée à la fécondation croisée. Si les réserves sont peu considérables, la plante ne pourra employer qu'une faible partie de ses ressources pour attirer des insectes, la majeure partie devra être réservée à la nutrition des fruits et des graines; les dépenses en nectar etc. que la plante peut faire deviendront insuffisantes et par suite inutiles ou presqu'inutiles. Les fleurs ne seront plus guère visitées par les insectes et s'adapteront à l'autofécondation. D'après cela, nous divisons les plantes en capitalistes, chez lesquelles les réserves sont considérables, et dont les fleurs sont adaptées à la fécondation croisée, — et prolétaires, chez lesquelles les réserves sont faibles, et dont les fleurs subissent toujours (Illecebrum) ou presque toujours l'autofécondation.

Le groupe des capitalistes comprend dans notre région, les arbres, les arbustes (en laissant de côté les espèces anémophiles), les plantes herbacées pérennantes, les bisannuelles et quelques espèces annuelles. Le groupe des prolétaires comprend la plupart des espèces annuelles et éphémères. Nous citons comme prolétaires typiques : Alchemilla arvensis, Scleranthus annuus, Illecebrum verticillatum (chez cette espèce, les fleurs sont toujours cleistogames), Peplis Portula,
Radiola linoides. La différence entre capitalistes et prolétaires devient fort évidente quand on compare une série de prolétaires à des capitalistes appartenant aux mêmes groupes systématiques (voir le tableau, pages 462-463). — Entre les capitalistes et les prolétaires, on observe des transitions (par ex. Myosotis caespitosa). Chez certaines espèces (par ex. Ranunculus Philonotis, Centaurea cyanus) il existe des individus prolétaires, et d'autres, vivant dans de meilleures conditions et plus ou moins capitalistes. Chez certaines espèces il semble exister des races prolétaires et des races capitalistes. — Notre théorie est insuffisante pour expliquer certains faits : par ex. : certaines espèces d'Epilobium (E. roseum etc.) sont capitalistes et nettement autogames ; — les Euphorbia's monocarpes (E. helioscopia etc.) sont prolétaires, très peu visitées par les insectes, et cependant l'autofécondation est impossible. Dans des cas de ce genre il y a d'autres facteurs en jeu (apogamie??). — Chez les anémophiles, les sacrifices exigés pour obtenir la fécondation croisée sont moindres que chez les entomophiles. La plupart des anémophiles de notre région sont capitalistes et autostériles ; une petit nombre d'espèces sont autogames, et les espèces anémophiles autogames (certaines Graminées, Joncées, etc.) appartiennent presque exclusivement à des familles où se rencontrent quelques prolétaires anémophiles (Exceptions : Mercurialis annua, autostérile et ordinairement proléttaire ; — certains Rumex, capitalistes et adaptés à la fécondation directe). — Nous admettons que la diminution du capital chez les prolétaires est un résultat du raccourcissement de la vie : ces plantes n'ont plus le temps de former un capital suffisant, elles doivent par conséquent se priver de toute dépense de luxe, telle que du nectar, des substances odorantes, etc. Dans nos contrées, le grand facteur de ce raccourcissement de la vie est l'homme. En effet, dans notre région on trouve les prolétaires presque exclusivement sur les terrains remués de temps en temps (surtout sur les terres labourées), où la vie des capitalistes est impossible. Les prolétaires ne peuvent résister à ces bouleversements continuels du sol que par une très grande fertilité. Nous avons constaté maintes fois dans notre région que les prolétaires sont étouffés rapidement par les capitalistes sur les terrains non remués pendant quelque temps (forêts, etc.) Dans notre région les prolétaires (à de rares exceptions près) ne peuvent donc se conserver que grâce à l'action inconsciente de l'homme. —
La faible proportion de prolétaires qu'on observe dans le groupe des anémophiles peut s'expliquer en partie par cette circonstance que la plupart de ces plantes sont aquatiques ou tout au moins hygrophiles, ce qui les a empêché d'envahir les champs cultivés, lesquels sont dans notre région constitués presqu'exclusivement par des terrains secs. Par suite, la plupart des anémophiles ont été soustraites à l'action de l'homme. Certaines capitalistes à reproduction végétative très active peuvent vivre sur les terres cultivées malgré les bouleversements du sol, par ex. *Mentha arvensis*, *Muscari botryoides*, *Triticum repens*, etc.

