
On Finding Lowest Common Ancestors:

Simplification and Parallelization

by

Baruch Schieber'f

Uzi Vishkint

Ultracomputer Note #118
April, 1987

Ultracomputer Research Laboratory

New York University

Courant Institute of Mathematical Sciences

Division of Computer Science

251 Mercer Street, New York, NY 10012





On Finding Lowest Common Ancestors:

Simplification and Parallelization

by

Baruch Schiebert

Uzi VishkinX

Ultracomputer Note #118
April, 1987

The research of both authors was supported by the Applied Mathematical Sciences Program

of the US Department of Energy under contract DE-AC02-76ER03077.

t Current Address: Department of Computer Science, School of Mathematical Sciences, Tel

Aviv University, Tel Aviv, Israel 69978

X The research of this author was supported by the NSF grant NSF-DCR-83 18874 and ONR

grant N00014-85-K-0046.





ABSTRACT

We consider the following problem. Suppose a rooted tree T is available for

preprocessing. Answer on-line queries requesting the lowest common ances-

tor for any pair of vertices in T. We present a linear time and space prepro-

cessing algorithm which enables us to answer each query in 0(1) time, as in

Harel and Tarjan [HT-84]. Our algorithm has the advantage of being simple

and easily parallelizable. The resulting parallel preprocessing algorithm runs

in logarithmic time using an optimal number of processors on an EREW
PRAM. Each query is then answered in 0(1) time using a single processor.

1. Introduction

We consider the following problem. Given a rooted tree T(V,E) for preprocessing,

answer on-line LCA queries of the form, "Which vertex is the Lowest Common Ancestor

(LCA) of x and y"? for any pair of vertices x,y in T. (Let us denote such a query

LCA(x ,_v).) We present a preprocessing algorithm which runs in linear time and linear space

on the serial RAM model. (For the definition of a RAM model see, e.g., [AHU-74].)

Given this preprocessing we show how to process each such LCA query in constant time.

We consider also parallelization of our algorithm. The model of parallel computation

used is the exclusive-read exclusive-write (EREW) parallel random access machine

(PRAM). A PRAM employs p synchronous processors all having access to a common

memory. An EREW PRAM does not allow simultaneous access by more than one processor

to the same memory location for either read or write purposes. See [Vi-83] for a survey of

results concerning PRAMs.

Let Seq(n) be the fastest known worst-case running time of a sequential algorithm,

where n is the length of the input for the problem at hand. A parallel algorithm that runs in

0(Seq(n)/p) time using p processors is said to have optimal speed— up or, more simply, to

be optimal. A primary goal in parallel computation is to design optimal algorithms that also

run as fast as possible.

Our preprocessing algorithm is easily parallelized to obtain an optimal parallel prepro-

cessing algorithm which runs in O(logn) time using n/logn processors on an EREW PRAM,
where n is the number of vertices in T. Parallelizing the query processing is straightforward

provided read conflicts are allowed: k queries can be processed in 0(1) time using k proces-

sors.

In their extensive paper [HT-84], Harel and Tarjan gave a serial algorithm for the same

problem. The performance of their algorithm is the same as ours. However, our algorithm

has two advantages:



(1) It is considerably simpler in both the preprocessing stage and the query processing.

(2) It leads to a simple parallel algorithm. Consider a dynamic LCA problem, in which the

input is a collection of trees and edges can be added (or perhaps even removed) dynam-

ically. [HT-84] gave an algorithm for some special case of this problem. We leave it

open whether their algorithm can be simplified or whether more general versions of the

dynamic LCA problem can be either simplified or improved.

Observe that using our parallel preprocessing algorithm we can process k off-line LCA

queries in <9(logn) time using (n+k)flogn processors provided read conflicts are allowed.

This affects the performance of parallel algorithms for three problems:

(1) Given an undirected graph orient its edges so that the resulting digraph is strongly con-

nected (if such orientation is possible) [Vi-85].

(2) Computing an open ear decomposition and sr-numbering of a biconnected graph

[MSV-86]. Using the new parallel connectivity and list ranking algorithms of [CV-86a]

it has become possible to solve each of these problems in logarithmic time using an

optimal number of processors only when m^nlogn, where n is the number of vertices

and m is the number of edges in the input graph. Our off-line LCA computation

enables extending the range of optimal speed-up logarithmic time parallel algorithms

for these problems to sparser graphs, where m^na(n.m) and a is inverse Ackerman's

function, as in the above connectivity algorithm.

(3) Approximate string matching [LV-86]. The new parallel suffix tree construction of

[LSV-86] together with the present parallel LCA computation lead to a considerable

simplification of the parallel algorithm of [LV-86]. This simplification has already been

described in [LSV-86].

The paper is organized as follows. Section 2 gives a high-level description of the algo-

rithm. Section 3 describes the preprocessing stage. In Section 4 we show how to process

LCA queries in T using the outcome of the preprocessing stage. Section 5 presents paralleli-

zation of our preprocessing stage.

2. High-level Description

The whole algorithm is based on the following two observations:

(1) Had our input tree been a simple path, it would have been possible to preprocess it (by

way of computing the distance of each vertex from the root, as explained below) and

later answer each LCA query in constant time.

UltracompuUr Note 118 P«g* 2



(2) Had our input tree been a complete binary tree, it would have been possible to prepro-

cess it (by way of computing its inorder numbering, as explained below) and later

answer each LCA query in constant time.

The preprocessing stage assigns a number INLABEL(v) to each vertex v in T.

Motivated by observation (1), these numbers satisfy the following Path Partition property:

The INLABEL numbers partition the tree T into paths, called INLABEL paths. Each INLABEL

path consists of the vertices which have the same INLABEL number.

Let B be the smallest complete binary tree having at least n vertices. Our description identi-

fies each vertex in B by its inorder number. Motivated by observation (2), the INLABEL

numbers satisfy also the following Inorder property: The INLABEL numbers map each ver-

tex v in T into the vertex INLABEL(v) in B, such that the descendants of v are mapped into

descendants of INLABEL(v) in B (v is considered both a descendant and an ancestor of

itself).

Section 4 describes how to process a query LCA(x,y) for any pair of vertices x,y in T.

The processing breaks into two cases. The simpler case is where x and y belong to the same

INLABEL path. In the preprocessing stage we compute for each vertex v in T its distance

from the root into LEVEL(v). So, LCA(x,y) is simply the vertex among x and >• which is

closer to the root. The more complicated case is where INLABEL(x) # INLABEL(y). First,

we find the LCA of INLABEL(x) and INLABEL{y) in the complete binary tree B, denoted by

b. Let z = LCA(x ,y) in T. Second, we find INLABEL(z). INLABEL(z) is the lowest ancestor

of b in B which is the INLABEL number of a common ancestor of x and >• in T. Third, we

find the lowest ancestor of x, denoted x, and the lowest ancestor of y, denoted y, in the path

defined by INLABEL(z) in T. The second and third steps use two more results of the

preprocessing stage: numbers ASCENDANT(v), for each vertex v, and table HEAD. Fourth,

z is simply the vertex among x and y which is closer to the root.

Ultracomputer Not* 118 Page 3



I]

Fig. 3.1

Example. A tree with four numbers: PREORDER, INLA3EL. ASCENDANT 2nd LEVEL at each vertex.

I 3 5 7 9 1! 13 15 17 19 21 23 21 27 29 31

Fig. 3.2

".pie. Ino.-der numbering of the complete binary tree with 3 1 vertices.

UltracompuUr Not* 118 Page 4



3. The Preprocessing Stage

The outcome of the preprocessing stage consists of labels which are assigned to the ver-

tices of T and a look-up table, called HEAD. The label of each vertex v in T consists of

three numbers: INLABEL(v), ASCENDANT(v) and LEVEL(v).

We start with computing INLABEL(v), for each vertex v in T. This is done in two

steps. After a discussion of these two steps we show how to implement them.

Let PREORDER(v) be the serial number of v in preorder traversal of T and SIZE(v) be the

number of vertices in the subtree rooted at v. Definition of preorder traversal can be found,

e.g., in [AHU-74], pp. 54-55.

Step 1. Compute PREORDER(v) and SIZE(v).

We note that the PREORDER numbers of the vertices in the subtree rooted at v range

between PREORDER(v) and PREORDER(v) + SIZE(v)- 1, and therefore, the closed interval

[PREORDER(v),PREORDER(v) + SIZE(v)-l] is called the interval of v.

In Step 2 we consider the binary representation of the (integer) numbers in the interval of v.

We remark that throughout this paper we alternately refer to numbers and to their binary

representations. No confusion will arise.

Step 2. Find the (integer) number which has the maximal number of rightmost "0" bits in

the interval of v. This number is assigned to INLABEL(v).