IV. La dissémination du pollen chez les plantes anémophiles. Hildebrandt a démontré que chez les plantes à fruits secs polyspermes, la dispersion des graines a lieu suivant les lois suivantes : 1° les graines ne peuvent tomber verticalement sur le sol ; 2° les graines ne sont pas dispersées toutes à la fois, mais une à une ou tout au moins en petit nombre à la fois, et par conséquent la dispersion dure relativement longtemps. — Ces deux lois s'appliquent également à la dissémination du pollen des anémophiles. Il existe chez un grand nombre de ces plantes des mécanismes spéciaux qui assurent ce mode de dissémination. Un des mécanismes les plus parfaits est celui qui s'observe chez *Myrica Gale*. Citons encore *Potamogeton*, *Triglochin*, *Alnus*, *Corylus*, etc. Chez ces plantes, le pollen tombé des anthères se conserve dans des réservoirs spéciaux, d'où il est enlevé peu à peu par le vent. Chez d'autres espèces (Graminées, *Humulus*, etc.), ce sont les anthères elles-mêmes qui sont construites de façon à faire office de réservoir à pollen. Kerner von Marilaun a déjà appelé l'attention sur quelques unes de ces dispositions. — On peut encore mettre en parallèle les fruits explosifs (*Impatiens*, etc.) et les fleurs explosives (*Urtica*, etc.).

V. Rapports entre les modes de transport du pollen et la structure des fruits. Chez l'immense majorité des anémophiles (y compris les plantes pollinées par l'eau), les fruits sont monospermes ou oligospermes ; parmi les entomophiles, un très grand nombre d'espèces ont des fruits polyspermes. Ceci est démontré par nos tableaux comparatifs (voir pages 479, 480). Chez les entomophiles, le transport du pollen est effectué par des insectes, qui volent plus ou moins régulièrement d'une fleur à une autre, et dont le corps est ordinairement saupoudré de
nombreux grains de pollen. Par conséquent, chaque stigmate peut recevoir beaucoup de microspores, et peut suffire à la fécondation de nombreux ovules. Chez les anémophiles (et chez les hygrophiles) au contraire, le transport du pollen est plus abandonné au hasard, d’énormes quantités de pollen se perdent ; chaque stigmate ne peut recevoir qu’un petit nombre de grains de pollen, et ne peut suffire qu’à la fécondation d’un petit nombre d’ovules.

Dans la flore indigène, il n’y a guère que deux exceptions qui plaident contre notre hypothèse, savoir Populus et Juncus, tous deux anémophiles à fruits polyspermes. Le cas des Juncus peut s’expliquer par le fait que beaucoup d’espèces de ce genre peuvent se féconder elles-mêmes, de sorte que des masses de pollen sont déposées directement sur le stigmate. Le cas des Populus s’explique peut-être en admettant que ces plantes sont descendantes d’espèces entomophiles (Salix), mais ceci est une pure hypothèse.

Nous pouvons considérer la polyspermie si répandue parmi les entomophiles comme un effet indirect de l’intervention des insectes dans le transport du pollen ; en d’autres termes, la polyspermie est devenue possible lorsque les insectes ont remplacé le vent dans la pollination. Une fois que les fruits sont devenus polyspermes, leur structure est devenue plus compliquée et plus diversifiée ; la déhiscence des fruits est devenue une nécessité, et a provoqué l’apparition de nouvelles complications extrêmement diversifiées. Considérés à ce point de vue, les insectes nous apparaissent comme des facteurs extrêmement importants de l’évolution et de la différenciation du phylum des Spermatophytes.
INHOUD

Voorbericht	157 (5)
Inleiding	158 (6)
Algemeene beschouwingen	247 (95)
(Erratum)	281 (129)
Bestuiving en insectenbezoek der bloemen in het Kempisch gedeelte van Vlaanderen:	
Monocotylen, Sympetalen	282 (130)

Choripetalen (incl. Apetalen) | 119 (301) |
Aanvullingen en verbeteringen *(addenda et corrigenda)* | 365 (547) |
Algemeene beschouwingen:

I. Proeve van een botanische beschrijving van het Kempisch gedeelte van Vlaanderen. | 381 (563) |
II. Betrekkingen tusschen bloemen en insecten in het Kempisch gedeelte van Vlaanderen. | 419 (601) |
III. Zelf- en kruisbevruchting (kapitalisten en proletariërs) | 456 (638) |
IV. Over de uitstrooiing van het stuifmeel bij de windbloemige planten | 471 (653) |
V. Over de betrekkingen tusschen den bouw der vruchten en de transportmiddelen van het stuifmeel | 478 (660) |
Alphabetische lijst der bloemenbezoekende insecten | 484 (666) |
Alphabetische lijst der planten. | 492 (674) |
Résumé en langue française | 495 (677) |