For an example of computations described in this section see Fig. 3.1.

Discussion. We show that the INLABEL numbers satisfy the two properties defined in the

high-level description of the previous section. Observe that the intervals of the sons of v

must be pairwise disjoint. Therefore, INLABEL(v) belongs to the interval of at most one son

of v. Denote such son by u. By the selection of the INLABEL numbers (Step 2),

INLABEL(u) = INLABEL(v) (if u exists), and for any other son w of v,

INLABEL(w)±INLABEL(v). This implies the Partition Path property of the INLABEL

numbers. Let u be any descendant of v in T. Next, we show that INLABEL(u) is a descen-

dant of INLABEL(v) in the complete binary tree B. (Recall that our description identifies

each vertex in B by its inorder number.) Consider two vertices b and c in B. We, first,

give a necessary and sufficient condition for c to be a descendant of b in B and then show

that INLABEL(u) and INLABEL(v) satisfy this condition. Let /= [logn J and i be the number

of rightmost "0" bits in b. That is, b consists of l—i leftmost bits followed by a single "1"

and i "0"s. The vertex c is a descendant of b if and only if

IMtracompuUr Not* 118 Page 5



(1) the l—i leftmost bits of c are the same as the l—i leftmost bits of b

(2) the number of rightmost "0" bits in c is at most i. For an example of a complete

binary tree and its inorder numbering see Fig. 3.2.

Let i be the number of rightmost "0" bits in INLABEL(v). Since INLABEL(u) belongs

to the interval of v and INLABEL(v) has the maximal number of rightmost "0" bits in

this interval, the number of rightmost "0" bits in INLABEL(u) must be at most i, and

the l — i leftmost bits in INLABEL{u) must be the same as the l—i leftmost bits in

INLABEL(v). This implies that INLABEL(u) is the descendant of INLABEL(v) in B,

and, in general, the Inorder property of the INLABEL numbers.

Implementation:

Step (1) is implemented in a linear time and linear space, using preorder traversal of T.

Given PREORDER(v) and SIZE(v), for each vertex v in T,

Step (2) is implemented in constant time per vertex in two substeps.

Step 2.1. Compute [\og[(PREORDER(v)-\)\or(PREORDER(v) + SIZE(v)-\)]\ into i. Let

us explain this. The bitwise logical exclusive OR (denoted xor) of PREORDER(v)-! and

PREORDER(v) + SIZE(\')-\ assigns "1" to each bit in which PREORDER(v)-l and

PREORDER(v) + SIZE(v)-l differ. The floor of the (base two) logarithm gives the index

of the leftmost bit of difference (counting from the rightmost bit whose index is 0). Note

that the bit indexed i must be "0" in PREORDER{v)-\ and "1" in

PREORDER(v) + SlZE(v)-\, since the second number is larger.

Step 2.2 shows how to "compose" INLABEL(v) . For this, we need two observations:

(1) The /-z'+l leftmost bits of INLABEL(v) are the same as the l-i + \ leftmost bits in

PREORDER(v) + SIZE(v) - 1.

(2) The i other bits in INLABEL(v) are "0"s.

Step 2.2. Compute 2'
PREORDER(v) + STZE(v)-l

into INLABEL(v). This assigns
2'

the /-j + 1 leftmost bits in PREORDER(v)+SIZE(v)-l to the l-i+1 leftmost bits in

INLABEL(v) and "0"s to the other bits of INLAB£L(v).

Remark: The above computation is based on PREORDER numbering of the vertices of T.

This numbering has the property that the numbers assigned to the subtree rooted at any ver-

tex of 7" provide a consecutive series of integers. In fact, any alternative numbering having

this property (e.g., POSTORDER, INORDER) will produce INLABEL numbers which will be

suitable for our preprocessing stage.

Ultracomputer Not* 118 Page 6



We proceed to the computation of the ASCENDANT numbers. The general idea is that

for each vertex v, the single number ASCENDANT(v) will record the INLABEL numbers of

"a//"the We observe that, from the viewpoint of vertex v the INLABEL number of each of

its ancestors can be fully specified by the index of its rightmost "1". This is, since the bits

which are to the left of this "1" are the same as their respective bits in INLABEL(v). Like

the INLABEL numbers, ASCENDANT(v) is also an (Z+l)-bit number. Denote the binary

representation of ASCENDANT(v) by the binary sequence A/(v),...,Ao(v)- We set A,(v) = l

only if i is the index of a rightmost "1" in the INLABEL number of an ancestor of v in T.

To compute the ASCENDANT numbers, we scan the vertices of T from its root r down to its

leaves (use, for instance, Breadth-First Search). We start with ASCENDANT(r) = 2 l
. Con-

sider an internal vertex v in T and let F(v) be the father of v in T. If

INLABEL(v) = INLABEL(F(v)) then we assign ASCENDANT(F(v)) to ASCENDAAT(v), oth-

erwise, we assign ASCENDANT(F(v)) + 2' to ASCENDANT(v) , where i is the index of the

rightmost "1" in INLABEL(v). It can be easily verified that i is given by

\og(INLABEL(v)-[INLABEL(v)and(INLABEL(v)-l)]), where and denotes bitwise logical

AND.

Recall that LEVEL(v), for each vertex v in T, is the distance, counting edges, of the

path from v to the root r. Computation of the LEVEL numbers is straightforward and can

be done using, e.g., Breadth-First Search.

Recall that Fig. 3.1 gives an example of the labels.

We conclude by describing how to compute the table HEAD. HEAD(k) contains the

vertex which is closest to the root in the path consisting of all vertices whose INLABEL

number is it. HEAD(k) is sometimes called the head of the INLABEL path k. Computation

of the table HEAD is trivial. For each vertex v, such that INLABEL(v) # INLABEL(F(v)) we

assign v to HEAD(INLABEL(v)). This, again, takes linear time and linear space.

A general implementation remark: The time bounds of both the preprocessing stage and the

query processing depend on the ability to perform multiplication, division, powers of two,

bitwise AND, base two discrete logarithm and bitwise exclusive OR in constant time. If

these operations are not part of the machine's repertoire, look-up tables for each missing

operation are prepared in linear time and linear space as part of the preprocessing stage.

These tables will be used to perform the missing operations in 0(1) operations which are in

the repertoire.

UltracompuUr Not* 118 Page 7



We finally note the two points in which our algorithm is similar to [HT-84]: (1) The

basic observations that it is possible to answer LCA queries in simple paths and complete

binary trees in constant time. (2) The idea of packing.information regarding several vertices

(as in the ASCENDANT numbers) into a single number. However, the final preprocessing

stage and query processing are different.

4. Processing LCA Queries

In this section we show how to answer LCA queries using the outcome of the prepro-

cessing stage.

Consider a query LCA(x,y), for any pair of vertices x,y in T. (To illustrate the presen-

tation the reader is referred to Fig. 3.1.) There are two cases:

(Case A) INLABEL(x) = INLABEL(y). It must be that x and y are in the same INLABEL path.

We conclude that LCA(x,y) is x if LEVEL(x)<LEVEL(y) and y otherwise.

(Case B) INLABEL(x)±INLABEL(.y). Let z be LCA(x,y). We find z in four steps:

Step 1. Find b, the LCA of INLABEL(x) and INLABEL{y) in the complete binary tree B, as

follows. Let i be the index of the rightmost "1" in b. Since b is a common ances-

tor of INLABEL(x) and INLABEL(y) in B, the l-i leftmost bits in INLABEL(x) and

INLABEL(y) must be the same as these bits in b. Since b is the lowest common

ancestor of INLABEL(x) and INLABEL(y), i must be the minimum index such that

the l — i leftmost bits in INLABEL(x) and INLABEL(y) are the same. Hence, i is the

index of the leftmost bit in which INLABEL(x) and INLABEL(y) differ, and b con-

sists of the l—i leftmost bits in INLABEL(x) (or INLABEL(y)) followed by a single

"T'and i "0"s.

Step 2. Find INLABEL(z) (where z is LCA(x,y)). For this we find the index of the right-

most "1" in INLABEL(z), denoted by ;'. Since z is a common ancestor of x and y in

T, Aj(x) = 1 and Aj(y) = 1. We observe that INLABEL(z) is the lowest ancestor of b

in B which is also the INLABEL number of a common ancestor of x and y in T.

Therefore, the index j must be the index of the rightmost "1" in A/(x),...^4,(jt) and

Ai(y),...Ai(y)- INLABEL(z) consists of the l-j leftmost bits of INLABEL(x) (or

INLABEL(y)) followed by a single "1" and ; "0"s.

Step 3. Find x, the lowest ancestor of x in the path defined by INLABEL(z). Also, find y,

the lowest ancestor of y in this same path. We show how to find x. y is found simi-

larly.

If INLABEL(x) = INLABEL(z) then x = x and nothing has to be done. Suppose

UltracompuUr Not* 118 Page 8



INLABEL(x)^INLABEL(z). We set the following intermediate goal, as the main

step towards finding i: Find the son of x which is also an ancestor of x. Denote the

vertex that we search by w and let Jt be the index of the rightmost "1" in

INLABEL(w). It is not difficult to verify that k is the index of the leftmost "1" in

i4,_i(x),...,Ao(*)- So. we find * Clearly, INLABEL(w) consists of the l — k leftmost

bits of INLABEL(x) followed by a single "1" and k "0"s. Observe that w is the

head of its INLABEL path (since the INLABEL number of its father x is different

from INLABEL(w)). Therefore, w is HEAD(INLABEL(w)) and our intermediate

goal is achieved. Finally, x is the father of w.

Step 4. LCA(x.y) is x if LEVEL{x)<LEVEL(y) and y otherwise.

In the rest of this section we give additional implementation details required for the

above query processing.

Step 1. To find i, the index of the rightmost "1" in b, we compute

«':= [\og[INLABEL(x)xorINLABEL(y))\. This is similar to Step 2.1 in the INLA-

BEL numbers computation of the previous section. Given i, b can be computed

similarly to Step 2.2 there.

Step 2. To find j we do the following:

Step 2.1. Compute the bitwise logical AND of ASCE\'DANT(x) and ASCENDANT(y) into

COMMON.

COMMON
2'

Ai(x),...Ai(x) and A/(y),... A(y).

Step 2.3. j is the index of the rightmost "1" in COMMON
t

. To find ;' we compute

j=\og(COMMONi-[COMMONiand(COMMONi-l)]), as in the ASCENDANT

numbers computation of the previous section.

The implementation of Step 3 uses the same techniques.

5. The Parallel Preprocessing Algorithm

In this section we describe the parallel version of our preprocessing stage. It runs in

O(logn) time using n/logn processors. We make the following assumption regarding the

representation of the input tree T. Its n — 1 edges are given in an array, where the incoming

edges of each vertex are grouped successively. By our definition of the tree T, its edges are

Ultracomputer Not* 118 Page 9

Step 2.2. Compute 2' into COMMONi. COMMONi lists all the "l"s in both



directed towards the root.

Computing the labels in parallel. To compute the labels of the vertices in T we apply the

Euler tour technique for computing tree functions, which was given in [TV-85] and [Vi-85].

We will implement it, however, using the O(logn) time optimal parallel list ranking algo-

rithm of [CV-86a]. This list ranking algorithm is designed for an EREW PRAM. It is

based on expander graphs and its O(logn) time bound hides a constant which is not very

small. We note that [CV-86b] gave recently an alternative list ranking algorithm with the

same time and processor efficiencies. This alternative algorithm is designed for a PRAM

which allows simultaneous access to the same memory location for both read and write pur-

poses (called CRCW PRAM). It is simpler and its O(logn) time bound requires a small con-

stant.

Below, we first recollect the construction required for the Euler tour technique. We

then show how to use it for computing the labels. The only reason which forced us to

present anew the Euler tour technique is that the computation of the ASCENDANT numbers

has not appeared elsewhere.

Step 1. For each edge (v-w) in T we add its anti-parallel edge (w-v). Let H denote the new

graph

.

Since the in-degree and out-degree of each vertex in H are the same, H has an Euler

path that starts and ends in r. Step 2 computes this path into the vector of pointers D,

where for each edge e of H , D{e) will have the successor edge of e in the Euler path.

Step 2. For each vertex v of// we do the following. (Let the outgoing edges of v be

(v-»uo).---.(v-K<f-i).) D(w,-v): = (v-u(
1 + i)m0d<f). for i-0,...,d-l. Now D has an Euler cir-

cuit. The "correction" D(ud-i^r): = end- of'—list (where the out-degree of r is d) gives an

Euler path which starts and ends in r.

We show how to use the Euler path in order to find PREORDER(v),

PREORDER(v) + SIZE(v) - 1 and LEVEL(v) for each vertex v in 7".

Step 3. We assign two weights: W\(e) and Wi(e) to each edge e in the Euler path as fol-

lows.

(1) Wi(e) = 1 if e is directed from r (that is, if e is not a tree edge) and Wj(e) = other-

wise.

(2) Wi(e) — 1 if e is directed from r and W2(e) = — 1 otherwise.

UltracompuUr Not* 118 Page 10



Step 4. We apply twice an optimal logarithmic time parallel list ranking algorithm to find

for each e in H its (weighted) distance from the start of the Euler path: The first application

is relative to the weights Wj and the result is stored in DlSTANCE\{e). The second applica-

tion is relative to the weights Wj and the result is stored in DISTANCEi(e). Consider a ver-

tex v#r and let u be its father in T. PREORDER(v) is DISTANCE i(u~v) + 1,

PREORDER(v) + SIZE(v)-l is DISTANCE^v^u) + 1, and LEVEL(v) is DlSTANCE 2(u~v).

(These claims can be readily verified by the reader.)

Step 5. Given PREORDER(v) and PREORDER(v) + SIZE(v) - I for each vertex v in T we

compute INLABEL(v) in constant time using n processors as in the serial algorithm.

Next, we show how to use the Euler path in order to find ASCENDANT(v) for each

vertex v in T.

Step 6. We assign a (new) weight W(e) to each edge e in the Euler path as follows. For

each vertex v#r we do the following. Let u be the father of v in 7 and let i be the index of

the rightmost "1" in INLABEL(v). It INLABEL(v)*INLABEL(u), we assign W(u-v) = 2''

and W(v-u) = —2'. The weight of all other edges is set to zero.

Step 7.

We apply again a parallel list ranking algorithm to find for each e in H its (weighted) dis-

tance from the start of the Euler path. Consider a vertex v#r and let u be its father in T.

ASCENDANTS) is the distance of the edge (w-v) plus 2'. Clearly, ASCENDANT(r) = 2 l
.

We note that, given the labels, the table HEAD can be computed in constant time using

n processors.

Complexity. Each of steps 4 and 7 needs n/\ogn processors and 0(\ogn) time. Each of steps

1,2,3,5,6 and the computation of HEAD needs n processors and 0(1) time and can be readily

simulated by n/logn processors in O(logn) time. Thus, the parallel preprocessing stage can

be done in a total of O(logn) time using n/logn processors.

Acknowledgements. We thank Noga Alon and Yael Maon for stimulating discussions.

6. References

[AHU-74] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Com-

puter Algorithms, Addison-Wesley, Reading, MA, 1974.

[CV-86a] R. Cole and U. Vishkin, "Approximate and exact parallel scheduling with

applications to list, tree and graph problems", Proc. 27th Annual Symp. on

Foundations of Computer Science, (1986), pp. 478-491.

UltracompuUr Not* 118 Page 11



[CV-86b] R. Cole and U. Vishkin, "Faster optimal parallel prefix sums and list ranking",

TR 56/86, the Moise and Frida Eskenasy Institute of Computer Science, Tel

Aviv University (1986).

[HT-84] D. Harel and R.E. Tarjan, "Fast algorithms for finding nearest common ances-

tors", SIAM J. Comput., 13 (1984), pp. 338-355.

[LV-86] G.M. Landau and U. Vishkin, "Introducing efficient parallelism into approxi-

mate string matching", Proc. 18th ACM Symposium on Theory of Computing,

1986, pp. 220-230.

[LSV-86] G.M. Landau, B. Schieber and U. Vishkin, "Parallel construction of a suffix

tree", TR 53/86, the Moise and Frida Eskenasy Institute of Computer Science,

Tel Aviv University (1986).

[MSV-86] Y. Maon, B. Schieber and U. Vishkin, "Parallel ear decomposition search

(EDS) and st-numbering in graphs", To appear in Theoretical Computer Sci-

ence. Also in Proc. 2nd Aegean Workshop on Computing, Lecture Notes in

Computer Science 227, Springer-Verlag (1986), pp. 34-45.

[TV-85] R.E. Tarjan and U. Vishkin, "An efficient parallel biconnectivity algorithm",

SIAMJ. Comput. 14 (1985), pp. 862-874.

[Vi-83] U. Vishkin, "Synchronous parallel computation - a survey", TR-71, Dept. of

Computer Science, Courant Institute, NYU, (1983).

[Vi-85] U. Vishkin, "On efficient parallel strong orientation", Information Proc. Letters

20 (1985), pp. 235-240.

Ultracomputer Note 118 Page 12






